Hybrid Systems Modeling, Analysis and Control

Radu Grosu
Vienna University of Technology

Lecture 10
Reachability with Affine Dynamics

HA with Affine Dynamics

Flows of continuous variables: $\dot{x} = Ax + Bu$

Invariants and guards: $Ax \le c$

Actions: x := Ax

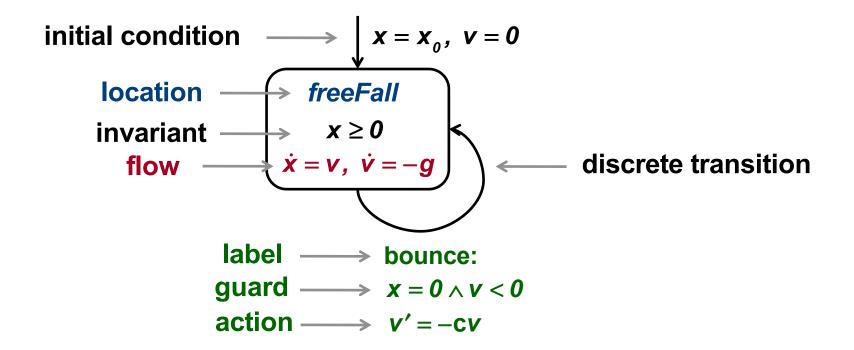
Symbolic representation: convex sets (e.g. polytopes)

Reachability: A semi algorithm

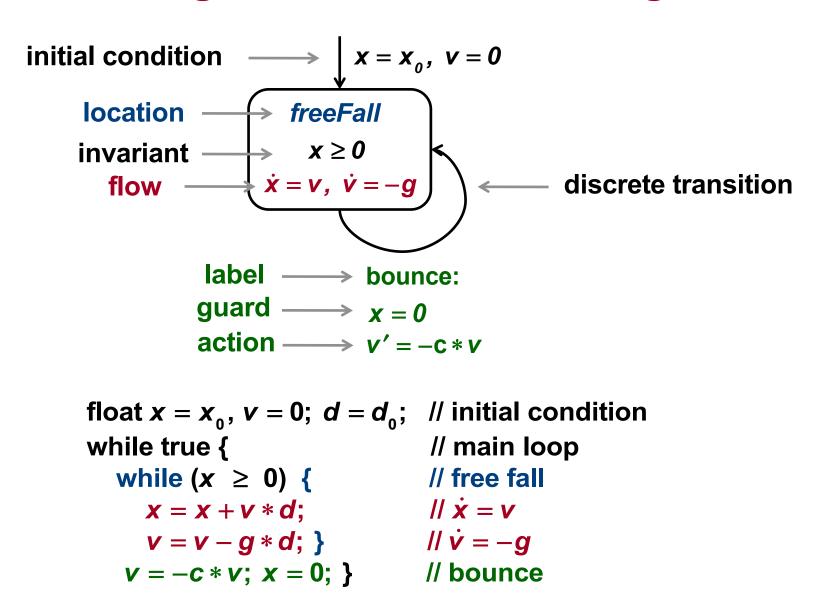
Methodolgy: Exact time elapse only at discrete time

Tools: SpaceEx

Bouncing Ball: HA with Affine Dynamics



Bouncing Ball: Associated Program



Linear Dynamics

Autonomous part of dynamics: $\dot{x} = Ax$, $x \in \mathbb{R}^n$

Analytic solution: $x(t) = e^{At} x_0$

Time discretization:

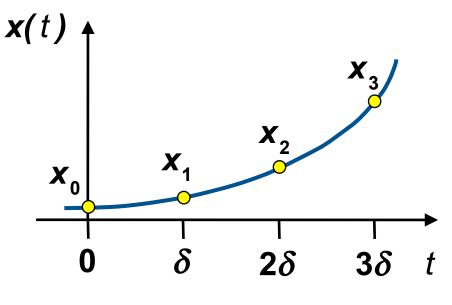
$$t = \delta k$$

$$x(\delta(k+1)) = e^{A\delta} x(\delta k)$$

Recursive DT-Solution:

$$x(0) = x_0$$

$$x(k+1) = e^{A\delta} x(k)$$



Multiplication with constant matrix = linear transformation

x = Mx As a program instruction

Linear DT-Dynamics from Initial Set

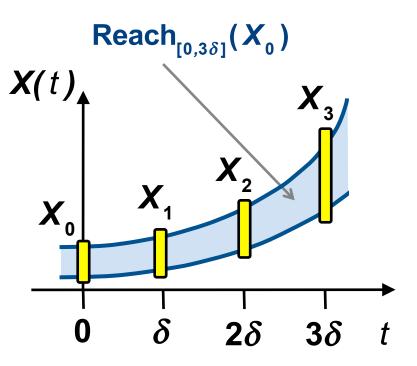
Recursive DT-Solution:

$$X(0) = X_0$$

$$X(k+1) = e^{A\delta} X(k)$$

Purely continuous systems:

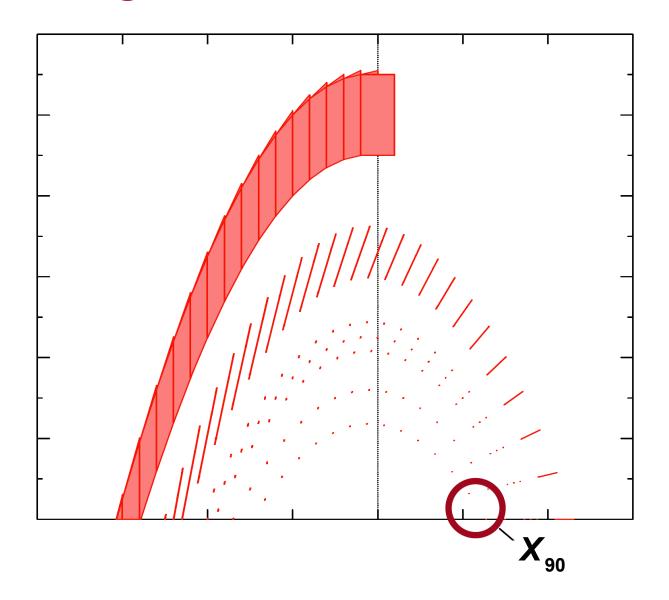
- Discrete solution acceptable
- x (t) is in $\varepsilon(\delta)$ -neighbourhood of some X_k in the DT-solution



Not acceptable for hybrid systems:

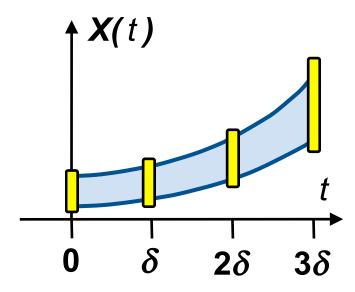
- Discrete transitions may fire between sampling times
- If transitions are missed, x (t) is not in $\varepsilon(\delta)$ -neighbourhood

Bouncing Ball: Error in the DT-Solution



Polyhedral Flow-Pipe Approximation

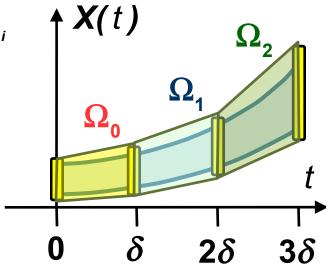
Divide: Reach_[0,N δ](X_0) into N δ -segments



Polyhedral Flow-Pipe Approximation

Divide: Reach_[0,N δ](X_0) into N δ -segments

Enclose: segments with convex polytopes Ω_i



Polyhedral Flow-Pipe Approximation

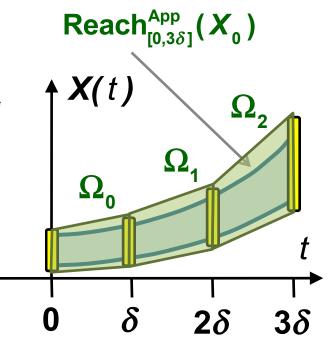
Divide: Reach_{$[0,N\delta]$} (X_0) into N δ -segments

Enclose: segments with convex polytopes Ω_i

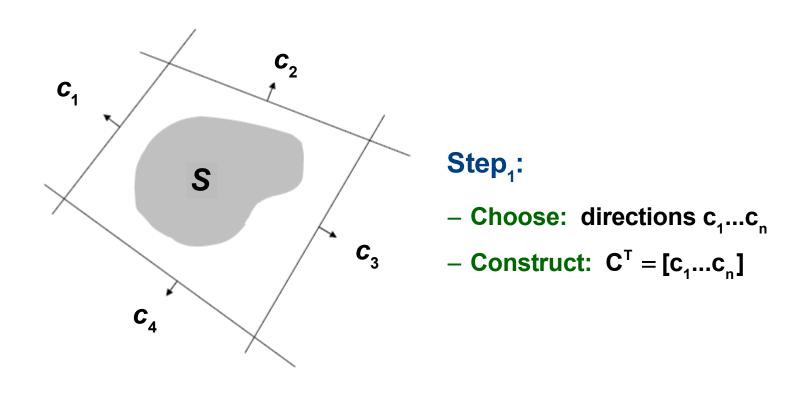
Union: Reach_{$[0,N\delta]$} $(X_0) = \bigcup_{i=0}^{N-1} \Omega_i$

