
Technische Universität Wien WS 2012
Fakultät für Informatik Übungsblatt Block 2
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If you would like to receive feedback in the exercise sessions, you should submit your
solutions to TUWEL no later than November 13th 2012. If you upload you exercises up
to November 20th 2012, you will get feedback in electronic form.

Exercise 1 Tseitin Transformation

(a) For the formula ψ =
(
a → (b → ¬a)

)
use Tseitin to compute a sat-equivalent

CNF.

Solution:
The formula tree and the assigned labels for ψ are given in Figure 1.
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Figure 1: Formula tree for ψ and assigned labels in red.

The resulting equivalences are:

l1 ↔ a

l2 ↔ b

l3 ↔ a

l4 ↔ ¬l3
l5 ↔ (l2 → l4)

l6 ↔ (l1 → l5)



Transforming those to CNF yields:

¬l1 ∨ a l1 ∨ ¬a
¬l2 ∨ b l2 ∨ ¬b
¬l3 ∨ a l3 ∨ ¬a
¬l4 ∨ ¬l3 l4 ∨ l3
¬l5 ∨ ¬l2 ∨ l4 l5 ∨ l2 l5 ∨ ¬l4
¬l6 ∨ ¬l1 ∨ l5 l6 ∨ l1 l5 ∨ ¬l5

If we add the single clause l6 to the above set of clauses, then the resulting set of
clauses is sat-equivalent to ψ.

(b) Given the circuit below with AND, NAND, and OR gates, use Tseitin to obtain a
linear-size CNF.
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Solution:

We directly label the circuit dag with labels as in Figure 2. Observe that we do
not assign labels to input lines here and use NAND-gates directly (instead of
decomposing them into AND followed by NOT).
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Figure 2: Labelled circuit.

So the corresponding equivalences are (where ↑ is the Sheffer stroke, a binary



logical connective that is equivalent to a NAND gate, i.e., x ↑ y ≡ ¬(x ∧ y)):

l1 ↔ x ↑ y
l2 ↔ y ∧ z
l3 ↔ l1 ∨ l2
l4 ↔ l3 ↑ l2

Corresponding to those equivalences are the following clauses:

¬l1 ∨ ¬x ∨ ¬y l1 ∨ x l1 ∨ y
¬l2 ∨ y ¬l2 ∨ z l2 ∨ ¬y ∨ ¬z
¬l3 ∨ l1 ∨ l2 l3 ∨ ¬l1 l3 ∨ ¬l2
¬l4 ∨ ¬l3 ∨ ¬l2 l1 ∨ l3 l1 ∨ l2

We add the single clause l4 to the above set and obtain a set of clauses correspond-
ing to the above circuit, whose size is linear in the size of the circuit.

(c) Let ψ be a propositional formula and let δ̂(ψ) be the set of clauses resulting from
Tseitin’s transformation on ψ. Prove that the following holds:

If ψ is satisfiable then δ̂(ψ) is satisfiable.

You only need to prove this for the connectives ∧ and ¬. Use the below clause
schemes, which introduce a new label for every boolean variable.

La ↔ a (¬La ∨ a) (La ∨ ¬a)

Lφ ↔ (L1 ∧ L2) (¬Lφ ∨ L1) (¬Lφ ∨ L2) (Lφ ∨ ¬L1 ∨ ¬L2)

Lφ ↔ ¬L1 (¬Lφ ∨ ¬L1) (Lφ ∨ L1)

Solution:
Let δ̂(ψ) be the set of all clauses from the labelling of ψ and the additional clause
(Lψ).

We have to show: If ψ is satisfiable then δ̂(ψ) is satisfiable. In other words: If there
exists I ∈ Mod(ψ) then there exists I ′ ∈ Mod(δ̂(ψ)), that is for every C ∈ δ̂(ψ)
holds I ′(C) = 1.

To prove this statement, we assume that ψ is satisfiable. Then we have to show
that for some interpretation I ′ of δ̂(ψ) it holds that all clauses C ∈ δ̂(ψ) evaluate
to true, i.e., ∀C ∈ δ̂(ψ) : I ′(C) = 1.

As we assumed ψ to be satisfiabel, there exists a model I of ψ. We extend I to an
interpretation I ′ for δ̂(ψ) as follows:

i) I ′(a) = I(a) for every propositional variable a occuring in ψ.



ii) I ′(Lφ) = I(φ) for every subformula occurrence φ of ψ, i.e., φ ∈ Σ(ψ), where
Lφ is the label assigned to φ.

