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Exercise 1

Let p be the following program:

x := x+ y;
if x < 0 then

abort
else

while x 6= y do
x := x+ 1;
y := y + 2

od
fi

(a) Show that p is syntactically correct with respect to the definition of Tpl.

(b) Let σ be a state such that σ(x) = 1 and σ(y) = 5. Compute [p]σ, using

• the structural operational semantics

• the natural semantics

of Tpl.

(c) Show that {x = 2y ∧ y > 2 } p {x = y } is totally correct

• by computing the weakest precondition of the program;

• using the Hoare calculus;

• using annotation rules.
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Solution

(a) Syntax check: We give a parallel derivation1 for the program, using the productions
of the context-free grammar for Tpl (see slides).

P ⇒p P;P
⇒p V := E ; if E then P else P fi

⇒p x := (E B E); if (E B E) then abort else while E do P od fi

⇒p x := (V + V); if (V < N ) then abort else while (E B E) do P;P od fi

⇒p x := (x+ y); if (x < 0) then abort else while (V 6= V) do V := E ; V := E od fi

⇒p x := (x+ y); if (x < 0) then abort else while (x 6= y) do x := (E B E); y := (E B E) od fi

⇒p x := (x+ y); if (x < 0) then abort else while (x 6= y) do x := (V +N ); y := (V +N ) od fi

⇒p x := (x+ y); if (x < 0) then abort else while (x 6= y) do x := (x+ 1); y := (y + 2) od fi

(b) Structural operational semantics: We compute a complete program run. The
final state is, by the definition of the semantics, the result of [p]σ.

(p, σ) = (x := x+ y; if · · · fi, σ)[
(x := x+ y, σ)
⇒ σ1 where σ1(x) = [x+ y]σ = 6 and σ1(y) = σ(y) = 5

⇒ (if x < 0 then abort else while x 6= y do · · · od fi, σ1)

⇒ (while x 6= y do x := x+ 1; y := y + 2 od, σ1)

since [x < 0]σ1 = (σ1(x) < 0) = (6 < 0) = 0

⇒ (x := x+ 1; y := y + 2; while x 6= y do x := x+ 1; y := y + 2 od, σ1)

since [x 6= y]σ1 = (σ1(x) 6= σ1(y)) = (6 6= 5) = 1
(x := x+ 1; y := y + 2, σ1)[

(x := x+ 1, σ1)
⇒ σ2 where σ2(x) = [x+ 1]σ1 = 7 and σ2(y) = σ1(y) = 5

⇒ (y := y + 2, σ2)

⇒ (y := y + 2; while x 6= y do x := x+ 1; y := y + 2 od, σ2)[
(y := y + 2, σ2)
⇒ σ3 where σ3(y) = [y + 2]σ2 = 7 and σ3(x) = σ2(x) = 7

⇒ (while x 6= y do x := x+ 1; y := y + 2 od, σ3)

⇒ σ3

since [x 6= y]σ3 = (σ3(x) 6= σ3(y)) = (7 6= 7) = 0

Therefore we have [p]σ = σ3.

1In a parallel derivation a derivation step consists in replacing all variables in the expression simulta-
neously (in parallel) by the right-hand side of some production.
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Natural semantics:

[p]σ = [x := x+ y; if · · · fi]σ

= [if · · · fi] [x := x+ y]σ

= [if x < 0 then abort else while x 6= y do · · · od fi]σ1

where σ1(x) = [x+ y]σ = 6 and σ1(y) = σ(y) = 5

= [while x 6= y do x := x+ 1; y := y + 2 od]σ1

since [x < 0]σ1 = (σ1(x) < 0) = (6 < 0) = 0

= [x := x+ 1; y := y + 2; while x 6= y do x := x+ 1; y := y + 2 od]σ1

since [x 6= y]σ1 = (σ1(x) 6= σ1(y)) = (6 6= 5) = 1

= [while x 6= y do x := x+ 1; y := y + 2 od] [x := x+ 1; y := y + 2]σ1

= [while x 6= y do x := x+ 1; y := y + 2 od] [y := y + 2] [x := x+ 1]σ1

= [while x 6= y do x := x+ 1; y := y + 2 od] [y := y + 2]σ2

where σ2(x) = [x+ 1]σ1 = 7 and σ2(y) = σ1(y) = 5

= [while x 6= y do x := x+ 1; y := y + 2 od]σ3

where σ3(y) = [y + 2]σ2 = 7 and σ3(x) = σ2(x) = 7

= σ3

since [x 6= y]σ3 = (σ3(x) 6= σ3(y)) = (7 6= 7) = 0

(c) Correctness proof via weakest preconditions: We show that the precondition
implies the weakest precondition of the program with respect to the postcondition.