Approx: $Reach_{[0,N\delta]}(X_0) \subseteq Reach_{[0,N\delta]}^{App}(X_0)$

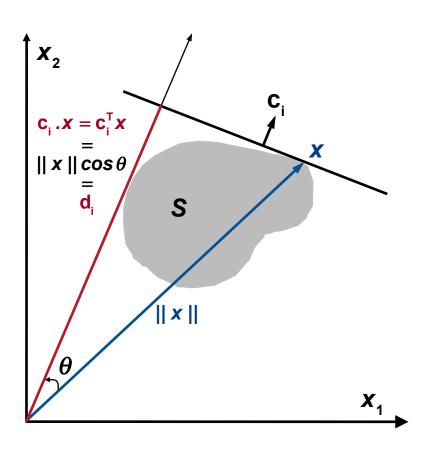
Works for general nonlinear systems!



Wrapping Hyper-Planes Around a Set



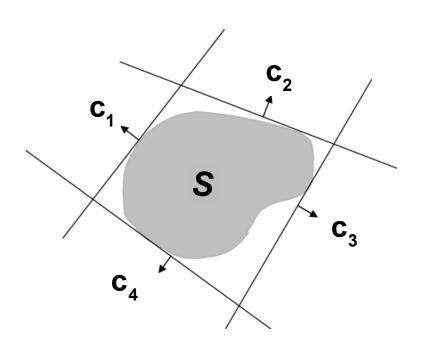
Wrapping Hyper-Planes Around a Set



Step₂:

- Compute optimal d: in $C^T x \le d$ where $C^T = [c_1...c_4]$ and $x \in S$
- Stepwise: For each direction i $d_i = \max_{x \in S} c_i . x$

Wrapping Hyper-Planes Around a Set

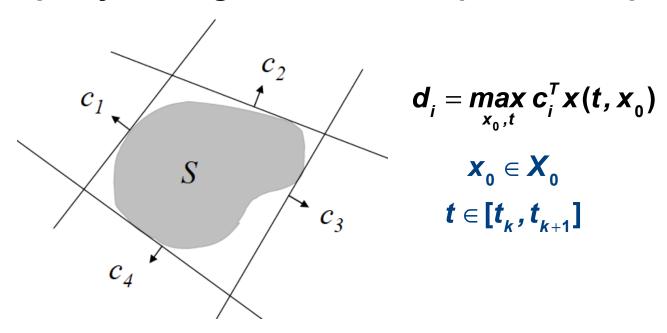


Step₂:

- Compute optimal d: in $C^T x \le d$ where $C^T = [c_1...c_4]$ and $x \in S$
- Stepwise: For each direction i $d_i = \max_{x \in S} c_i . x$

Wrapping a Reached Set

Given directions $c_1...c_n$, wrap Reach_{$[t_k,t_{k+1}]$} (X_0) within a polytope by solving for each i the optimisation problem



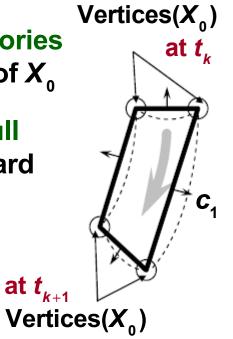
Optimization problem is solved by embedding simulation into objective function computation

Flow Pipe Segment Approximation

Step 1:

a. Simulate trajectories from each vertex of X_0

b. Take convex hull and identify outward normal vectors c_i



Step 2:

Solve optimization problem for each d_i

Flow-pipe segment approximated by

$$\left\{ \boldsymbol{x} \mid \boldsymbol{c}_{i}^{\mathsf{T}} \boldsymbol{x} \leq \boldsymbol{d}_{i}, \forall i \right\}$$

Improvements for Linear Systems

Step 1:

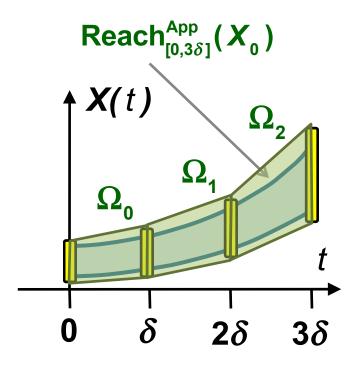
• Compute Ω_0 as discussed before, but

$$X(t) = e^{At} X_0$$

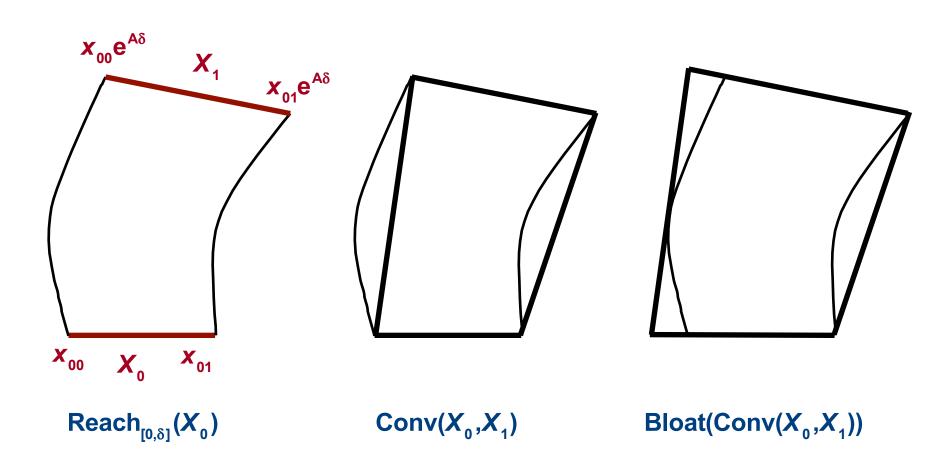
Step 2:

• Compute Ω_{k+1} by using the recurrence:

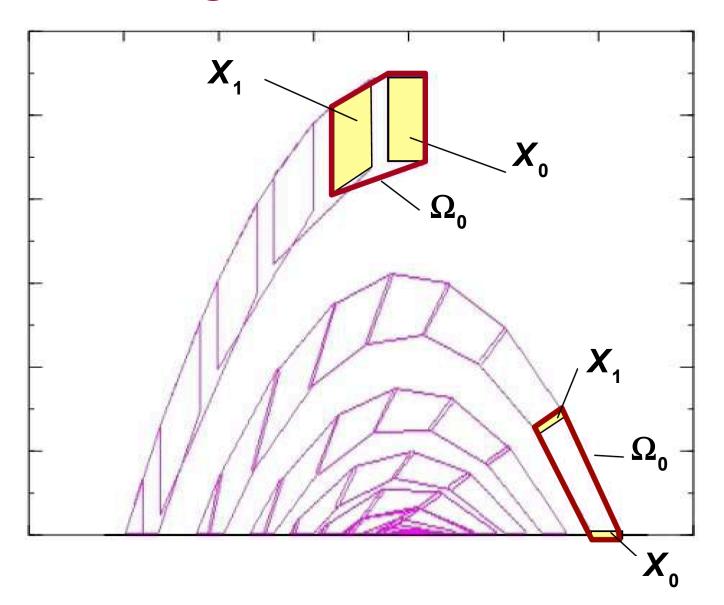
$$\Omega_{k+1} = e^{A\delta}\Omega_k$$
 (proof in Girard's Thesis)



Computation of Ω_0



Bouncing Ball: DT with Convex Hull



Adding Input

Flows of continuous state variables:

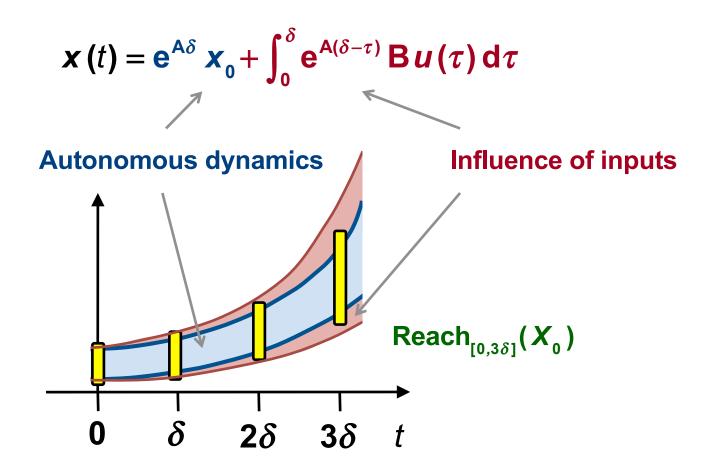
$$\dot{x} = Ax + Bu$$
, $x \in \mathbb{R}^n$, $u \in U \subseteq \mathbb{R}^p$
where x is the state and u is the input

