
Time and Order

slide credits: H. Kopetz, P. Puschner

Why do we need a notion of time?

• Event identification and generation
• State before vs. after the event

• Event ordering
• Causal order (e.g., a may only have caused b if a happened before b)
• Temporal order (e.g., flight booking: who was first, A in VIE or B in LA?)

• Coordination – coordinated action at specified time
• Duration – measurement / control

(e.g., X-ray: exposure time, video: gap between frames)
• Modeling of physical time

• Comply to laws/dynamics of physics (second, physical time, real time)
• Read input, produce output “at the right time” (e.g., control loops)

2

What is tricky?

• Order vs. causality
• Determining order or simultaneity under different conditions:
• Event numbering vs. timestamping
• Central system vs. distributed system

• Timestamping
• Measuring durations

3

Causal and Temporal Order

Example

Two events
e1 … someone enters a room
e2 … the telephone starts to ring

Two cases
e1 occurs after e2 à causal dependency possible
e2 occurs after e1 à causal dependency unlikely

• Causal order implies temporal order
• Temporal order is necessary but not sufficient to establish

causal order
4

Causal and Temporal Order

Causal Order
• Deduced from “causal dependency” between events
• Reichenbach: “If event e1 is a cause of event e2, then a

small variation (a mark) in e1 is associated with a small
variation in e2, whereas small variations in e2 are not
necessarily associated with small variations in e1.”

• Bunge: “If a Cause happens, then (and only then) the Event
is always produced by it.”

Temporal Order
• Deduced from timestamps of physical time

5

Causal Order of Computer-generated Events

6

p1

p2

p3

a b c d e

f g h i

l m n o

j k l

Causal Order of Computer-generated Events

Partial order for computer-generated events

a → b … a causes b (happened before, causal dependence)

1. If a, b … events within a sequential process and
a is executed before b
then: a → b

2. If a … send event of a message by process pi and
b … receive event of the message by process pk
then: a → b

3. → is transitive
7

Logical Clocks

• Represent information about causal dependency
• Do not use physical time
• Events are “time”-stamped using monotonically increasing

counters

Events a, b with a → b
Timestamps C(a), C(b)

• Desirable properties
§ a → b ⇒ C(a) < C(b) … monotonicity, consistency
§ a → b ⇔ C(a) < C(b) … strong consistency

8

Lamport‘s Logical Clocks

• Logical clocks of processes pi represent the local views of
global time

• Non-negative integer Ci represents the local clock of pi

• Clock update rules:
R1: pi increments Ci for each local event (e.g., event, send):

Ci = Ci + 1;
R2: each message transports the value of the sender’s

clock, Cmsg

R3: when pi receives a message with timestamp Cmsg:
Ci = max (Ci, Cmsg); Ci = Ci + 1;

9

Lamport‘s Logical Clocks (2)

• Consistency: a → b ⇒ C(a) < C(b)
• Total ordering: timestamps (t, i): t … time, i … process number

total order relation ≺ on events a, b with timestamps (t, i), (u, j)
a ≺ b ⇔ (t < u or (t = u and i < j))

10

p1

p2

p3

1 2 3 8 9

1 3 4 5

1 5 6 7

10 11

• No strong consistency: C(a) < C(b) ⇒ a → b

6

Vector Time (Fidge, Mattern, Schmuck)

• n-dimensional vector Vi [1..n] at pi with
Vi [i] … value of local logical clock of pi

Vi [k] … pi’s knowledge about local time at pk

• Clock update rules:
R1: pi updates Vi [i] for each local event:

Vi [i] = Vi [i] + 1;
R2: each message transports sender’s clock values
R3: when pi receives a message with timestamp Vmsg:

1 ≤ k ≤ n: Vi [k] = max (Vi [k], Vmsg [k]);
Vi [i] = Vi [i] + 1;

11

Vi 1
i
n

Vector Time (2)

12

p1

p2

p3

1
0
0

2
0
0

3
0
0

4
3
4

5
3
4

0
1
0

2
2
0

2
3
0

2
4
0

0
0
1

2
3
2

2
3
3

2
3
4

5
6
4

5
7
4

2
5
0

Vector Time (3)

Event relations
event a on pi with timestamp Va
event b on pk with timestamp Vb

• a → b ⇔ ∀i: Va[i] ≤ Vb[i] and ∃i: Va[i] < Vb[i]
• a || b ⇔ ∃i,k: Va[i] > Vb[i] and Va[k] < Vb[k]