wp(x := x+ y; if · · · , x = y) = wp(x := x+ y, wp(if · · · , x = y))

wp(if · · · , x = y)
= ((x < 0 ∧ wp(abort, x = y)) ∨ (x ≥ 0 ∧ wp(while · · · , x = y)))
= ((x < 0 ∧ false) ∨ (x ≥ 0 ∧ wp(while · · · , x = y)))
= (false ∨ (x ≥ 0 ∧ wp(while · · · , x = y)))
= (x ≥ 0 ∧ wp(while · · · , x = y))

wp(while · · · , x = y) = ∃i ≥ 0Fi

F0 : ¬(x 6= y) ∧ x = y
F1 : x 6= y ∧ wp(x := x+ 1; y := y + 2, x = y)

= (x 6= y ∧ x+ 1 = y + 2)
= (x = y + 1)

Fi : x = y + i (guess)
Fi+1 : x 6= y ∧ wp(x := x+ 1; y := y + 2, Fi)

= x 6= y ∧ (x+ 1) = (y + 2) + i
= x 6= y ∧ x = y + i+ 1
= (x = y + i+ 1) (proof)

= ∃i ≥ 0 (x = y + i)
= x ≥ y
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= (x ≥ 0 ∧ x ≥ y)

= wp(x := x+ y, x ≥ 0 ∧ x ≥ y)
= (x+ y) ≥ 0 ∧ (x+ y) ≥ y
= (x+ y) ≥ 0 ∧ x ≥ 0

It remains to show that the precondition implies the weakest precondition.

x = 2y ∧ y > 2⇒ wp(p, x = y)

⇒ (x+ y) ≥ 0 ∧ x ≥ 0

The two conjuncts of the conclusion can be proven separately:

x = 2y ∧ y > 2⇒ (x+ y) ≥ 0

x = 2y ∧ y > 2⇒ x ≥ 0

The first implication is valid, since x = 2y and y > 2 imply (x + y) = 3y > 6 ≥ 0.
The second implication holds since x = 2y and y > 2 imply x > 4, which implies
the conclusion x ≥ 0.

Correctness proof via the Hoare calculus: The Hoare derivation is shown in
figure 1. It remains to find formulas F and G and an expression e such that the
implications 1, 2, 4, 6 and 7 are valid.

We guess a suitable formula F by forward reasoning. The new value of x is the old
one plus the value of y, hence the old value can be obtained after the assignment by
evaluating x− y. We obtain x− y = 2y ∧ y > 2 as description of the states after the
assignment, therefore we choose F = (x = 3y ∧ y > 2). Now we are able to prove
implications 1 and 2.

Validity of implication 1:

(x = 2y ∧ y > 2)⇒ F [x/x+ y]

(x = 2y ∧ y > 2)⇒ (x+ y = 3y ∧ y > 2)

The first conjunct of the conclusion, x + y = 3y, is implied by the first conjunct of
the premise, and the second conjunct of the conclusion, y > 2, is part of the premise.

Validity of implication 2:

(F ∧ x < 0)⇒ false

(x = 3y ∧ y > 2 ∧ x < 0)⇒ false

The premise is contradictory: y > 2 implies 3y > 6, while x = 3y and x < 0 imply
3y < 0. Therefore the implication holds in every state.
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Figure 1: Derivation of {x = 2y ∧ y > 2 } p {x = y } in the Hoare calculus, where p is
the program of exercise 1.
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To obtain a suitable variant e we rewrite the loop condition x 6= y as x− y 6= 0. We
observe that the expression x − y decreases in each iteration and equals zero when
the loop terminates. Therefore we guess e = x− y.

The main purpose of invariant G is to guarantee the partial correctness of the loop: It
has to be strong enough to imply the postcondition (implication 6), while being at the
same time weak enough to be implied by the precondition of the loop (implication 4)
and being maintained throughout the iterations (first conclusion in implication 7).
In this example implication 6 is valid for any choice of G, since the negated loop
condition already implies the postcondition. Hence we choose the weakest possible
invariant, G = true, which obviously also satisfies the other implications.

The second purpose of the invariant is to ensure properties of the variables needed
for showing that e is a variant. To prove e ≥ 0 we need to assume x ≥ y; obviously
the loop only terminates for such states. This property has to be guaranteed at the
start of the loop and after each iteration. Therefore we add it to the invariant and
obtain G = (true ∧ x ≥ y) = x ≥ y.