It remains to show that I ′ is also a model of δ̂(ψ).

For the following proof we assume without further notice that φ is a subformula
occurrence of ψ, i.e., φ ∈ Σ(ψ).

As every clause in δ̂(ψ) \ {(Lψ)} results from the translation of one subformula
occurrence φ of ψ, we first show by structural induction on ψ that, for all C ∈
δ̂(ψ) \ {(Lψ)}, it that holds I ′(C) = 1. The Induction Hypothesis (IH) which we
use is as follows:

IH: If φ′ is a subformula of φ with φ′ 6= φ then I ′ satisfies all clauses in δ̂(ψ)\{(Lψ)}
that stem from the translation of φ′.

• Base case: φ = a where a is propositional variable. The clauses in δ̂(ψ) steming
from the translation of φ are (¬La ∨ a) and (La ∨ ¬a). To show that they
evaluate to true under I ′ consider all cases for I(a):

– I(a) = 1: then I ′(a) = 1 by i) and I ′(La) = 1 by ii), thus I ′(¬La ∨ a) = 1
and I ′(La ∨ ¬a).

– I(a) = 0: then I ′(a) = 0 by i) and I ′(La) = 0 by ii), thus I ′(¬La ∨ a) = 1
and I ′(La ∨ ¬a).

Therefore all clauses for φ = a are satisfied by I ′.

• Induction step: case φ = φ1 ∧ φ2. The clauses are (¬Lφ ∨ L1), (¬Lφ ∨ L2),
(Lφ ∨ ¬L1 ∨ ¬L2) where the label for φ1 is L1, respectively for φ2 is L2.
We consider all cases for I(φ):

– I(φ) = 1 : thus I(φ1) = I(φ2) = 1 by the semantics of ∧, so I ′(L1) =
I ′(L2) = 1 by ii) as well as I ′(Lφ) = 1. Therefore I ′(¬Lφ∨L1) = I ′(¬Lφ∨
L2) = I ′(Lφ ∨ ¬L1 ∨ ¬L2) = 1.

– I(φ) = 0 : thus I(φ1) = 0 or I(φ2) = 0. Without loss of generality we
assume I(φ1) = 0. Thus I ′(Lφ) = I ′(L2) = 0. Therefore I ′(¬Lφ ∨ L1) =
I ′(¬Lφ ∨ L2) = I ′(Lφ ∨ ¬L1 ∨ ¬L2) = 1.

As all clauses for φ1 and φ2 are satisfied by I ′ according IH, it follows that
all clauses for φ = φ1 ∧ φ2 are satisfied by I ′.

• Induction step: case φ = ¬φ1. The clauses are (¬Lφ ∨ ¬L1), (Lφ ∨ L1) where
L1 is the label for φ1.
We consider all cases for I(φ):

– I(φ) = 1 : thus I(φ1) = 0 and by ii) is I ′(Lφ) = 1 and I ′(L1) = 0.
Therefore I ′(¬Lφ ∨ ¬L1) = I ′(Lφ ∨ L1) = 1.

– I(φ) = 0 : thus I(φ1) = 1 and by ii) is I ′(Lφ) = 0 and I ′(L1) = 1.
Therefore I ′(¬Lφ ∨ ¬L1) = I ′(Lφ ∨ L1) = 1.

As all clauses for φ1 are satisfied by I ′ according to IH, all clauses for φ = ¬φ1
are satisfied by I ′.



The only remaining clause not covered by structural induction is (Lψ) where Lψ
is the label assigned to ψ. As I ∈ Mod(ψ) holds I(ψ) = 1 and thus by ii) holds
I ′(Lψ) = 1.

Therefore all clauses are satisfied by I ′ and we have proven: if ψ is satisfiable then
δ̂(ψ) is satisfiable.

Shorter Alternative: One can show that the clauses for the cases φ = a and
φ = ¬φ1 evaluate to true in shorter terms. Instead of the case distinction for I(φ),
directly use the relationship between φ and its assigned label, as shown in the
following:

• Case φ = a: by ii) I ′(a) = I ′(La) therefore I ′(¬La∨a) = 1−I ′(La)+I ′(La) = 1
and I ′(La ∨ ¬a) = I ′(La) + 1− I ′(La) = 1, so all clauses are satisfied.