Input is treated as nondeterministic:

$$\dot{x} = Ax + BU, \quad x \in \mathbb{R}^n, U \subseteq \mathbb{R}^p$$

used later for overapproximating nonlinear dynamics

Analytic Solution



Nondeterminism Overapproximation

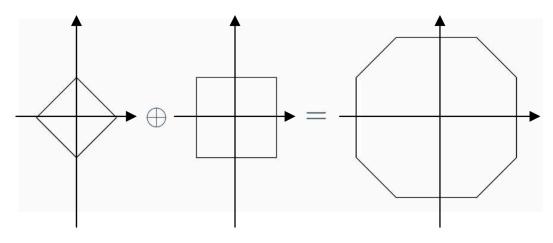
How far can the input push the system within δ ?

$$V = \text{box with radius } \frac{e^{||A||\delta} - 1}{||A||} \sup_{u \in U} ||Bu||$$

$$\Omega_0 = Bloat(Conv(X_0, e^{A\delta}X_0)) \oplus V$$

$$\Omega_{k+1} = \mathbf{e}^{\mathsf{A}\delta}\Omega_{k} \oplus \mathbf{V}$$

Minkowski sum: $A \oplus B = \{a + b \mid a \in A, b \in B\}$



Implementing Reachability

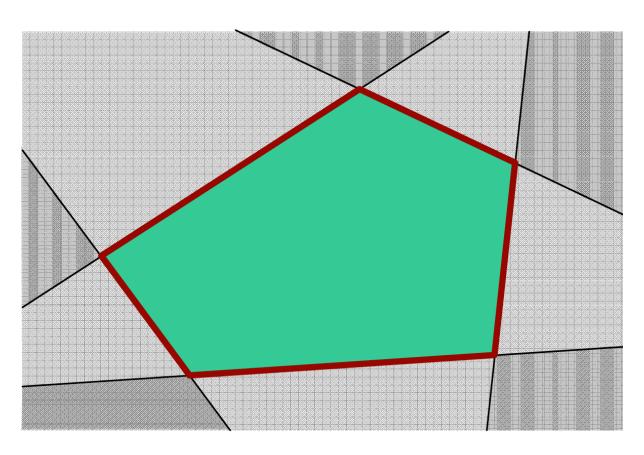
Find representation for continuous sets with:

- Linear transformation: $\Omega_{k+1} = \Phi \Omega_k$
- Minkowski sum: $\Omega_{k+1} = \Phi \Omega_k \oplus V$
- Intersection with guards: $Ax \le c$

Polyhedra

Finite conjunction of linear constraints:

$$P = \{x \mid Ax \leq b\}$$



Operations on Polyhedra

Linear transformation:

- Transform matrix
- O(n³)

Minkowski sum:

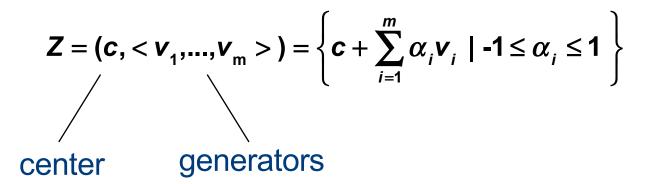
- Need to compute vertices
- O(exp(n))

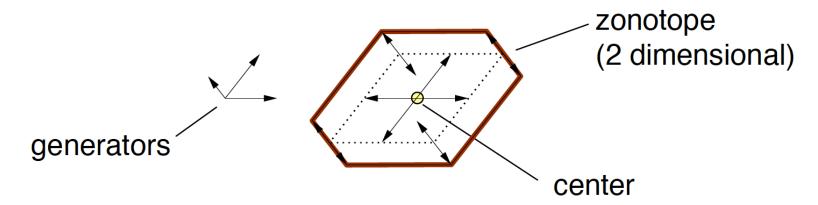
Intersection:

- Join lists of constraints
- O(1)

Zonotopes

Central-symmetric polyhedron:





Operations on Zonotopes

Linear transformation:

- Transform generators: $\Phi Z = (\Phi c, <\Phi v_1, ..., \Phi v_m >)$
- O(n²)