Validity of implication 4:

(F ∧ x 6< 0)⇒ G

(x = 3y ∧ y > 2 ∧ x ≥ 0)⇒ x ≥ y

x ≥ y follows from x = 3y and the fact that y is non-negative (because of y > 2).

Validity of implication 6:

(G ∧ ¬x 6= y)⇒ x = y

(G ∧ x = y)⇒ x = y

The conclusion is part of the premise.

Validity of implication 7:

(G ∧ x 6= y ∧ e = z)⇒ (G ∧ 0 ≤ e < z)[y/y + 2][x/x+ 1]

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x ≥ y ∧ 0 ≤ x− y < z)[y/y + 2][x/x+ 1]

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x ≥ (y+2) ∧ 0 ≤ x− (y+2) < z)[x/x+ 1]

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x+1 ≥ y+2 ∧ 0 ≤ (x+1)− (y+2) < z)

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x ≥ y + 1 ∧ 0 ≤ x− y − 1 < z)

(x > y ∧ x− y = z)⇒ 0 ≤ x− y − 1 < z

(Note that x ≥ y+1 is the same as 0 ≤ x−y−1.) The condition x > y in the premise
is equivalent to 0 ≤ x− y − 1, and the condition x− y = z implies x− y − 1 < z.

Since all implications obtained by the Hoare calculus are valid, this initial correctness
assertion is totally correct.
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Correctness proof using annotation rules: We annotate the program with addi-
tional assertions. The order of rule applications is indicated by the numbering of formu-
las. The order as well as the kind of rules is not uniquely determined; other annotations
are possible.

{ 1: x = 2y ∧ y > 2 }
x := x+ y;
{ 3: ∃x′(x′ = 2y ∧ y > 2 ∧ x = x′ + y) } as↓
if x < 0 then
{ 4: (Formula 4) ∧ x < 0 } if↓
{ 6: false } abt
abort
{ 7: false } abt
{ 8: x = y } fi↑

else
{ 5: (Formula 4) ∧ x 6< 0 } if↓
{ 10: G } wht′′

while x 6= y do
{ 11: G ∧ x 6= y ∧ e = z } wht′′

{ 15: (G ∧ 0 ≤ e < z)[y/y + 2][x/x+ 1] } as↑
x := x+ 1;
{ 14: (G ∧ 0 ≤ e < z)[y/y + 2] } as↑
y := y + 2
{ 12: G ∧ 0 ≤ e < z } wht′′

od
{ 13: G ∧ ¬x 6= y } wht′′

{ 9: x = y } fi↑
fi
{ 2: x = y }

We start by simplifying formula 3:

∃x′(x′ = 2y ∧ y > 2 ∧ x = x′ + y) = ∃x′(x′ = 2y ∧ y > 2 ∧ x = 2y + y)

= y > 2 ∧ x = 3y ∧ ∃x′(x′ = 2y)

= y > 2 ∧ x = 3y

For G and e we choose the same invariant and variant as above. It remains to prove the
validity of five implications: 4⇒ 6, 7⇒ 8, 5⇒ 10, 11⇒ 15, and 13⇒ 9. The formula
7 ⇒ 8 is trivially true (false implies everything). The other four implications are the
same as derived by the Hoare calculus above.
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Exercise 2

Consider the following modified if-rule:

{F } p {G } {F } q {G }
{F } if e then p else q fi {G }

(if′′)

(a) Show that the rule is admissible (for partial and total correctness).

Hint: Derive the new rule using rules that we alreay know to be admissible.

(b) Show that the Hoare calculus is no longer complete, if the regular if-rules (if) and
(if′) are replaced by the rule (if′′).

Hint: Find a correctness assertion that is correct (argue why it is!) but that cannot
be derived in the modified calculus (explain why it can’t!).

Solution

Admissibility: We show that the conclusion of the rule (if′′) can be derived from its
premises using the rules (if) and (lc). Since the latter rules are correct for proving total
correctness, the former is also correct.

F ∧ e⇒ F {F } p {G }
{F ∧ e } p {G }

(lc)
F ∧ ¬e⇒ F {F } q {G }

{F ∧ ¬e } p {G }
(lc)

{F } if e then p else q fi {G }
(if)

The premises F ∧ e⇒ F and F ∧¬e⇒ F are tautologies, hence the total correctness of
{F } p {G } and {F } q {G } implies the total correctness of {F } if e then p else q fi {G }.

Incompleteness: Consider the correctness assertion

{ true } if x = y then x := x+ 1 else skip fi {x 6= y } .

