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Exercise 101

Task description Let p(x) = x4 + 1.

(a) Is p(x) irreducible over R? If yes, prove it. If no, find a way to write p(x) as a
product of two (non-constant) real polynomials.

(b) Is p(x) reducible over Q?

Solution: https://math.stackexchange.com/a/2096676 Even a short hint on Wikipedia

(a) p(x) is reducible. p(x) = (x2 − x
√
2 + 1︸ ︷︷ ︸

a(x)

) · (x2 + x
√
2 + 1︸ ︷︷ ︸

b(x)

) All coefficients are real.

(b) No.

Theorem Let F be a field. If f(x) ∈ F [x] and deg f(x) is 2 or 3, then f(x) is
reducible over F if and only if f(x) has a zero in F .

(R,+, ·) is a field. a(x) and b(x) are of degree 2. Neither a(x) nor b(x) have roots
in R. Hence, they are irreducible.

We know from the lecture that (K[x],+, ·) is a UFD (unique factorization domain,
factorial ring) for any field K. For any UFD, the factorization into irreducibles is
unique up to associates and the order in which the factors appear by definition.

Hence, the factorization p(x) = a(x)b(x) from task (a) is unique. a(x)b(x) also
has

√
2 /∈ Q as coefficient. It follows from those two facts, that there can be no

factorization with coefficients in Q.
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Exercise 102

Wikipedia

https://www.physicsforums.com/threads/irreducible-polynomials-over-the-reals.
474510/post-3147789

https://math.stackexchange.com/a/275957

Task description Describe all real polynomials which are irreducible over R.
The tools that you possibly need to use are:

(1) the fundamental theorem of algebra

(2) the fact that if a complex (non-real) number z = a+bi is a root of a real polynomial
p(x), then its conjugate z̄ = a− bi is a root of p(x) as well.

Solution

By the Fundamental Theorem of Algebra any polynomial p(x) of degree n has n
values zi ∈ C (some possibly degenerate) such that p(zi) = 0. Such values are called
polynomial roots. This means that p(x) can be written as product of linear factors
p(x) = (x− z1) . . . (x− zn).

If zi ∈ C is a complex solution of p(x), then there is some zj = zi in the factorization
which is also a solution by fact (2). Then the product (x − zi)(x − zj) ∈ R is real
and a quadratic polynomial. It follows that p(x) can be written as a product linear
and quadratic terms. This implies that the only possible irrreducible polynomials are
linear or quadratic.

Exercise 103

Task description Let I be the following ideal of Z : I = 〈9, 12〉 (that is, I is the ideal
generated by the elements 9 and 12). Show that I is a principal ideal (that is, I can
be generated by a single element). Generalize for I = 〈a, b〉 for any a, b ∈ Z.

Solution Consider (like in exercise 100) the definition from Joseph A. Gallian’s book
Abstract Algebra (note that Prof. Drmota uses (m) for ”generated by m” and the
book uses 〈m〉):

Definition Let R be a commutative ring with unity and let a1, a2, . . . , an
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belong to R. Then I = 〈a1, a2, . . . , an〉 = {r1a1+r2a2+· · ·+rnan | ri ∈ R}
is an ideal of R called the ideal generated by a1, a2, . . . , an.

So we get

〈9, 12〉 = {r1 · 9 + r2 · 12 | r1, r2 ∈ Z}
= {. . . , 1 · 9 + (−1) · 12, 0 · 9 + 0 · 12, (−1) · 9 + 1 · 12, (−2) · 9 + 2 · 12 . . . }
= {. . . ,−3, 0, 3, 6 . . . }

This of course coincides with the definition from the lecture:

Definition If R is an Euclidean ring and M = {m1,m2, . . . ,mn} consists
of a finite number of elements, then the ideal that is generated by M is the
principal ideal

(M) = (gcd(m1,m2, . . . ,mn)) = gcd(m1,m2, . . . ,mn) ·R.

of which we also learned that it is principal. So for M = {3, 9} we get 〈3, 9〉 =
gcd(3, 9) · Z = 3 · Z.

We know one very important theorem from the lecture:

Theorem If R is an Euclidean ring then all ideals are principal. More
formally, if J is an ideal of R then ∃r ∈ R : J = 〈r〉 = mR.

and it was exactly the example from the lecture that the integers Z are a ring and that
if J is an ideal of Z then J has the form J = mZ.