Minkowski sum:

- Join generator lists: $Z+Z'=(c+c', < v_1,...,v_m, v_1',...,v_m', >)$
- O(1)

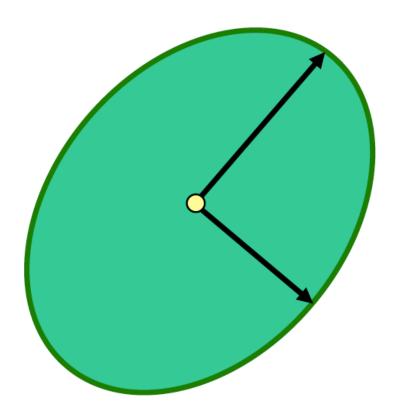
Intersection:

- Problem: intersection of zonotopes is not a zonotope
- Overapproximate

Ellipsoids

Quadratic form:

$$\boldsymbol{E} = \left\{ \boldsymbol{x} \mid \boldsymbol{x}^T \mathbf{Q} \boldsymbol{x} + \mathbf{A} \boldsymbol{x} \leq \mathbf{b} \right\}$$



Operations on Ellipsoids

Linear transformation:

- Transform generators
- O(n²)

Minkowski sum:

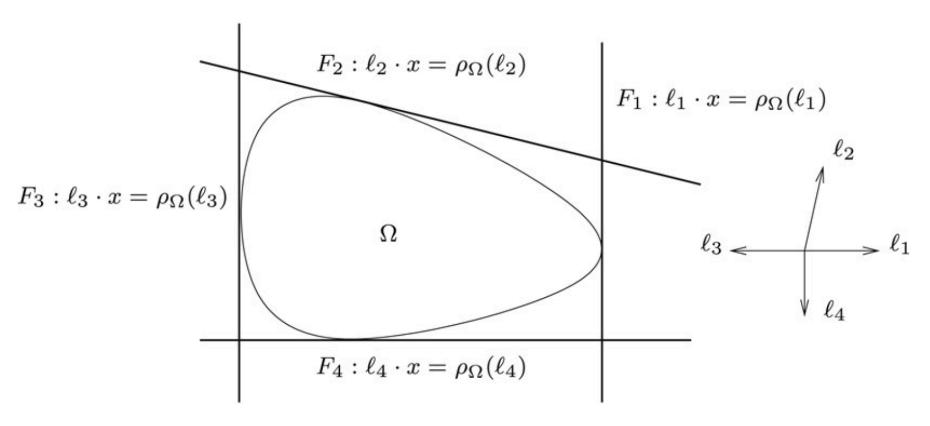
- Problem: result is not an ellipsoid
- Overapproximate

Intersection:

- Problem: intersection of ellipsoids is not an ellipsoid
- Overapproximate

Support Functions

Functional form (lazy evaluation): $\rho_{\Omega}(I) = \max_{x \in \Omega} I.x$



$$\Omega = \bigcap_{I \in \mathbb{R}^d} \{ \boldsymbol{x} \in \mathbb{R}^d \mid I.\boldsymbol{x} \leq \rho_{\Omega}(I) \}$$

Support Functions

Unit ball for 2-norm
$$\mathbf{B}_2 = \{\mathbf{x} \in \mathbb{R}^d \mid ||\mathbf{x}||_2 \le 1\}$$
:
$$\rho_\Omega(I) = ||I||_2$$
 Ellipsoid $\Omega = \{\mathbf{x} \in \mathbb{R}^d \mid \mathbf{x}^T Q \mathbf{x} \le 1\}$, Q is positive definite:
$$\rho_\Omega(I) = \sqrt{I^T Q I}$$
 Hyperrectangle $\Omega = [-\mathbf{h}_1, \mathbf{h}_1] \times \cdots \times [-\mathbf{h}_d, \mathbf{h}_d]$, $\mathbf{h}_i \in \mathbb{R}_+^d$:
$$\rho_\Omega(I) = \sum_{j=1}^d |\mathbf{h}_j I_j|$$
 Zonotope $\Omega = \{\sum_{j=1}^r \alpha_i g_i \mid \alpha_i \in [-1,1]\}$, generators $\mathbf{g}_i \in \mathbb{R}^d$:
$$\rho_\Omega(I) = \sum_{j=1}^r |\mathbf{g}_j . I|$$
 Polytope $\Omega = \{\mathbf{x} \in \mathbb{R}^d \mid \mathbf{C} \mathbf{x} \le \mathbf{d}\}$:
$$\rho_\Omega(I) = \max_{\mathbf{c} \mathbf{x} \le \mathbf{d}} I . \mathbf{x}$$