• Case φ = ¬φ1: by ii) and the semantics of negation it holds that I ′(Lφ) =
1 − I ′(L1) therefore I ′(¬Lφ ∨ ¬L1) = 1 − (1 − I ′(L1)) + 1 − I ′(L1) = 1 and
I ′(Lφ ∨ L1) = 1 − I ′(L1) + I ′(L1) = 1. As the clauses for φ1 are satisfied by
IH, all clauses for φ are satisfied.

Notice: The rest of the proof (assumption I that is a model, induction hypothesis,
etc.) remains the same.



Exercise 2 Implication Graphs

Let C be a clause set consisting of the following clauses:

c1 : (¬A ∨B)

c2 : (¬A ∨ ¬B ∨ C)

c3 : (A ∨B)

c4 : (¬F ∨ ¬B ∨ ¬G)

c5 : (G ∨ ¬E)

c6 : (G ∨D)

c7 : (C ∨ E ∨ ¬D)

c8 : (¬A ∨ C)

(a) Draw an implication graph for C. Use the decision C = 0@1, and F = 1@2 until
you reach a conflict.

Solution:
The resulting conflict graph is givne in Figure 4.
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Figure 3: Implication Graph for C with decisions C = 0@1 and F = 1@2.

(b) Determine all UIPs in the implication graph, find the first UIP and use resolution
to learn a conflict clause corresponding to the first UIP.

Solution:
UIPs (nodes through which all paths from the current decision to the conflict go
through) are the nodes F = 1@2 and G = 0@2 where the latter is the first UIP
(closest to the conflict).

We resolve c7, c5, and c6 and obtain:

r1 := res(c7, c5, E) =(C ∨G ∨ ¬D)

r2 := res(r1, c6, D) =(C ∨G ∨G)

fac(r2) =(C ∨G)



So the learned clause according to the first UIP scheme is c9 : (C ∨G).

(c) Add the learned clause, apply conflict-driven backtracking and draw the resulting
implication graph.

Solution:
For conflict-driven backtracking, we backtrack to the second highest DL in the
learned clause, i.e., we backtrack to DL = 1. For this kind of backtracking, we
keep all decisions on DL = 1 but delete all others with DL > 1. After BCP the
resulting implication graph is as in Figure 4.
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Figure 4: Implication Graph for C with learned clause c9 after conflict-driven backtrack-
ing and BCP.

(d) Show that in a conflict graph the first UIP is uniquely defined, i.e., there is exactly
one node in the implication graph which is a first UIP.

Solution:
Proof by contradiction: Assume there are two nodes v, v′ where both v and v′ are
first-UIPs. Let d be the node of the last decision and k the conflict node.

A UIP is by definition a node where all paths from d to k go through. As v and v′

are first-UIPs, they both are UIPs, so all paths from d to k go through v and also
through v′.

Therefore there either is a path d, . . . , v, . . . , v′, . . . , k from v to v′ or there is a
path from v′ to v. Without loss of generality, let the path be from v to v′. As all
paths from d to k go through v and v′, all paths are of form d, . . . , v, . . . , v′, . . . , k,
because the implication graph is acyclic.

As v 6= v′ the distance d(v′, k) between v′ and k is smaller than the distance d(v, k),
i.e., d(v′, k) < d(v, k). But this contradicts the assumption that v is a first-UIP,
because v′ is closer to the conflict k than v.

Therefore there can be only one first UIP.

As d, the current decision node, is always a UIP, there always exists a at least one
UIP, hence there also exists a UIP closest to the conflict, i.e., there exists a first
UIP.

(e) Let C be a set of clauses and G a conflict graph with respect to C. Prove: if a clause
Cl is learned following the first-UIP scheme, then Cl is a consequence of C.



Solution:
Consider how a new clause is learnt: Find the first-UIP u and resolve with clauses
from the conflict k to u. Let S ⊆ C denote those clauses that occur as edge-labels
in the implication graph G from the first UIP u to the conflict node k.

As Cl is learnt following the first UIP schema, there is a resolution derivation
K1,K2, . . . ,Kn of Cl from S where Kn = Cl and for each K` holds: either K` ∈ S
or K` is the resolvent of two Ki and Kj with i, j < ` and 1 ≤ ` ≤ n. As resolution
is correct it follows that S |= Cl.

By monotonicity of propositional logic it then follows that F ∪ S |= Cl for any set
of formulas F , specifically C ∪ S |= Cl. And as S ⊆ C it follows that C |= Cl.