• Vector clocks are strongly consistent:
By examining the timestamps of two events a and b one can
determine if a and b are causally related

13

Temporal Order

Continuum of real time modeled by
• a directed timeline, consisting of
• an infinite set {T } of instants with
i. {T } is an ordered set,

i.e., for any two instants p and q either: p and q are
simultaneous, p precedes q, or q precedes p

ii. {T } is a dense set,
for any instants p ≠ r there is at least one q between p and r

Temporal order: total order of instants on the timeline
14

p q r

Events and Durations

Event … is happening at an instant of time
Duration … section of the timeline

Note
• An event does not have a duration
• If two events occur at the identical instant they are called

simultaneous
• Events are partially ordered

In a distributed system, a total order can be established by
using process numbers (see Lamport’s order)

15

Physical Clocks

Clock
• Counter plus oscillator
• Microticks are generated by periodical increments of the counter,

following some law of physics
• Reference clock (z)

Perfect clock of an external observer
Duration between two ticks is much smaller than duration of any
interval to be observed with our clocks (e.g., 10-15 sec)

• Granularity of a clock c: nominal number of microticks of z
between any consecutive microticks of c

gc = z(microtickc
i+1) – z(microtickc

i) 16

Physical Clocks (2)

Timestamp
• The timestamp of an event is the state of the clock immediately

after the occurrence of the event
• Notation: clock(event), e.g., z(event)
• Digitalization error of timestamps due to clock granularity

17

0 1 2 3 4 5 6 7 8
reference clock z

event
clock c

Global Time

In a distributed system we need a global notion of time to
generate event timestamps ➭ “Global Time”
• Global time is an abstract notion, real clocks are not perfect
• Local clocks of nodes approximate global time
• Macroticks form the local representation of global time with

granularity gglobal

18
0 1 2 3 4 5 6 7 8

clock j

clock k

reference clock z

event

macroticks
gglobal

Precision

Offset between two clocks j and k at tick i

offset jk
i =

Precision of an ensemble of clocks {1,…,n} at microtick i

P i = max { offset jk
i }

19

z(microtick j
i) – z(microtick ki)

j, k

Accuracy

Offset between clock k and the reference clock z at tick i

offset k,z(k)
i =

Accuracy denotes the maximum offset of a given clock from the
reference clock during a time interval of interest

If all clocks of an ensemble are within accuracy A, then the
ensemble has a precision P ≤ 2A.

20

z(microtick k
i) – z(microtick z(k)

i)

Absence of a Global Timebase

• n independent local time references
➭only timestamps from the same clock can be related.

• Interval measurements between events observed at different
nodes are limited by the end-to-end communication jitter.

• Delay jitter of communication system determines the jitter in
non-local control loops
➭unacceptable for many real-time control applications.

• No knowledge of precise point in time of measurement of
process variables
➭ state estimation is very difficult

21

Requirements for a Global Timebase

• Chronoscopic behaviour
(i.e., no discontinuities, even at points of resynchronization)

• Known precision P
• High dependability
• Metric of physical second

22

P

P

Choosing the Right Granularity

23

clock j

clock k

reference clock z

0 1 2 3 4 5 6 7 8

clock j

clock k

reference clock z

event e

event e

0 1 2 3 4 5 6 7 8 9…
tk(e) – tj(e) = 3

tk(e) – tj(e) = 1

P
Reasonableness Condition

24

0 1 2 3 4 5

clock j

clock k

reference clock z

event

Global time t is reasonable if for all local implementations:

gglobal > P

The reasonableness condition ensures that:
• the synchronization error is less than one macrogranule
• for any event e: | t j(e) – t k(e) | ≤ 1

gglobal

Reconstructing Temp. Order from Timestamps

25

0 1 2 3 4 5 6 7 8

clock j

clock k

reference clock z

e1.9

To reconstruct the temporal order of two events, the (global)
timestamps of the events have to differ by at least two ticks.

e2.3 e6.3 e6.9

z(e1.9) < z(e2.3)
t k(e1.9) > t j(e2.3)

z(e6.9) – z(e6.3) = 0.6
t k(e6.9) – t j(e6.3) = 2

Reconstructing Temp. Order from Timestamps (2)