The assertion is partially and totally correct, since we have:

{ 1: true }
if x = y then
{ 7: true ∧ x = y } if↓
{ 6: x+ 1 6= y } as↑
x := x+ 1
{ 4: x 6= y } fi↑

else
{ 8: true ∧ x 6= y } if↓
{ 5: x 6= y } sk↑
skip
{ 3: x 6= y } fi↑

fi
{ 2: x 6= y }
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and the two implications true ∧ x = y ⇒ x + 1 6= y (7 ⇒ 6) and true ∧ x 6= y ⇒ x 6= y
(8⇒ 5) are valid.

In the modified calculus only two rules are applicable to the assertion above: if′′

and lc. Rule lc weakens the pre- and strengthens the postcondition. The precondition
true cannot be weakened any further; the postcondition can be strengthened to a for-
mula G such that G ⇒ x 6= y. Then if′′ has to be applied, resulting in the premises
{ true } x := x+ 1 {G } and { true } skip {G }, both of which are wrong and therefore
cannot be derived by a correct calculus.

Summarising, the assertion above is correct, but cannot be derived in the modified
Hoare calculus. Therefore the calculus is not complete.

Exercise 3

Consider the rule
{F } p {G }

{H ∧ F } p {G ∧H }

where F,G,H are formulas and p is a program.

(a) Show that the rule is not admissible in general.

(b) Show that the rule is admissible, if H does not contain any variable that occurs
on the lefthand side of an assignment in p. Can you think of situations where this
restricted rule might be useful?

Solution

(a) To show that the rule is not admissible it suffices to find a true correctness assertion,
where application of the rule leads to a false assertion.

Consider the assertion { true }x := 0 {x = 0 }, which is obviously true. If we apply
the rule for H = (x = 1) we obtain the assertion {x = 1 }x := 0 {x = 0∧x = 1 }, or
equivalently {x = 1 }x := 0 { false }. This assertion is false: For each state σ such
that σ(x) = 1 the program terminates in a state that clearly does not satisfy false.

(b) We first show that {H } p {H } is partially correct, if the formula H does not con-
tain any variable that occurs as lefthand side of an assignment in program p. We
perform an induction on the structure of p; as induction hypothesis we assume that
{H } p′ {H } is partially correct for all proper sub-programs p′ of p.

p = skip: {H } skip {H } is an instance of the skip-axiom.

p = abort: {H } abort {H } is an instance of the abort-axiom.

p = v := e: {H } v := e {H } is an instance of the axiom {F [v/e] } p {F }, since
H[v/e] simplifies to H because H does not contain v. (Note that we need
here (and only here) the restriction regarding H and assignments.)
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p = p1; p2: By induction hypothesis the assertions {H } p1 {H } and {H } p2 {H }
are partially correct. Applying the sequential composition rule (sc) we see that
{H } p {H } is also partially correct.

{H } p1 {H } {H } p2 {H }
{H } p1; p2 {H }

(sc)

p = if e then p1 else p2 fi: By induction hypothesis the assertions {H } p1 {H } and
{H } p2 {H } are partially correct. Applying the logical consequence rule and
the if-rule we obtain:

H ∧ e⇒ H {H } p1 {H }
{H ∧ e } p1 {H }

(lc)
H ∧ ¬e⇒ H {H } p2 {H }

{H ∧ ¬e } p2 {H }
(lc)

{H } if e then p1 else p2 fi {H }
(if)

The implications (H∧e)⇒ H and (H∧¬e)⇒ H are valid, therefore {H } p {H }
is partially correct. (See also the discussion of the modified if-rule in exercise 2.)

p = while e do p1 od: By induction hypothesis the assertion {H } p1 {H } is partially
correct. Applying the logical consequence rule and the while-rule we obtain:

(H ∧ e)⇒ H {H } p1 {H }
{H ∧ e } p1 {H }

(lc)

{H }while e do p1 od {H ∧ ¬e }
(wh)

(H ∧ ¬e)⇒ H

{H }while e do p1 od {H }
(lc)

The implications (H∧e)⇒ H and (H∧¬e)⇒ H are valid, therefore {H } p {H }
is partially correct.

We now return to the original problem.

If {F } p {G } is partially correct, then {H ∧ F } p {G ∧H } is partially correct:
Let σ be an (H ∧ F )-state, i.e., σ is an H-state as well as an F -state. Suppose
σ′ = [p]σ is defined. Since {F } p {G } is true, we have that σ′ is a G-state. From
above we know that {H } p {H } is also true; hence σ′ is also an H-state. Therefore
σ′ is a (G ∧H)-state. We conclude that {H ∧ F } p {G ∧H } is partially correct.