Consequently, it does not matter which a, b ∈ Z are chosen, as long as I is an ideal, I
will be a principal ideal.

Proof of the theorem Suppose that J is an ideal of R.

Case 1 Then J = {0} = (0) = 0 ·R is a principal ideal.

Case 2 ∃a ∈ J \ {0}. Then we have the euclidean evaluation n(a). Consider an
element a0 ∈ J \ {0} such that n(a0) = min{n(A) | a ∈ J \ {0}}. Note that in
general n(a) is only defined for non-zero elements. Also note that all n(a) are
natural numbers. It is known that every non-empty set of natural numbers has
a minimal element. So a0 can actually be found. Take now some element b ∈ J
then there exist q, r ∈ R : b = q · a0 + r with r = 0 or n(r) < n(a0)because we’re
in an euclidean ring and a0 was chosen to be non-zero. If r = 0 then b is just
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a multiple of a0. It holds b = q · a0. If r 6= 0 then certainly r = b − q · a0 is
in J because b, a0 ∈ J . But now n(r) < n(a0) which is a contradiction to our
definition of a0. Consequently, r = 0 is the only case that occurs. So finally,
J = a0 ·R = (a0).

Exercise 104

See StackExchange and also

• StackExchange

• StackExchange

• StackExchange

• StackExchange

Task description Let I be the following ideal of (Z[x],+, ·) : I = 〈x, 2〉. Show that
I is not a principal ideal.

Solution

Definition Let R be a commutative ring with unity and let a1, a2, . . . , an
belong to R. Then I = 〈a1, a2, . . . , an〉 = {r1a1+r2a2+· · ·+rnan | ri ∈ R}
is an ideal of R called the ideal generated by a1, a2, . . . , an.

Therefore, if we define all constants ai, bi for x of too high degree to be 0, we get

〈x, 2〉 = {xf(x) + 2g(x) | f(x), g(x) ∈ Z[x]}
= anx

n+1 + an−1x
n + · · ·+ a1x

2 + a0x+ 2bmxm + 2bm−1x
m−1 + · · ·+ 2b1x+ 2b0

= ckx
k + ck−1x

k−1 + · · ·+ (a0 + 2b1)︸ ︷︷ ︸
c1

x+ 2b0

where ci = ai−1+2bi for 1 ≤ i ≤ k = max(n+1,m). For example, for n = m we get the
terms ck−1x

k−1 = (an−1 + 2bm)xk−1 and ckx
k = (an + 2bm+1)x

k with bm+1 = 0.

Observation 〈x, 2〉 is all polynomials with even (or zero) constant term.

This can be checked by taking such a polynomial djxj + dj−1x
j−1 + · · · + d1x + 2d0

and transforming it to

x
(
djx

j−1 + dj−1x
j−2 + · · ·+ d1

)︸ ︷︷ ︸
f(x)

+2 d0︸︷︷︸
g(x)
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and we see that this is of the form {xf(x) + 2g(x) | f(x), g(x) ∈ Z[x]} and hence in
the ideal.

Definition Let R be a commutative ring with unity and let a ∈ R. The
set 〈a〉 = {ra | r ∈ R} is an ideal of R called the principal ideal generated
by a.

Definition A subring A of a ring R is called a (two-sided) ideal of R if for
every r ∈ R and every a ∈ A both ra and ar are in A.

Now suppose for a contradiction that I is generated by a single polynomial h(x), that
is I = 〈x, 2〉 = 〈h(x)〉 for some h(x) ∈ I.

Case 1 h(x) = c ∈ I is a constant polynomial. Then it is even by our previous
observation. Then

〈c〉 = {cf(x) | f(x) ∈ Z[x]} .

Consequently the ideal contains only polynomials with even coefficients and we
do not get x alone.

Case 2 h(x) is not a constant polynomial. Then it has degree at least 1. Then non-
zero polynomials in 〈h(x)〉 = {h(x)f(x) | f(x) ∈ Z[x]} have degree at least 1.
Examples are

• (b1x+ b0)︸ ︷︷ ︸
h(x)

a0

• and (b2x
2 + b1x+ b0)︸ ︷︷ ︸

h(x)

(a1x+ a0)

• but not b0︸︷︷︸
h(x)

(a1x+ a0) or b0︸︷︷︸
h(x)

·a0

So here we do not get the constant 2 alone.

