INTRODUCTION

Over the last 10 years there has been an explosion of real-time scheduling
results. Many of these results are based on either the rate monotonic (RM) or
earliest deadline first (EDF) scheduling algorithms. The RM results have been
collected and presented in an excellent book [3]. To date, a similar effort has
been lacking for EDF. Since EDF has many valuable properties, it is important
to address EDF in a comprehensive manner. Consequently, this book presents
a compendium of results on earliest deadline first (EDF) scheduling for real-
time systems. The simplest results presented utilize pure EDF scheduling. As
system situations become more complicated, EDF is used as a key ingredient,
but is combined with other solutions, e.g., to deal with shared resources.

This Chapter defines and discusses real-time systems, discusses several common
misconceptions, presents an example of a real-time application, and gives a
detailed purpose and outline for the book.

1.1 REAL-TIME SYSTEMS

Real-time systems are defined as those systems in which the correctness of the
system depends not only on the logical result of the computation, but also on
the time at which the results are produced [6]. Many real-time systems are
characterized by the fact that severe consequences will result if timing as well
as logical correctness properties of the system are not satisfied. Typically, a
real-time system consists of a controlling system and a controlled system. In
an automated factory, the controlled system is the factory floor with its robots,
assembling stations, and the assembled parts, while the controlling system is the

2 CHAPTER 1

computer and human interfaces that manage and coordinate the activities on
the factory floor. Thus, the controlled system can be viewed as the environment
with which the computer interacts.

The controlling system interacts with its environment based on the information
available about the environment from various sensors attached to it. It is
imperative that the state of the environment, as perceived by the controlling
system, be consistent with the actual state of the environment. Otherwise,
the effects of the controlling systems’ activities may be disastrous. Hence,
periodic monitoring of the environment as well as timely processing of the
sensed information is necessary.

Timing correctness requirements in a real-time system arise because of the
phystcal impact of the controlling systems’ activities upon its environment. For
example, if the computer controlling a robot does not command it to stop or
turn on time, the robot might collide with another object on the factory floor.
Needless to say, such a mishap can result in a major catastrophe.

Real-time systems span many application areas. In addition to automated
factories, applications can be found in control of automobile engines, avion-
ics, undersea exploration, process control, robot and vision systems, military
command and control, and space stations. In other words, the complexity of
real-time systems spans the gamut from very simple control of laboratory ex-
periments, to process control applications, to very complicated projects such as
a space station. Recently, the need to process continuous streams of audio and
video data has given rise to exciting new possibilities for real-time applications.

Timing constraints for tasks can be arbitrarily complicated, but the most com-
mon timing constraints for tasks are either periodic or aperiodic. An aperiodic
task has a deadline by which it must finish or start, or it may have a constraint
on both start and finish times. In the case of a periodic task, a period might
mean ‘once per time interval T’ or ‘exactly T units apart’.

Low-level application tasks, such as those that process information obtained
from sensors or those that activate elements in the environment, typically have
stringent timing constraints dictated by the physical characteristics of the en-
vironment. A majority of sensory processing is periodic in nature. A radar
that tracks flights and produces data at a fixed rate is one example. A temper-
ature monitor of a nuclear reactor core should be read periodically to detect
any changes promptly. Some of these periodic tasks may exist from the point
of system initialization and remain permanent, while others may come into ex-
istence dynamically. The temperature monitor is an instance of a permanent

Introduction 3

task. An example of a dynamically created task is a (periodic) task that mon-
itors a particular flight; this comes into existence when the aircraft enters an
air traffic control region and ceases to exist when the aircraft leaves the region.

More complex types of timing constraints also occur. For example, spray paint-
ing a car on a moving conveyor must be started after time ¢; and completed
before time t,. Aperiodic requirements can arise from dynamic events such as
an object falling in front of a moving robot, or a human operator pushing a
button on a console.

In addition, time related requirements may also be specified in indirect terms.
For example, a value may be attached to the completion of each task where
the value may increase or decrease with time; or a value may be placed on the
quality of an answer whereby an inexact but fast answer might be considered
more valuable than a slow but accurate answer. In other situations, missing X
deadlines might be tolerated, but missing X + 1 deadlines can’t be tolerated.

This raises the question of what happens when timing constraints are not met.
The answer depends, for the most part, on the type of application. Needless
to say, a real-time system that controls a nuclear power plant or one that
controls a missile, cannot afford to miss timing constraints of the critical tasks.
These systems must be predictable [7] in their logical and timing performance.
Resources needed for critical tasks in such systems have to be preallocated so
that the tasks can execute without delay. In many situations, however, some
leeway does exist. For example, on an automated factory floor, if it is estimated
that the correct command to a robot cannot be generated on time, it may be
appropriate to command the robot to stop (provided it will not cause other
moving objects to collide with it and result in a different type of disaster).
This is an instance of a real-time task producing a result of lower quality, but
on time. In the case of a periodic task monitoring an aircraft, depending on
the aircraft’s trajectory, missing the processing of one or two radar readings
may not cause any problems.

