Haskell: Lambda Expressions

Volker Sorge
March 20, 2012

A-expressions (A is the small Greek letter lambda) are a convenient way to easily create
anonymous functions — functions that are not named and can therefore not be called out of
context — that can be passed as parameters to higher order functions like map, zip etc. In most
functional programming languages the syntax and usage of anonymous functions models itself
after the A-calculus, which was created by Alonzo Church in 1940. Church’s aim was to create
an unambiguous notation for functions and in particular to clearly identify the variables of a
function.

A short M-calculus Primer for Haskell

Fortunately, Haskell’s syntax very closely follows the A-calculus already, and we can restrict
ourselves to a short primer.

The main idea of functional notation in the A-calculus is to write all functions in prefix
notation, to use currying to model function application to multiple parameters as iterated appli-
cation to single parameters, and to designate parameters that can be instantiated during function
application.

Prefix Notation

For example, applying a function f to a parameter x in A-calculus is written as

fx

This is similar to Haskell, where for instance the application of the even predicate to the number
7 is written as even 7. In A-calculus all functions are in prefix notation. In fact, this can be
achieved in Haskell too. Consider the expression 3 + 4. This can be written as (+) 3 4 in
Haskell, making it essentially equivalent to a function application of the form f xy in A-calculus.

Currying

Currying has been briefly discussed in the context of the Haskell functions curry and uncurry.
The basic idea is that function application is only expressed in terms of applying a single function
to a single argument. For example, the expression fzy is a function application of f to two
arguments = and y. Using currying we can write it as successive applications of the form (fz)y;
that is, f is applied to x and the resulting function is applied to .

In Haskell we can do the same: Take (4) 3 4. This can be written as ((+) 3) 4, leading to
the same result. To convince ourselves that the first part alone is indeed a function that can
be applied to one argument, type :t (+) 3 in the interpreter, which will yield a functional type.
Likewise you can bind the function to some name by typing for example let plusThree = ((+) 3)
and use it, e.g. map plusThree [2,4,6] yields the result [5,7,9]. In fact Haskell allows to be even
briefer by simply writing (4 3) for the function and for example write map (+ 3) [2,4,6].

Code given between solid horizontal bars can be loaded into Haskell from a .hs file. Code between dotted
horizontal bars can be typed in the interpreter at the prompt. It will always compute correctly but the result
might occassionally cause a display error (e.g. if a particular type does not inherit from the Show type class).

A Notation

Finally, A-calculus allows one to clearly designate in every expression the variables that can be
instantiated, by using a A operator (which gave the calculus its name, in the first place). For
example, if we want to express that in fx, the x is a parameter that can be instantiated, we
write Az.fz. Applying this function say to 3 by (Az.fxz)3 yields f3.

Likewise we can write Az\y.f xy, or for short Az y.f x y, if we have two variable parameters
x,y. Applying (Azy.fxy)34 yields f34. Note, that the order of the variables in the so called
A binder matters as for example (Ayz.f 2z y) 34 yields f43.

A-calculus also can deal with higher order functions, i.e., functions that take other functions
as input or return functions as result. For example, applying (Az y.f y)3 will return the function
Ay.f 3y. Likewise we can turn f into a variable by simply writing (Af zy.f zy).

In Haskell A expressions are build very similarly, with very little notational difference: Instead
of ‘X’ we write the backslash ¢\’ and the dot ‘. is replaced by ‘—>’. For example, we can write
the final A expression above as \f x y —> f x y. And applying it we can write in the interpreter

which will result in 7. Similarly if we apply the A function only to the arguments (+) and 3 we

will get the plusThree function from above.

Usage

Anonymous functions are often used in a context where a functional expression is used only
once in a higher order function. Although Haskell offers very sophisticated tools to assemble
functional expressions without A — more than many other functional programming languages
— they do not always suffice and sometimes make code less easy to comprehend. For example
the A function

It is certainly in the eye of the beholder which one is easier to read or “more natural”. We have

to able to transform one into the other, however. Here is another example. Two implementations
of a function that decides whether a given n is divisible by a list of integers.

divisible :: [Int] = Int — Bool
divisible divisors n =any (\d = (mod n d)==0) divisors

divisible2 :: [Int] — Int — Bool
divisible2 divisors n =any (== 0) . (mod n)) divisors

Haskell’s syntactic sugar particularly breaks down in case a function uses multiple arguments
multiple times. Consider the following function

As we have seen earlier in our discussion on currying, only one argument of the function will be

bound in each application and will get a list of three functions:

which yields 29.

More Higher Order

The previous example was a higher order function application in the sense that the higher order
function map took a function as argument and returned a list of specialisations of this function.
We also can take the other direction and generalise the function, by introducing more A\ bound
variables. For example,

Observe, that the notation (x ‘f* x) allows us to use f in infix notation instead of prefix. Thus

the expression is the same as \f g x y —> g (f xx) (f y y). Now

While g is easy to identify as the square function, it is less straight forward to see what h and j
exactly compute. Let’s observe the function application step-by-step using A\ notation:

9(9(y)) = Qz.zxz)(Az.z * 2)y) = (Az.wxx)(y *y) = (Y *y) = (y *xy))
Thus h computes n*. We now apply h to itself and get

(Ay-9(9(y)(Ny-g(9(y)) = Ay.(y*y)* (y*y)Ay-(y*y) * (y*y))
= M ((yxy)x(wxy) *((yxy)x (*y)* (yxy)*y*xy)*((y*y) *(y*y))

or in other words j computes n'.

Finally, we can also generalise over ZF-expressions. For example, the following function

filtermap =\f g | = [f x | x<-I|, g x]

allows us to map f over a list | that has been filtered by criteria g. For example,

triples all even numbers between 1 and 10.

