

Time and Order

slide credits: H. Kopetz, P. Puschner

Why do we need a notion of time?

- Event identification and generation
	- State before vs. after the event
- Event ordering
	- Causal order (e.g., *a* may only have caused *b* if *a* happened before *b*)
	- Temporal order (e.g., flight booking: who was first, *A* in VIE or *B* in LA?)
- Coordination coordinated action at specified time
- Duration measurement / control

(e.g., X-ray: exposure time, video: gap between frames)

- Modeling of physical time
	- Comply to laws/dynamics of physics (*second*, physical time, real time)
	- Read input, produce output "at the right time" (e.g., control loops)

What is tricky?

- Order vs. causality
- Determining order or simultaneity under different conditions:
	- Event numbering vs. timestamping
	- Central system vs. distributed system
- Timestamping
- Measuring durations

Causal and Temporal Order

Example

```
Two events
   e1 … someone enters a room
   e2 … the telephone starts to ring
Two cases
   e_1 occurs after e_2 \rightarrow causal dependency possible
   e2 occurs after e1 \rightarrow causal dependency unlikely
```
- Causal order implies temporal order
- Temporal order is necessary but not sufficient to establish causal order

Causal and Temporal Order

Causal Order

- Deduced from "causal dependency" between events
- Reichenbach: *"If event e1 is a cause of event e2, then a small variation (a mark) in e1 is associated with a small variation in e2, whereas small variations in e2 are not necessarily associated with small variations in e1."*
- Bunge: *"If a Cause happens, then (and only then) the Event is always produced by it."*

Temporal Order

• Deduced from timestamps of physical time

Causal Order of Computer-generated Events

Causal Order of Computer-generated Events

Partial order for computer-generated events

 $a \rightarrow b$... *a* causes *b* (happened before, causal dependence)

- 1. If *a*, *b* … events within a sequential process and *a* is executed before *b* then: $a \rightarrow b$
- 2. If *a* … send event of a message by process *pi* and *b* … receive event of the message by process *pk* then: $a \rightarrow b$
- $3. \rightarrow$ is transitive

Logical Clocks

- Represent information about causal dependency
- Do not use physical time
- Events are "time"-stamped using monotonically increasing counters
	- Events *a*, *b* with $a \rightarrow b$ Timestamps *C*(*a*), *C*(*b*)
- Desirable properties
	-
	- $a \rightarrow b$ \Leftrightarrow $C(a) < C(b)$ … strong consistency
	- $a \rightarrow b$ \Rightarrow $C(a) < C(b)$ … monotonicity, consistency
		-

Lamport's Logical Clocks

- Logical clocks of processes p_i represent the local views of global time
- Non-negative integer *C_i* represents the local clock of p_i
- Clock update rules:

R1: p_i increments C_i for each local event (e.g., event, send):

$$
C_i = C_i + 1;
$$

R2: each message transports the value of the sender's clock, *Cmsg*

R3: when p_i receives a message with timestamp $C_{\text{ms}q}$. C_i = max (C_i , C_{msg}); C_i = C_i + 1;

Lamport's Logical Clocks (2)

- Consistency: $a \rightarrow b \Rightarrow C(a) \le C(b)$
- Total ordering: timestamps (*t*, *i*): *t* … time, *i* … process number total order relation \prec on events *a*, *b* with timestamps (t, i) , (u, j)

 $a < b \Leftrightarrow (t < u \text{ or } (t = u \text{ and } i < j))$

No strong consistency: $C(a) < C(b) \neq a \rightarrow b$

Vector Time (Fidge, Mattern, Schmuck)

• *n*-dimensional vector V_i [1..*n*] at p_i with

 $V_i[i]$... value of local logical clock of p_i

V_i[k] ... p_i 's knowledge about local time at p_k

$$
V_i \begin{bmatrix} 1 \\ i \\ n \end{bmatrix}
$$

• Clock update rules:

R1: p_i updates $V_i[i]$ for each local event:

 $V_i[i] = V_i[i] + 1;$

R2: each message transports sender's clock values

R3: when p_i receives a message with timestamp V_{msg} .

