Name:

MNR:

SKZ:

Question 1:

Construct the Büchi Automaton for the (already negated) formula

$$
\mathbf{F}(a \wedge \mathbf{X} b)
$$

- Follow the construction steps presented in the lecture!
- For the \mathbf{U} operator, you can use the one-step rule presented on slide 72.

Question 2:

(15 points)
Perform CTL model checking on the following Kripke structure for the formula

$$
\varphi=\mathbf{E}((\mathbf{E G} b) \mathbf{U}(\mathbf{E X} a))
$$

a) To this end, draw a table with the set of satisfying states for each subformula of φ.

For example, the following tableaux is constructed for the formula $\mathbf{E} a \mathbf{U} b$.

Formula	State(s)
a	s_{3}
b	s_{1}, s_{2}, s_{5}
$\mathbf{E} a \mathbf{U} b$	$s_{1}, s_{2}, s_{3}, s_{5}$

b) Give the intermediate sets used in the fixpoint computations of EG b (the version of the algorithm that does not use SCCs) and $\mathbf{E}((\mathbf{E G} b) \mathbf{U}(\mathbf{E X} a))$.

Question 3:

(20 points)

Let $K=\left(S, s_{0}, R, A P, L\right)$ be a finite Kripke structure with $A P=\{i, a, b, c\}$, and let s_{0} be the only state labeled with " i ". Express the following specifications about K in terms of CTL*. Where possible, provide an LTL or CTL formula.
(a) From every state in K, it is possible to return to the initial state (which is labeled i) via a state labeled a again.
(b) All paths starting at the initial state lead to a cycle that does not contain a state labeled a unless the cycle includes a state labeled b.
(c) Whenever a state labeled with a is reached, a state labeled with b will be reached at a strictly later point.
(d) Whenever a path reaches a state labeled with a, it will eventually reach a state labeled with c, but not before it reaches a state labeled with b.
(e) Whenever a state labeled with a is reached, a state labeled with b will be reached in at least one but at most three additional steps.

Question 4:

(20 points)

Are the following statements true/false? Mark the corresponding column in the table below.
(a) Fairness conditions cannot be directly expressed in CTL*.
(b) Every CTL formula has an equivalent CTL formula containing only $\mathbf{E G}, \mathbf{A X}$, and $\mathbf{E U}$.
(c) For the boolean formula $\left(x_{1} \Rightarrow y_{1}\right) \vee \cdots \vee\left(x_{n} \Rightarrow y_{n}\right)$, one can find an order on the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, so that the ROBDD that encodes the formula is linear in the size of n.
(d) Let $A \wedge B$ be unsatisfiable, and let I_{1} and I_{2} be interpolants for A and B. Then $I_{1} \oplus I_{2}$ is also an interpolant for A and B (where \oplus represents exclusive-or).
(e) Every trace that is a counterexample to a liveness property is lasso-shaped (i.e., has the form $\left.s_{0}, \ldots, s_{\ell-1},\left(s_{\ell}, \ldots, s_{k}\right)^{\omega}\right)$.
(f) For every safety property $\varphi=\mathbf{A G} p$ there exists a Kripke structure \mathcal{M} with n states such that the reachability diameter is n.
(g) There is a non-empty Kripke structure \mathcal{M} that satisfies $(\mathbf{A G E F} p) \wedge(\mathbf{E F} \mathbf{A G} \neg p)$.
(h) There are propositional logic formulas φ for which the Tseitin transformation yields an equisatisfiable formula ψ in conjunctive normal form (CNF) that is exponentially smaller (in terms of the number of clauses) than the smallest formula in CNF that is logically equivalent to φ.
(i) If a given transition system is safe (i.e., property P holds), then the IC3 model checking algorithm always computes the logically weakest inductive invariant that proves that P holds.
(j) Given n Büchi automata $\mathcal{B}_{1}, \ldots \mathcal{B}_{n}$, the number of states of the asynchronous product $\mathcal{B}_{1} \|$ $\cdots \| \mathcal{B}_{n}$ is polynomial in n.

Question	True	False
(a)		
(b)		
(c)		
(d)		
(e)		
(f)		
(g)		
(h)		
(i)		
(j)		

Question 5:

Let G_{i} be a frame and s be a state in the IC3 algorithm such that the following holds (i.e., s is unreachable from G_{i}):

$$
G_{i}(V) \wedge \neg s(V) \wedge T\left(V, V^{\prime}\right) \Rightarrow \neg s\left(V^{\prime}\right)
$$

Let $c\left(V^{\prime}\right)$ be an interpolant for the following pair of formulas:

$$
\left.\left\langle\quad G_{0}\left(V^{\prime}\right) \vee\left(G_{i}(V) \wedge \neg s(V) \wedge T\left(V, V^{\prime}\right)\right)\right) \quad, \quad s\left(V^{\prime}\right)\right\rangle
$$

(where $I \equiv G_{0}$ is the set of initial states).

Prove that c satisfies initiation and consecution!