In summary, real-time systems differ from traditional systems in that deadlines
or other explicit timing constraints are attached to tasks, the systems are in
a position to make compromises, and faults including timing faults may cause
catastrophic consequences. This implies that, unlike many systems where there
is a separation between correctness and performance, in real-time systems cor-
rectness and performance are very tightly interrelated. Thus, real-time systems
solve the problem of missing deadlines in ways specific to the requirements of
the target application. However, it should be said that the sooner a system
determines that a deadline is going to be missed, the more flexibility it will

4 CHAPTER 1

have in dealing with the (timing) ezception. For more detailed descriptions of
real-time systems see [1, 2, 5, 7, 8].

1.2 COMMON MISCONCEPTIONS

Real-time systems have unique sets of requirements usually requiring novel
solutions. This fact is not always understood or appreciated. This has given
rise to a number of misconceptions including: a sufficiently fast computer can
satisfy the requirements, hence real-time computing is equal to fast computing.
This is wrong. The point is that speed helps a real-time system in achieving
the required responsiveness, but in general does not support predictability [7],
which is one main objective of real-time systems.

Another key point in which a real-time system differs from a conventional one is
fairness. In conventional systems, resource allocation is usually done in a way
that avoids starvation of any possible task. Sooner or later, a task that needs
a resource gets it. In a real-time system this policy is not adequate. In case
of resource contention, more important tasks should precede tasks with lower
importance and fairness is not important. If a deadline must be missed, it is
better to miss a deadline of a less important task, or to increase its response
time, than missing a deadline of an important task.

For a full discussion of these and other misconceptions about real-time com-
puting see [6].

1.3 A TYPICAL EXAMPLE OF A
REAL-TIME APPLICATION

One typical real-time application’ is the flight control program for aircraft,
such as the EFA (European Fighter Aircraft) that incorporates a Fly-By-Wire
system. This application is presented to provide the reader with a brief overview
of the major aspects of a real-time system, and to indicate what aspect of a
real-time system that this book addresses. See [5, 8] for additional discussions
of real-time systems and applications.

LThis example is taken from [1]. Also see [4].

L

Introduction 5

| Actuators |

4

Sensors Data | DATA PROCESSING |
= —|SUBSYSTEM

Figure 1.1 A Fly-By-Wire Flight Control System.

In the EFA high performance aircraft the traditional mechanical links with
which the pilot usually interacts have been replaced by actuators controlled
by a computer system. This is due to the new design approach that is no
longer based on the principle of flight mechanical stability, but on a dynamically
unstable behavior [4].

The advantage of such design is high maneuverability, but, on the other hand,
the aircraft is so unstable that it cannot be flown at all without its computer
systems. Instead, an Active Control Technology is needed. In Figure 1.1 the
typical main control loop is depicted. This system includes a set of sensors, pilot
inputs from control sticks, pedals and consoles, a data processing subsystem, a
set of actuators to control the aircraft, and a display for the pilot.

Note that these system components are the typical main ingredients of a real-
time system with suitable substitutions depending on the application. For
example, a chemical process control plant has sensors measuring acidity, pres-
sure, volume, etc., chemical engineers dynamically adjusting various controls
and system settings, a possibly large and distributed data processing subsys-
tem, a set of actuators to control temperature, oxygen levels, etc. that in
turn control the chemical reaction, and monitoring displays to allow humans
to follow the progress of the production of the plant.

6 CHAPTER 1

In the EFA the software of the data processing subsystem is decomposed into
six modules:

® physical device access;
® storage and retrieval of pilot data;
® storage and retrieval of sensor data;

® computation of speed, angular position, acceleration and angular velocity
of the aircraft;

® computation of control surface commands; and

® arbitration among the redundant computers.

In the EFA these six modules execute as 15 processes. Five of them are pe-
riodic with deadlines equal to their periods. They are used to probe sensors,
whose data are then filtered, averaged and stored. In this application, it is
necessary to probe the temperature sensor at least once every 25 milliseconds.
All other processes are aperiodic and have deadlines. They are activated by
pilot generated interrupts such as when he moves the control stick or pedal, or
are activated conditionally on the availability of data.

Almost all the modules have serialized access to their data in order to ensure
data consistency. Moreover, the communication module, which provides inter-
processor communication (in order to have high reliability the application runs
on at least three computers), can lead to communication contention. Note that
understandability, predictability, and analyzability are all complicated when
there are aperiodic processes contending over device, data and communication
sharing. Of course, many real-time applications are much more complicated
(e.g., air traffic control and nuclear power plants) and larger (hundreds or
thousands of tasks) than this example aircraft application.

While many issues must be addressed to build a real-time system, how timing
and resource contention requirements are satisfied is mainly the responsibility
of the scheduling algorithm of the system [9, 10]. This book concentrates on
the scheduling algorithms and analysis for such real-time systems.