If {F } p {G } is totally correct, then {H ∧ F } p {G ∧H } is totally correct:
Let σ be an (H ∧ F )-state, i.e., σ is an H-state as well as an F -state. Since
{F } p {G } is true, we know that σ′ = [p]σ is defined and that σ′ is a G-state.
From above we know that {H } p {H } is also true; hence σ′ is also an H-state.
Therefore σ′ is a (G ∧ H)-state. We conclude that {H ∧ F } p {G ∧ H } is totally
correct.

What is the rule good for? This rule is useful for proving properties of program
parts locally and adding the information about the global context (i.e., about the
other variables not relevant for the program part under consideration) afterwards.
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As an example, suppose that under the precondition F1 the program p1 computes
some function f1, i.e., the assertion A1 = {F1 } p1 { z1 = f1(· · · ) } is true. Another
program, p2, computes function f2, i.e., the assertion A2 = {F2 } p2 { z2 = f2(· · · ) }
is true. Due to our new rule we may prove the correctness of A1 and A2 separately.
Afterwards we add the precondition of the second program, F2, to assertion A1, and
the postcondition of the first program, z1 = f1(. . . ), to assertion A2. By sequential
composition we obtain a true assertion about a program computing both functions:

{F1 } p1 { z1 = f1(· · · ) }
{F1 ∧ F2 } p1 { z1 = f1(· · · ) ∧ F2 }

{F2 } p2 { z2 = f2(· · · ) }
{ z1 = f1(· · · ) ∧ F2 } p2 { z1 = f1(· · · ) ∧ z2 = f2(· · · ) }

{F1 ∧ F2 } p1; p2 { z1 = f1(· · · ) ∧ z2 = f2(· · · ) }
(sc)

Exercise 4

Determine the strongest postcondition of the weakest precondition of an assignment
statement, i.e., compute sp(wlp(v := e,G), v := e). Why is it different from G?

Solution

sp(wlp(v := e,G), v := e) = sp(G[v/e], v := e)

= ∃v′ (G[v/e][v/v′] ∧ v = e[v/v′])

G[v/e] contains only those occurrences of v that are introduced by e; all other occurrences
have been replaced by e. Therefore G[v/e][v/v′] is the same as G[v/e[v/v′]].

= ∃v′ (G[v/e[v/v′]] ∧ v = e[v/v′])

By the second conjunct we know that e[v/v′] equals v.

= ∃v′ (G[v/v] ∧ v = e[v/v′])

= ∃v′ (G ∧ v = e[v/v′])

= G ∧ ∃v′ (v = e[v/v′])

Why is the result different from G? G may admit states that cannot be obtained by
executing the assignment and therefore do not appear in the strongest postcondition.
The additional existential formula ensures that the value of v is the result of evaluating
the expression e for some input state. For example, the postcondition G = true after
the assignment x := 2x is also satisfied by states assigning an odd number to x; the
additional formula ∃x′(x = 2x′) (‘x is even’) excludes such states.
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Exercise 5

Show that wp and wlp are dual to each other, i.e., show that wlp(p,G) = ¬wp(p,¬G)
holds. Use this relationship to find a formula for wlp(while e do p od, G) similar to the
weakest precondition in the course.

Use your formula to compute the weakest liberal precondition of the program

z := 0; while y 6= 0 doz := z + x; y := y − 1 od

with respect to the postcondition z = x ∗ y0. Compare the result to the weakest precon-
dition computed in the course and explain the differences.

Solution

Given a program p and a postcondition G, there are three disjoint types of states: those
states, for which p does not terminate; those states, for which p terminates in a G-state;
and those states, for which p terminates in a ¬G-state.

S = {σ ∈ S | [p]σ undefined }
∪̇ {σ ∈ S | [p]σ defined and [G] [p]σ = true }
∪̇ {σ ∈ S | [p]σ defined and [¬G] [p]σ = true }

where ∪̇ denotes disjoint union. The first two sets can be interpreted as the weakest lib-
eral precondition of p with respect to G, whereas the third one is the weakest preconditon
of p with respect to ¬G.

S = wlp(p, {G }) ∪̇ wp(p, {¬G })

Subtracting the set wp(p, {¬G }) on both sides results in:

S − wp(p, {¬G }) = wlp(p, {G })

If we represent these state sets as formulas, the complement of a set with respect to the
set of all states corresponds to negation. Hence we obtain:

¬wp(p,¬G) = wlp(p,G)

i.e., wp and wlp are indeed dual operators.
Applying this relationship to while-loops gives us a formula for computing wlp for

while-loops.

wlp(while e do p od, G) = ¬wp(while e do p od,¬G)

= ¬∃i (i ≥ 0 ∧ Fi)

= ∀i (i ≥ 0⇒ ¬Fi)

where F0 = ¬e ∧ ¬G
Fi+1 = e ∧ wp(p, Fi) = e ∧ ¬wlp(p,¬Fi)
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Since Fi occurs in negated form only, we rewrite the recursion such that it defines ¬Fi.