26

0 1 2 3 4 5 6 7 8

clock j

clock k

reference clock z

e1.9

A time distance of 2gglobal between two events is not sufficient to
determine their temporal order (if t j(a) – t k(b) = 1) .

e4.3

z(e4.3) – z(e1.9) = 2.4
t j(e4.3) – t k(e1.9) = 1

Measurement of Durations

27

0 1 2 3 4 5 6 7

clock j

clock k

e1.8

Real duration: dobs – 2gglobal < dz
true < dobs + 2gglobal

e4.3 t j(e4.3) – t k(e1.8) = 1

0 1 2 3 4 5 6 7

clock j

clock k

e2.3 e4.8 t k(e4.8) – t j(e2.3) = 4

Agreement on Event Order – Dense Time

28

0 1 2 3 4 5 6 7 8

clock k

clock m

reference clock z

Nodes j and m observe e1, node k observes e2.
Node k reports observation about e2 to nodes j and m.

clock j

e1 e2

➭Nodes j and m draw different conclusions about event order.
t k(e2) – t j(e1) = 2, t k(e2) – t m(e1) = 1

“3”

“3”

Agreement on Event Order – Dense Time

Conclusions from observations:

• If a single event is observed by two nodes, the local
timestamps for the event may differ by one tick.

➭an explicit agreement protocol (communication between the
nodes) is needed to establish a consistent view about the
global time of the event occurrence.

• If two events occur on a dense timeline, then it is impossible to
consistently deduce the temporal order in all cases if the
events occur within an interval of duration < 3gglobal.

➭ explicit agreement is needed for arbitrary event sets.
➭ alternative: 0/D-precedent event set with D ≥ 3gglobal. 29

p/D-Precedence of Sets of Events

30

Given durations p and D (p << D), a set of events E={ei} is
p/D-precedent, if the following condition holds for all ej, ek ∊ E :

(| z(ej) – z(ek) | ≤ p) or (| z(ej) – z(ek) | > D)

0 1 2 3 4 5 6 7 8
reference clock z

p pDD D

4 Fundamentals about Timestamping & Events

Given a distributed system with a reasonable global timebase,
with granularity gglobal :

• If a single event is observed by two nodes, the local
timestamps for the event may differ by one tick.

• Duration measurement: dobs – 2gglobal < dz
true < dobs + 2gglobal .

• The temporal order of two events e1, e2 can be deduced from
their timestamps if | t j(e1) – t k(e2) | ≥ 2 .

• The temporal order of events can always be deduced if the
event set is 0/D-precedent with D ≥ 3gglobal.

31

Temporal Relationship between Generated Events

32

0 1 2 3 4 5 6 7 8

clock k

clock m

reference clock z

Assumption: nodes generate events at clock ticks

An external observer cannot reconstruct whether local
timestamps of generated events are equal or not

clock j

pairs of events at same tick of global time?

Dense Time and Sparse Time

33

Dense timebase: events are allowed to occur at any time.

Sparse timebase (p/D-sparse timebase):
events are only allowed to occur within the time intervals of
activity p, followed by an interval of silence D.

0 1 2 3 4 5 6 7 8

clock k

clock m

reference clock z

clock j

p pDD D

Agreement on Event Order – Sparse Time

Assume: 2 computation clusters A, B
• within each cluster clocks are synchronized (g = gglobal)
• no synchronization between A and B
• Cluster A generates events that have to be ordered by B:

B must be able to determine order resp. simultaneity
of all observed events

➭Timebase of A has to be 1g/Ng-sparse, with N ≥ 4;
a 1g/3g-sparse timebase is not sufficient (see next slide)

34

Agreement on Event Order – Sparse Time (2)

35

e1, e2 … generated in same activity interval: t n(e2) – t m(e1) = 2
e2, e3 … gen. in different activity interval: t m(e3) – t n(e2) = 2

0 1 2 3 4 5 6 7 8

clock j

clock k

reference clock z

C
lu

st
er

 A

clock m

clock n

・
・

・

・C
lu

st
er

 B

e1
e2

e3
e4

Dp p

Lessons Learned

• Why we need time …
• Temporal and causal order
• Logical time (Lamport time, vector time)
• Physical time, event, duration
• Clocks and virtual global time
• Time stamps and temporal relations
• Sparse time

36