Exercise 3 Sparse Method

Apply the Sparse Method including preprocessing on the formula ϕ below to obtain a
propositional formula. Note that ϕ is not yet in NNF (Negation Normal Form).

(x1 = x2 → x2 = x3)∧
[
¬(x2 = x4 ∨x3 6= x4 ∨x4 6= x5)∨ (x6 6= x5 ∧x6 = x7 ∧x7 = x3)

]
Solution:
In the first step, we transform ϕ into NNF. We substitute → and apply DeMorgan to
obtain ϕE , which now is in NNF:

(x1 6= x2 ∨ x2 = x3) ∧
[
(x2 6= x4 ∧ x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)

]
Then, we draw the equality graph GE(ϕE) of ϕE , given in Figure 5. Dashed lines rep-
resent equality edges while solid lines represent disequality edges.
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Figure 5: Equality graph GE(ϕE), dashed lines represent equality, solid lines disequality.

The edge (x1, x2) is not part of a simple contradictory cycle, therefore we set it to true
and obtain ϕE2 :

(true ∨ x2 = x3) ∧
[
(x2 6= x4 ∧ x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)

]
Propositional simplification yields ϕE3 :[

(x2 6= x4 ∧ x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)
]
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Figure 6: Equality graph GE(ϕE3 ), dashed lines represent equality, solid lines disequality.

The equality graph GE(ϕE3 ) then is as shown in Figure 6.
Edge (x2, x4) now is not in a simple contradictory cycle, therefore we set it to true and
apply propositional simplification to obtain ϕE4 :[

(x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)
]

The equality graph GE(ϕE4 ) is given in Figure 7.
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Figure 7: Equality graph GE(ϕE4 ), dashed lines represent equality, solid lines disequality.

All edges of GE(ϕE4 ) are part of a simple contradictory cycle, so we stop with prepro-
cessing and build the propositional skeleton e(ϕE4 ):

(e3,4 ∧ e4,5) ∨ (¬e5,6 ∧ e6,7 ∧ e3,7)

For transitivity contraints Bt we make the nonpolar equality graph GENP (ϕE4 ) chordal as
shown in Figure 8. Observe that edges (x4, x7) and (x5, x7) are introduced.
The according transitivity constraints Bt are then:

(e3,4 ∧ e4,7 → e3,7) ∧ (e4,7 ∧ e3,7 → e3,4) ∧ (e3,7 ∧ e3,4 → e4,7)∧
(e4,5 ∧ e5,7 → e4,7) ∧ (e5,7 ∧ e4,7 → e4,5) ∧ (e4,7 ∧ e4,5 → e5,7)∧
(e5,6 ∧ e6,7 → e5,7) ∧ (e6,7 ∧ e5,7 → e5,6) ∧ (e5,7 ∧ e5,6 → e6,7)
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Figure 8: Nonpolar equality graph GENP (ϕE4 ), made chordal by additional edges (in red).

The resulting formula in propositional logic then is e(ϕE4 ) ∧Bt.

Exercise 4 Ackermann’s Reduction

Apply Ackermann’s reduction on the following EUF-formula ϕ to obtain an E-formula:

F (F (x1)) 6= F (x1) ∧G(x1, x2) = F (x2) ∧ F (G(x2, F (x2))) 6= F (F (x1))

Solution:
We first number the instances of the UFs inwards-to-outwards, left-to-right:

F2(F1(x1)) 6= F1(x1) ∧G1(x1, x2) = F3(x2) ∧ F4(G2(x2, F3(x2))) 6= F2(F1(x1))

This already gives T for the numbered instances. For example:

T (F1(x1)) = f1

T (F2(F1(x1))) = f2

T (F3(x2)) = f3

T (F4(G2(x2, F3(x2)))) = f4

T (G1(x1, x2)) = g1

T (G2(x2, F3(x2))) = g2

So flatE := f2 6= f1 ∧ g1 = f3 ∧ f4 6= f2.
Based on T we construct FCE :=

(x1 = f1 →f1 = f2)∧
(x1 = x2 →f1 = f3)∧
(x1 = g2 →f1 = f4)∧
(f1 = x2 →f2 = f3)∧
(f1 = g2 →f2 = f4)∧
(x2 = g2 →f3 = f4)∧

((x1 = x2 ∧ x2 = f3)→g1 = g2)

Finally ϕE := FCE → flatE .