¬F0 = e ∨G
¬Fi+1 = ¬e ∨ wlp(p,¬Fi)

After renaming ¬Fi to Ei we obtain the following compact definition of the weakest
liberal precondition:

wlp(while e do p od, G) = ∀i ≥ 0Ei = ∀i (i ≥ 0⇒ Ei) = ∀i (i < 0 ∨ Ei)

where E0 = e ∨G
Ei+1 = ¬e ∨ wlp(p,Ei)

As an example, the weakest liberal precondition of the multiplication program can be
computed as follows.

wlp(z := 0; while y 6= 0 do z := z + x; y := y − 1 od, z = xy0)
= wlp(z := 0, wlp(while y 6= 0 do z := z + x; y := y − 1 od, z = xy0))
= wlp(z := 0, ∀i (i < 0 ∨ Ei))

∀i (i < 0∨Ei): We compute Ei for some values of i, guess Ei = (y 6= i∨z = x(y0−i))
and prove the guess by induction.

Base case: E0 = (y 6= 0 ∨ z = xy0) = e ∨G X

Induction hypothesis: Ei = (y 6= i ∨ z = x(y0 − i)) holds.

Induction step (i ≥ 0):

Ei+1 = ¬e ∨ wlp(p,Ei)
= (y = 0 ∨ wlp(z := z + x; y := y − 1, (y 6= i ∨ z = x(y0 − i)))
= (y = 0 ∨ (y − 1) 6= i ∨ (z + x) = x(y0 − i))
= (y = 0 ∨ y 6= (i+ 1) ∨ z = x(y0 − (i+ 1)))
= (y 6= (i+ 1) ∨ z = x(y0 − (i+ 1))) X

∀i ≥ 0 (i < 0 ∨ Ei) = ∀i (i < 0 ∨ y 6= i ∨ z = x(y0 − i))
= ∀i (y < 0 ∨ y 6= i ∨ z = x(y0 − y))
= y < 0 ∨ ∀i (y 6= i) ∨ z = x(y0 − y)
= y < 0 ∨ false ∨ z = x(y0 − y)
= y < 0 ∨ z = x(y0 − y)

wlp(z := 0, ∀i (i < 0 ∨ Ei))
= wlp(z := 0, (y < 0 ∨ z = x(y0 − y)))
= (y < 0 ∨ 0 = x(y0 − y))
= (y < 0 ∨ x = 0 ∨ y = y0)
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Comparison of weakest and weakest liberal precondition: Above and in the course we
have computed the following wp and wlp of the multiplication program q:

wp(q, z = xy0) = y ≥ 0 ∧ (x = 0 ∨ y = y0)

wlp(q, z = xy0) = y < 0 ∨ x = 0 ∨ y = y0

= y < 0⊕ (y ≥ 0 ∧ (x = 0 ∨ y = y0))

= y < 0⊕ wp(q, z = xy0)

(⊕ denotes exclusive disjunction.) The two preconditions differ in the condition y < 0,
which characterises exactly the states for which the result of q is undefined.

Exercise 6

Verify that the following program doubles the value of x. For which inputs does it
terminate? Choose appropriate pre- and postconditions and show that the assertion is
totally correct. Use y = 2x0 + x as a starting point for the invariant, where x0 denotes
the initial value of x.

y := 3x;
while 2x 6= y do
x := x+ 1;
y := y + 1;

od

Solution

{ 1: x = x0 ∧ x ≥ 0 }
{ 7: Inv [y/3x] } as↑
y := 3x;
{ Inv : y = 2x0 + x ∧ y ≥ 2x } wht′′

while 2x 6= y do
{ 4: Inv ∧ 2x 6= y ∧ t = t0 } wht′′

{ 9: (Inv ∧ 0 ≤ t < t0)[y/y + 1][x/x+ 1] } as↑
x := x+ 1;
{ 8: (Inv ∧ 0 ≤ t < t0)[y/y + 1] } as↑
y := y + 1;
{ 5: Inv ∧ 0 ≤ t < t0 } wht′′

od
{ 6: Inv ∧ 2x = y } wht′′

{ 2: x = 2x0 }

We choose y = 2x0 + x ∧ 2x ≤ y as invariant Inv and y − 2x as variant t. It remains to
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show that the three implications 1⇒ 7, 4⇒ 9, and 6⇒ 2 are valid.