Operations on Support Functions

Linear transformation:

- $\bullet \ \rho_{\mathbf{A}\Omega}(I) = \rho_{\Omega}(\mathbf{A}^{\mathsf{T}} I)$
- $\rho_{\lambda\Omega}(I) = \rho_{\Omega}(\lambda I) = \lambda \rho_{\Omega}(I)$

Minkowski sum:

• $\rho_{\Omega \oplus \Omega'}(I) = \rho_{\Omega}(I) + \rho_{\Omega'}(I)$

Convex hull:

• $\rho_{CH(\Omega,\Omega')}(I) = \max\{\rho_{\Omega}(I),\rho_{\Omega'}(I)\}$

Intersection:

Reduces to an optimization problem

Implementing Reachability

Complexity of 1-step of time elapse:

- Polyhedra: O(exp(n))
- Zonotopes: O(n²)

Problem:

- With each iteration, Ω_{k} gets more complex
- $\Omega_{k+1} = \mathbf{e}^{\mathsf{A}\delta}\Omega_{k} \oplus V$

Minkowski sum increases the number of:

- Polyhedra: constraints
- Zonotopes: generators

Fight complexity by overapproximation

Overapproximated sequence:

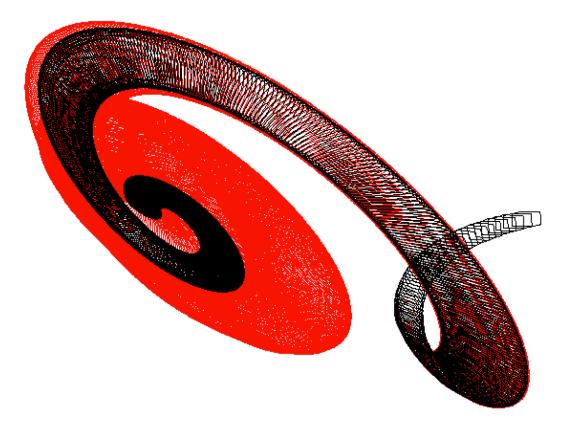
•
$$\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_k \oplus V)$$

Accumulation of approximations:

- Wrapping effect
- Exponential increase in approximation error!

Exact versus overapproximation

- Dimension 5 for 600 time steps
- Overapproximation with 100 generators

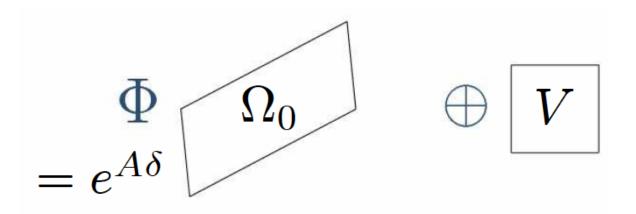


$$\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_k \oplus V)$$

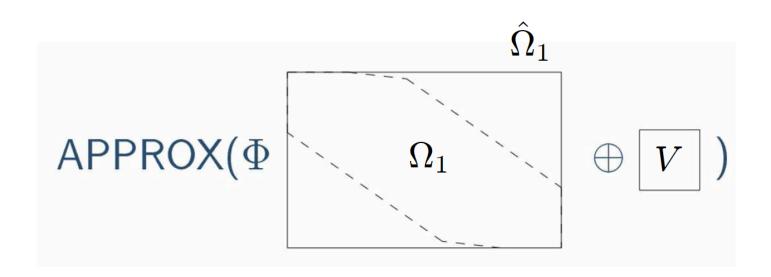
How does error accumulate?

- Linear transformation: Scaling error up (exponential)
- Minkowski sum: adding V adds more error

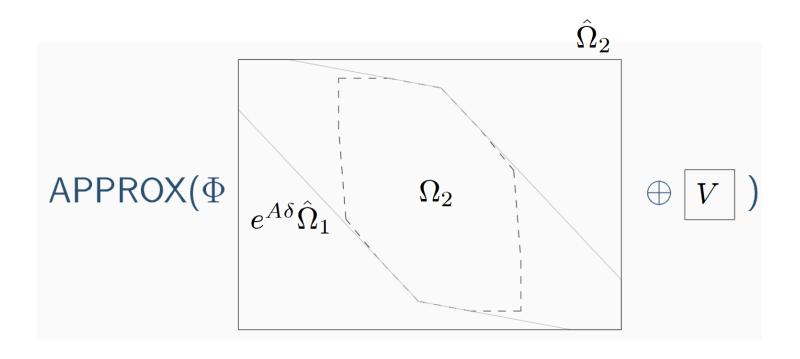
$$\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_{k} \oplus V)$$



