
Introduction to
Real-Time Systems
Peter Puschner

slides credits: H. Kopetz, P. Puschner
VO Echtzeitsysteme SS 2024

What is a Real-Time System?

• Definition 1: RT-systems are systems in which the correctness
of the system behavior depends
• on the logical results of the computations, and
• on the physical time when these results are produced

• Definition 2: RT-systems are systems that have to be designed
according to the dynamics of a physical process

2

What is a Real-Time System? (2)

3

What is a Real-Time System? (3)

• Often part of an embedded or cyber-physical system
• Computer system performs a specific task

(not general purpose)
• Tight interaction with physical environment

(sensors, actuators)
• Dependability
• Resource efficiency (cost are critical)
• Increasing importance of security

4

Example Real-Time Application

Many real-time systems are control systems
Example: simple one-sensor, one-actuator control system

5

A/D

A/D

Computation
(control law) D/A

sensor
Plant

(controlled
system)

actuator

reference
input

Example Real-Time Application – Pseudo Code

• T … sampling period
• T is application dependent, chosen by system designer
• Range of T: milliseconds to seconds

6

Initialize periodic interrupt timer with period T

Interrupt service routine:
do analog-to-digital conversion for input value
compute control output from reference and input value
do digital-to-analog conversion for control output

Misconceptions about Real-Time Systems
(Stankovic, IEEE Computer, 1988)

• “Real-time computing is equivalent to fast computing.”
• “real-time” sounds cool/good – term often used to

advertise products

• “Real-time programming is assembly coding,...”
• Proper models, design and development process

7

Challenges – What is Difficult about RTS?

1. Reactive behavior
• Continuous operation
• Pace is controlled by environment

2. Concurrency
• Devices operate in parallel in the real-world
• Conflicts with sequential execution on controller
• Hard to maintain deterministic, reproducible behavior

3. Guaranteed response times
• Predictability is essential – still efficiency is important
• Worst case must be predictable
• Response times on system level

8

What is Difficult about RTS?

4. Interaction with special purpose hardware
• Devices must be programmed in a reliable and abstract way
• Interfaces, device drivers are often a large development-time sink

5. Maintenance usually difficult
• Hardly maintenance loop
• Instead: “First time right”

6. Harsh environment
• Temperature, EMI, radiation, etc.

7. Constrained resources
• Processing power, memory, power, etc.

9

What is Difficult about RTS?

8. Often cross development
• Target platform ≠ development platform

9. Size and complexity
• Few lines of assembler code … x100 million lines of code (car, plane)

10.Reliability and safety requirements
• Embedded systems control the environment in which they operate
• Control failures can result in

- enormous damage to environment
- substantial financial loss
- the loss of human life

10

Deadline

11

RTCS

Environment

response tim
e

deadline

t

Deadline

• The time at which a real-time systems has to
produce a specific result is called a deadline.

• Deadlines are dictated by the environment.
• What happens if an RTS misses a deadline?

12

Classification of Real-Time Systems

• Soft RTS
• The result has utility after the deadline.
• Respective deadline is called a soft deadline.

• Firm RTS
• The result has zero utility after the deadline.

• Hard RTS
• Missing a deadline may be catastrophic.
• Critical deadline is called hard deadline.
• HRTS has at least one hard deadline.

• Hard and Soft RTS design are fundamentally different!
13

Guaranteed Timeliness versus Best Effort

Guaranteed timeliness of a system implementation
• Load and fault hypothesis is available
• Temporal correctness can be shown by analytical arguments
• Assumption coverage is critical

Best effort system implementation
• Analytical argument for temporal correctness cannot be made.
• The temporal verification relies on probabilistic arguments,

even within the specified load- and fault hypothesis.

Hard real-time systems must be based on guaranteed timeliness.
14

Resource Adequacy

In order to provide timing guarantees a system has to
• provide sufficient computational resources to handle
• the specified peak load and
• fault scenarios.

In the past, resource adequacy has been considered too expensive.

Today, decreasing hardware cost make the implementation of
resource adequate designs economically viable.
For hard real-time applications,
there is no alternative to resource adequate designs.

15

Predictability in Rare-Event Situations

Rare Event
• important event that
• occurs very infrequently during the lifetime of a system

(e.g., the rupture of a pipe in a nuclear reactor).
• can give rise to many correlated service requests

(e.g., an alarm shower) ⬌ peak load.

In a number of applications
• the utility of a system depends on the predictable performance

in rare event scenarios (e.g., flight control system).
• In many cases, workload testing will not cover the rare event

scenario. 16

Hard versus Soft RTS
Characteristic Hard Real Time Soft Real Time

Deadlines hard soft
Pacing environment computer
Peak-Load Perform. predictable degraded
Error Detection system user
Safety critical non-critical
Redundancy active standby
Time Granularity millisecond second
Data Files small/medium large
Data Integrity short term long term

17

Fail-Safe versus Fail-Operational Applications

Fail-safe system: has a safe state in the environment that can be
reached in case of a system failure (e.g., train signaling).
• Fail safeness is an application property.
• High error detection coverage is critical.
• Use of watchdog, heart-beat signal.

Fail-operational system: no safe state can be reached in case of a
system failure (e.g., a flight control system of airplane).
• Computer system has to provide a minimum level of service,

even after the occurrence of a fault.
• Active redundancy

18

Points to Remember

• RT is not about performance (fast is not real-time)
• Hard RT systems are safety critical
• Predictability is important
• RT does not imply ad-hoc, low-level design
• RT design has to be systematic
• Timing is central
• Architecture (hardware and software)
• Design, implementation and verification process

19