1⇒ 7

x = x0 ∧ x ≥ 0⇒ Inv [y/3x]

x = x0 ∧ x ≥ 0⇒ 3x = 2x0 + x ∧ 2x ≤ 3x

3x = 2x0 + x holds because of the first premise and 2x ≤ 3x because of the second one.

4⇒ 9

Inv ∧ 2x 6= y ∧ t = t0 ⇒ (Inv ∧ 0 ≤ t < t0)[y/y + 1][x/x+ 1]

Inv ∧ 2x 6= y ∧ t = t0 ⇒ (y = 2x0 + x ∧ 2x ≤ y ∧ 0 ≤ y − 2x < t0)[y/y + 1][x/x+ 1]

Inv ∧ 2x 6= y ∧ t = t0 ⇒ y + 1 = 2x0 + x+ 1 ∧ 2(x+ 1) ≤ y + 1 ∧ 0 ≤ y + 1− 2(x+ 1) < t0

Inv ∧ 2x 6= y ∧ t = t0 ⇒ y = 2x0 + x ∧ 2x+ 1 ≤ y ∧ 0 ≤ y − 2x− 1 < t0

y = 2x0 + x is part of the invariant (first premise). 2x + 1 ≤ y holds since 2x ≤ y is
part of the invariant (first premise) and 2x 6= y holds because of the second premise.
0 ≤ y−2x−1 is the same as 2x+1 ≤ y, which we just showed to be true. y−2x−1 < t0
is true since t0 is the same as y− 2x (third premise) and t0− 1 is obviously smaller than
t0.

6⇒ 2

Inv ∧ 2x = y ⇒ x = 2x0

Solving the two equalities y = 2x0 + x (from Inv) and 2x = y for x we obtain the
conclusion x = 2x0.

Exercise 7

Show that the following correctness assertion is totally correct. Describe the function
computed by the program if we consider a as its input and c as its output.

{ 1: a ≥ 0 }
b := 1;
c := 0;
{ Inv : b = (c+ 1)3 ∧ 0 ≤ c3 ≤ a }
while b ≤ a do
d := 3 ∗ c+ 6;
c := c+ 1;
b := b+ c ∗ d+ 1

od
{ 2: c3 ≤ a < (c+ 1)3 }
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Solution

{ 1: a ≥ 0 }
{ 7: Inv [c/0][b/1] } as↑
b := 1;
{ 6: Inv [c/0] } as↑
c := 0;
{ Inv : b = (c+ 1)3 ∧ 0 ≤ c3 ≤ a } wht′′′

while b ≤ a do
{ 3: Inv ∧ b ≤ a ∧ 0 ≤ t = t0 } wht′′′

{ 10: Inv ∧ (b ≤ a⇒ 0 ≤ t < t0)[b/b+ cd+ 1][c/c+ 1][d/3c+ 6] } as↑
d := 3 ∗ c+ 6;
{ 9: Inv ∧ (b ≤ a⇒ 0 ≤ t < t0)[b/b+ cd+ 1][c/c+ 1] } as↑
c := c+ 1;
{ 8: Inv ∧ (b ≤ a⇒ 0 ≤ t < t0)[b/b+ cd+ 1] } as↑
b := b+ c ∗ d+ 1
{ 4: Inv ∧ (b ≤ a⇒ 0 ≤ t < t0) } wht′′′

od
{ 5: Inv ∧ a < b } wht′′′

{ 2: c3 ≤ a < (c+ 1)3 }

Proof of the implications:

1⇒ 7: a ≥ 0 obviously implies Inv [c/0][b/1] = (1 = (0 + 1)3 ∧ 0 ≤ 03 ≤ a)

5⇒ 2: The third conjunct of the invariant, c3 ≤ a, and the negated loop condition
together yield c3 ≤ a < b. Using b = (c+ 1)3 we obtain formula 2.

We split implication 3 ⇒ 10 into two parts, one for partial correctness and one for
termination:

Inv ∧ b ≤ a⇒ Inv [b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

Inv ∧ b ≤ a ∧ 0 ≤ t = t0 ⇒ (b ≤ a⇒ 0 ≤ t < t0)[b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

Partial correctness: We start by simplifying the right-hand side.