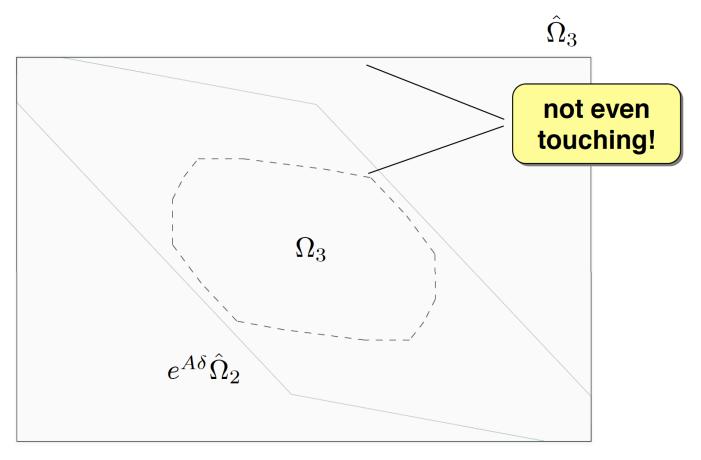
$$\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_{k} \oplus V)$$



$$\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_k \oplus V)$$

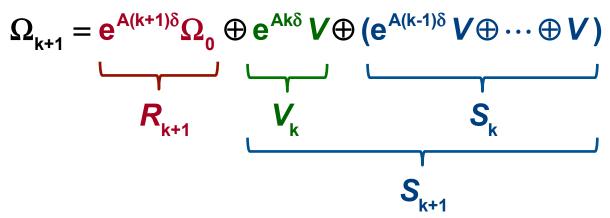


$$\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_k \oplus V)$$



Fighting the Wrapping Effect

Separate transformations and Minkowski sum:



Use four sequences:

$$\begin{array}{lll} {\it R}_{0} & = \Omega_{0} & {\it V}_{0} & = {\it V} & {\it S}_{0} & = \{0\} \\ {\it R}_{k+1} & = e^{A\delta} \, {\it R}_{k} & {\it V}_{k+1} & = e^{A\delta} \, {\it V}_{k} & {\it S}_{k+1} & = {\it S}_{k} \oplus {\it V}_{k} & \Omega_{k+1} & = {\it R}_{k+1} \oplus {\it S}_{k+1} \end{array}$$

Four-Sequence Algorithm

$$R_{k+1} = e^{A\delta} R_k$$
 $V_{k+1} = e^{A\delta} V_k$ $S_{k+1} = S_k \oplus V_k$ $\Omega_{k+1} = R_{k+1} \oplus S_{k+1}$

Transformations only in R_k and V_k :

- Complexity independent of k
- No overapproximation necessary

Minkowski sum only in S_k and Ω_k :

- Growing no of generators, but no longer transformed
- O(Nn³) instead of O(N²n³)

Four-Sequence Algorithm

$$\boldsymbol{R}_{k+1} = \mathbf{e}^{\mathsf{A}\delta}\,\boldsymbol{R}_{\mathsf{k}} \quad \boldsymbol{V}_{\mathsf{k}+1} = \mathbf{e}^{\mathsf{A}\delta}\,\boldsymbol{V}_{\mathsf{k}} \quad \hat{\boldsymbol{S}}_{\mathsf{k}+1} = \hat{\boldsymbol{S}}_{\mathsf{k}} \oplus \mathsf{App}(\boldsymbol{V}_{\mathsf{k}}) \quad \boldsymbol{\Omega}_{\mathsf{k}+1} = \boldsymbol{R}_{\mathsf{k}+1} \oplus \boldsymbol{S}_{\mathsf{k}+1}$$

Use overapproximation with:

- $App(X) \oplus App(Y) = App(X \oplus Y)$
- Bounding box, octogonal, etc.

No accumulation of error:

- $\hat{S}_k = App(S_k)$
- $\hat{\Omega}_{k} \subseteq \mathsf{App}(\Omega_{k})$

Fighting the Wrapping Effect

Exact versus overapproximation

- Dimension 5 for 600 time steps
- Overapproximation with bounding box