Introduction 7

1.4 PURPOSE OF THIS BOOK

Many real-time systems rely on static scheduling algorithms. This includes
cyclic scheduling, rate monotonic scheduling and fixed schedules created by
off-line scheduling techniques such as dynamic programming, heuristic search,
and simulated annealing. One main advantage of static off-line scheduling is
that a careful and complete analysis is often possible. However, for many real-
time systems static scheduling algorithms are quite restrictive and inflexible.
For example, highly automated agile manufacturing, command, control and
communications, and distributed real-time multimedia applications all operate
over long lifetimes and in highly non-deterministic environments. Dynamic
real-time scheduling algorithms are more appropriate and are used in such
systems. Many of these algorithms are based on earliest deadline first (EDF)
policies. There exists a wealth of literature on EDF based scheduling with many
extensions to deal with complex issues such as precedence constraints, resource
requirements, system overload, multi-processors, and distributed systems. In
many cases, formal analysis (as shown in this book) is possible.

This book aims at collecting the significant amount of knowledge that has been
developed on EDF scheduling. Rather than just presenting the algorithms,
the book also provides proofs, analysis, and sometimes guidelines, rules, and
implementation considerations.

Besides learning what these important EDF-based results are, the reader should
be able to answer, at least, the following questions:

m what is known about uni-processor EDF scheduling problems,

m what is known about multi-processing EDF scheduling problems,
m what is known about distributed EDF scheduling,

m what anomalous behavior can occur and can it be avoided,

®» where is the boundary between polynomial and NP-hard scheduling in
EDF problems, and

m what is the influence of overloads on the schedulability of tasks?

It is known that the Rate Monotonic algorithm (RMA) [3] is among the most
effective uni-processor real-time scheduling algorithms. This algorithm is one
of the best representatives of fixed priority algorithms. To date, a major effort

8 CHAPTER 1

has been devoted to the study of RMA. Less attention has been paid to EDF,
even though EDF theoretically allows higher utilization. Another purpose of
this book is to expand the comprehension and use of the EDF algorithm.

1.5 FORMAT OF THE BOOK

In general, it is very difficult to codify scheduling knowledge because there
are many performance metrics, task characteristics, and system configurations,
and a variety of algorithms have been designed for different combinations of
these considerations. In spite of the recent advances there are still gaps in the
solution space and there is a need to integrate the available solutions. A list of
issues includes:

® preemptive versus non-preemptive tasks,

® uni-processors versus multi-processors,

® using EDF at dispatch time versus EDF-based planning,
® precedence constraints among tasks,

® resource constraints,

® periodic versus aperiodic versus sporadic tasks,

® scheduling during overload,

® fault tolerance requirements, and

® providing guarantees and supporting levels of guarantees (meeting quality
of service requirements).

Chapter 1 defines real-time systems and gives a brief example of a real-time
system. Chapter 2 contains the terminology and assumptions used throughout
the book. The fundamental results of EDF scheduling for independent tasks
are first presented in Chapters 3 and 4. These Chapters include results on
preemption, non-preemption, uni-processors and multi-processors. The over-
all approach taken in this book is to consider preemption and non-preemption
and uni-processors and multi-processors throughout the book rather as sepa-
rate Chapters. Using EDF in planning mode is discussed in Chapter 5. How to
handle system overload is discussed in this Chapter. Chapter 6 discusses results

Introduction 9

and algorithms relating to general resource requirements. Chapter 7 presents
results on scheduling tasks with precedence constraints and resource require-
ments. Chapter 8 considers problems where periodic and aperiodic tasks must
both be scheduled. Scheduling for distributed systems is presented in Chapters
9 and 10. Chapter 11 summarizes the book and discusses open issues.

REFERENCES

[1] W. Halang and A. Stoyenko, Constructing Predictable Real Time Systems,
Kluwer Academic Publishers, Boston, 1991.

[2] K. Kavi (Ed.), Real-Time Systems: Abstractions, Languages, and Design
Methodologies, IEEE Computer Society Press, Los Alamitos, 1992.

[3] M. Klein, et. al., A Practitioner’s Handbook for Real-Time Analysis,
Kluwer Academic Publishers, Boston, 1993.

[4] D. Langer, J. Rauch, M. Roaler, “Fly-by-Wire Systems for Military High
Performance Aircraft,” in Real-Time Systems Engineering and Applica-
tions, edited by M/ Schiebe and S. Pferrer, Kluwer Academic Publishers,
Boston, 1992.

[5] J. Stankovic and K. Ramamritham, Hard Real-Time Systems, IEEE Com-
puter Society Press, Los Alamitos, 1988.

[6] J. Stankovic, “Misconceptions About Real-Time Computing,” IEEE Com-
puter 21(10), October 1988.

[7] J. Stankovic and K. Ramamritham, “What is Predictability for Real-Time
Systems?,” Real-Time Systems 2, 1990.

[8] J. Stankovic and K. Ramamritham, Advances in Real-Time Systems, IEEE
Computer Society Press, Los Alamitos, 1993.

[9] J. Stankovic, M. Spuri, M. Di Natale and G. Buttazzo, “Implications of
Classical Scheduling Results for Real-Time Systems,” IEEE Computer,
Vol. 28, No. 6, pp. 16-25, June 1995.

[10] A. Tilborg and G. Koob (Eds.), Foundations of Real-Time Computing
- Scheduling and Resource Management, Kluwer Academic Publishers,
Boston, 1991.