Inv [b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

= (b = (c+ 1)3 ∧ 0 ≤ c3 ≤ a)[b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

= (b+ (c+ 1)(3c+ 6) + 1 = (c+ 2)3 ∧ 0 ≤ (c+ 1)3 ≤ a)

= (b+ 3c2 + 9c+ 6 + 1 = ((c+ 1) + 1)3 ∧ 0 ≤ (c+ 1)3 ≤ a)

= (b+ 3c2 + 9c+ 7 = (c+ 1)3 + 3(c+ 1)2 + 3(c+ 1) + 1 ∧ 0 ≤ (c+ 1)3 ≤ a)

= (b+ 3c2 + 9c+ 7 = (c+ 1)3 + 3c2 + 6c+ 3 + 3c+ 3 + 1 ∧ 0 ≤ (c+ 1)3 ≤ a)

= (b = (c+ 1)3 ∧ 0 ≤ (c+ 1)3 ≤ a)
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So we have to prove the implication

b = (c+ 1)3 ∧ 0 ≤ c3 ≤ a ∧ b ≤ a⇒ b = (c+ 1)3 ∧ 0 ≤ (c+ 1)3 ≤ a

We consider the conjuncts on the right-hand side in turn:

• b = (c+ 1)3: occurs also on the left-hand side.

• 0 ≤ (c+ 1)3: follows from 0 ≤ c3.

• (c+ 1)3 ≤ a: follows from b ≤ a and b = (c+ 1)3.

Termination: As variant t we choose a−b (alternatively: a−c3). We start by simplifying
the right-hand side.

(b ≤ a⇒ 0 ≤ a− b < t0)[b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

= ((b ≤ a⇒ 0 ≤ a− b) ∧ (b ≤ a⇒ a− b < t0))[b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

The first implication is obviously true, it remains to prove the second one. In fact, we
prove a stronger conclusion (without the assumption (b ≤ a)[b/ · · ·][c/ · · ·][d/ · · ·]):

a− b < t0[b/b+ cd+ 1][c/c+ 1][d/3c+ 6]

= a− (b+ (c+ 1))(3c+ 6) + 1) < t0

So we have to prove the implication

Inv ∧ b ≤ a ∧ 0 ≤ a− b = t0 ⇒ a− (b+ (c+ 1)(3c+ 6) + 1) < t0

Using a− b = t0 the right-hand side becomes

a− (b+ (c+ 1))(3c+ 6) + 1) < a− b

and further
(b+ (c+ 1))(3c+ 6) + 1 > b

Because of Inv both, b and c, are non-negative, hence the inequality holds.

Function computed by the program: Integer cubic root, i = b 3
√
ac.

Exercise 8

Prove that the rule

{ Inv ∧ e } p { Inv }
{ Inv }while e do p od { Inv ∧ ¬e }

(wh)

is correct regarding partial correctness, i.e., show that { Inv }while e do p od { Inv ∧¬e }
is partially correct whenever { Inv ∧ e } p { Inv } is partially correct.
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Solution

The assertion { Inv }while e do p od { Inv ∧¬e } is partially correct, if we can show that

For all states σ:
If [Inv ]σ = true and τ = [while e do p od]σ is defined
then [Inv ∧ ¬e] τ = true.

The natural semantics of while is specified recursively as

[while e do p od]σ =

{
[while e do p od] [p]σ if [e]σ 6= 0

σ if [e]σ = 0

Therefore τ being defined means that there is a number n (the number of loop iterations)
such that τ = [while e do p od]σ = [p] nσ. The statement thus can be written as

For all states σ:
If [Inv ]σ = true and if τ = [while e do p od]σ = [p] nσ holds for some n ≥ 0
then [Inv ∧ ¬e] τ = true.

which is the same as

For all numbers n ≥ 0:

A(n) =


For all states σ:
If [Inv ]σ = true and τ = [while e do p od]σ = [p] nσ
then [Inv ∧ ¬e] τ = true.

We prove the universal statement “A(n) for all n” by induction on n.

Induction base: We prove A(0). Let σ be a state such that [Inv ]σ = true and τ =
[while e do p od]σ = [p] 0σ = σ. This is the case if [e] τ = false. Together with
[Inv ]σ = [Inv ] τ we obtain [Inv ∧ ¬e] τ = true.

Induction step: We show A(n+ 1) under the assumption that A(n) holds.
Let σ be a state such that [Inv ]σ = true and let τ = [while e do p od]σ = [p] n+1σ be

the state after n+ 1 iterations. Since there is at least one iteration, we have [e]σ = true,
i.e., [Inv ∧ e]σ = true. Moreover the state σ′ = [p]σ after the first iteration is defined.

By assumption, the premise { Inv ∧ e } p { Inv } is partially correct, therefore [Inv ∧
e]σ = true and σ′ = [p]σ being defined implies [Inv ]σ′ = true.

Now we can apply the induction hypothesis. σ′ is a state such that [Inv ]σ′ = true
and τ = [while e do p od]σ′ = [p] nσ′ is the state after n further iterations. Therefore,
by A(n), we obtain [Inv ∧ ¬e] τ = true.
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