1 ≤ k ≤ n : $V_i[k]$ = max ($V_i[k]$, $V_{msg}[k]$); $V_i[i] = V_i[i] + 1$;

Vector Time (2)

Vector Time (3)

Event relations

event *a* on *pi* with timestamp *Va* event *b* on *pk* with timestamp *Vb*

- $a \rightarrow b$ ⇔ ∀*i*: $\sqrt{a} \lceil i \rceil \leq \sqrt{b} \lceil i \rceil$ and $\exists i$: $\sqrt{a} \lceil i \rceil < \sqrt{b} \lceil i \rceil$
- *a* || *b* \Leftrightarrow ∃*i*,*k*: Va[*i*] > V*b*[*i*] and Va[*k*] < V*b*[*k*]
- Vector clocks are strongly consistent: By examining the timestamps of two events *a* and *b* one can determine if *a* and *b* are causally related

Temporal Order

Continuum of real time modeled by

- a directed timeline, consisting of
- an infinite set $\{T\}$ of instants with
	- i. {*T* } is an ordered set,
		- i.e., for any two instants *p* and *q* either: *p* and *q* are simultaneous, *p* precedes *q*, or *q* precedes *p*

ii. {*T* } is a dense set,

for any instants $p \neq r$ there is at least one q between p and r

$$
\begin{array}{c|c}\n & \uparrow \\
 & \uparrow \\
 p & q & r\n\end{array}
$$

Temporal order: total order of instants on the timeline

Events and Durations

Event … is happening at an instant of time Duration … section of the timeline

Note

- An event does not have a duration
- If two events occur at the identical instant they are called simultaneous
- Events are partially ordered In a distributed system, a total order can be established by using process numbers (see Lamport's order)

Physical Clocks

Clock

- Counter plus oscillator
- Microticks are generated by periodical increments of the counter, following some law of physics
- Reference clock (*z*)

Perfect clock of an external observer

Duration between two ticks is much smaller than duration of any interval to be observed with our clocks (e.g., 10-15 sec)

• Granularity of a clock *c*: nominal number of microticks of *z* between any consecutive microticks of *c*

$$
g^c = z(microtick^c_{i+1}) - z(microtick^c_i)
$$

Physical Clocks (2)

Timestamp

- The timestamp of an event is the state of the clock immediately after the occurrence of the event
- Notation: *clock*(*event*), e.g., *z*(*event*)
- Digitalization error of timestamps due to clock granularity

Global Time

In a distributed system we need a global notion of time to generate event timestamps \triangleright "Global Time"

- Global time is an abstract notion, real clocks are not perfect
- Local clocks of nodes approximate global time
- Macroticks form the local representation of global time with granularity *gglobal*

Precision

Offset between two clocks *j* and *k* at tick *i*

offset jk z(*microtick ^j*) – *z*(*microtick k*) *i* = *i i*

Precision of an ensemble of clocks {1,…,*n*} at microtick *i*

$$
\Pi_i = \max_{j,k} \{ \text{ offset}^{jk}, \}
$$

Accuracy

Offset between clock *k* and the reference clock *z* at tick *i*

z(*microtick ^k*) – *z*(*microtick z(k)i offset k,z(k)i* =) *i*

Accuracy denotes the maximum offset of a given clock from the reference clock during a time interval of interest

If all clocks of an ensemble are within accuracy *A*, then the ensemble has a precision $\Pi \leq 2A$.

Absence of a Global Timebase

- *n* independent local time references \Rightarrow only timestamps from the same clock can be related.
- Interval measurements between events observed at different nodes are limited by the end-to-end communication jitter.
- Delay jitter of communication system determines the jitter in non-local control loops \triangleright unacceptable for many real-time control applications.
- No knowledge of precise point in time of measurement of process variables
	- \Rightarrow state estimation is very difficult

Requirements for a Global Timebase

- Chronoscopic behaviour (i.e., no discontinuities, even at points of resynchronization)
- Known precision Π
- High dependability
- Metric of physical second

Global time *t* is reasonable if for all local implementations:

$$
g^{\text{global}} > \varPi
$$

The reasonableness condition ensures that:

- the synchronization error is less than one macrogranule
- for any event $e: |t^{j}(e) t^{k}(e)| \leq 1$

Reconstructing Temp. Order from Timestamps

To reconstruct the temporal order of two events, the (global) timestamps of the events have to differ by at least two ticks.

Reconstructing Temp. Order from Timestamps (2)

A time distance of 2*gglobal* between two events is not sufficient to determine their temporal order (if $t^{j}(a) - t^{k}(b) = 1$).

Measurement of Durations

27

Real duration: *dobs* – 2*gglobal* < *dz true* < *dobs* + 2*gglobal*

Agreement on Event Order – Dense Time

Nodes *j* and *m* observe *e1*, node *k* observes *e2.* Node *k* reports observation about *e2* to nodes *j* and *m*.

28 ➭Nodes *j* and *m* draw different conclusions about event order. $t^{k}(e2) - t^{j}(e1) = 2$, $t^{k}(e2) - t^{m}(e1) = 1$

Agreement on Event Order – Dense Time

Conclusions from observations:

- If a single event is observed by two nodes, the local timestamps for the event may differ by one tick.
	- \Rightarrow an explicit agreement protocol (communication between the nodes) is needed to establish a consistent view about the global time of the event occurrence.
- If two events occur on a dense timeline, then it is impossible to consistently deduce the temporal order in all cases if the events occur within an interval of duration < 3*gglobal*.

 \Rightarrow explicit agreement is needed for arbitrary event sets. \Rightarrow alternative: 0/ \triangle -precedent event set with $\triangle \geq 3q^{global}$. ²⁹

Given durations π and Δ (π << Δ), a set of events E ={ e_i } is π/Δ -precedent, if the following condition holds for all $e_j,\,e_k\in E$:

$$
\left(\left| z(e_j) - z(e_k) \right| \leq \pi \right) \text{ or } \left(\left| z(e_j) - z(e_k) \right| > \Delta \right)
$$

4 Fundamentals about Timestamping & Events

Given a distributed system with a reasonable global timebase, with granularity *gglobal* :

- If a single event is observed by two nodes, the local timestamps for the event may differ by one tick.
- Duration measurement: $d_{obs} 2g^{global} < d^{z}_{true} < d_{obs} + 2g^{global}$.
- The temporal order of two events e_1 , e_2 can be deduced from their timestamps if $|t^{j}(e_1) - t^{k}(e_2)| \geq 2$.
- The temporal order of events can always be deduced if the event set is $0/\Delta$ -precedent with $\Delta \geq 3q^{global}$.

Temporal Relationship between Generated Events

Assumption: nodes generate events at clock ticks

An external observer cannot reconstruct whether local timestamps of generated events are equal or not

Dense Time and Sparse Time

Dense timebase: events are allowed to occur at any time.

Sparse timebase (π/Δ -sparse timebase):

33 events are only allowed to occur within the time intervals of activity π , followed by an interval of silence Δ .

Agreement on Event Order – Sparse Time

Assume: 2 computation clusters *A*, *B*

- within each cluster clocks are synchronized (*g* = *gglobal*)
- no synchronization between *A* and *B*
- Cluster *A* generates events that have to be ordered by *B*: *B* must be able to determine order resp. simultaneity

of all observed events

➭Timebase of *A* has to be 1*g*/*Ng*-sparse, with *N* ≥ 4; a 1*g*/3*g*-sparse timebase is not sufficient (see next slide)

Agreement on Event Order – Sparse Time (2)

e1, *e2* … generated in same activity interval: $t^n(e^2) - t^m(e^1) = 2$ *e2*, *e3* … gen. in different activity interval: $t^m(e3) - t^n(e2) = 2$

Lessons Learned

- Why we need time ...
- Temporal and causal order
- Logical time (Lamport time, vector time)
- Physical time, event, duration
- Clocks and virtual global time
- Time stamps and temporal relations
- Sparse time