As a consequence, I is not of the form 〈h(x)〉, so I is not principal.
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Exercise 105

Task description Let Z[i] = {a+ bi | a, b ∈ Z} ⊆ C.

(a) Determine the invertible elements of Z[i].

(b) Is Z[i] an integral domain?

Solution

(a) Definition A unity (or identity) in a ring is a nonzero element that is
an identity under multiplication. It need not exist.

Definition A nonzero element of a commutative ring with unity need
not have a multiplicate inverse. When it does, it is called a unit (or
multiplicatively invertible) of the ring. Thus, a is a unit if a−1 exists.
The set of units is

R∗ = {a ∈ R : ∃b ∈ R : a · b = 1}

and (R∗, ·) is a commutative group.

Wikipedia Note that 1 is the unity (identity) of Z[i]. The units of Z[i] are precisely
the Gaussian integers with norm 1, that is, 1, -1, i and −i, because

1 · 1 = 1 i · (−i) = 1

(−1) · (−1) = 1 (−i) · i = 1

(b) Definition A ring R is a set with two binary operations + and − such
that for all a, b, c ∈ R holds

1. a+ b = b+ a

2. (a+ b) + c = a+ (b+ c)

3. There is an additive identity 0. That is, there is an element 0 in R
s.t. a+ 0 = a∀a ∈ R.

4. There is −a in R s.t. a+ (−a) = 0

5. a(bc) = (ab)c

6. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca
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A ring is an Abelian group under addition, also having an associative
multiplication that is left and right distributive over addition.

Definition A zero-divisor is a nonzero element of a commutative ring
R such that there is a nonzero element b ∈ R with ab = 0.

Definition An integral domain is a commutative ring with unity and
no zero-divisors.

Note that where the ring definition is quoted from 1 , the closure property of
Abelian group is not mentioned. But it was not mentioned in the ring definition
in the lecture either. Nevertheless, here it is for Z[i]:

Using the identity i2 = −1 we get

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

so if (a+ bi) ∈ Z[i] and (c+ di) ∈ Z[i] then their sum and product are also in Z[i].

In the lecture the conclusion that Z is an integral domain followed directly here.

Note that Z is an integral domain. So the remaining properties follow directly.
For example, associativity over multiplication

((a+ bi)(c+ di)) (e+ fi) = (ac+ adi+ bci+ bdi2)(e+ fi)

= ace+ acfi+ adei+ adfi2 + bcei+ bcfi2 + bdei2 + bdfi3

= (a+ bi)
(
(cd+ cfi+ dei+ dfi2)

)
= (a+ bi) ((c+ di)(e+ fi))

Consequently, this is an integral domain.

1Gallian, Abstract Algebra
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Exercise 106

Task description Show that the set S = {a + b
√
2 | a, b ∈ Q} with the usual

addition and multiplication is a field. Compute (3− 5
√
2)−1.

Solution

Definition A unity (or identity) in a ring is a nonzero element that is
an identity under multiplication. It need not exist.

Definition A nonzero element of a commutative ring with unity need
not have a multiplicate inverse. When it does, it is called a unit of the
ring. Thus, a is a unit if a−1 exists.

Definition A field is a commutative ring with unity in which every
nonzero element is a unit.

S is certainly a substructure of the real numbers S ⊆ R. Consequently all prop-
erties like the associative law and the distributive law are certainly satisfied. We
only have to show that if a + b

√
2 6= 0 then there exists an element of this form

that is the reciprocal of that.

First of all,
a+ b

√
2 6= 0 ⇔ (a, b) 6= (0, 0) (1)

(a and b are not both 0). Proof:

⇒ If a+ b
√
2 6= 0 then one of a or b has to be non-zero. Otherwise 0 + 0

√
2 = 0.

⇐ Suppose not both a and b are 0. Suppose that a + b
√
2 = 0. Then b 6= 0

because if b were 0 then a would be 0, too. Consequently,
√
2 = −a

b ∈ Q
which is impossible because it is known that

√
2 /∈ Q. Contradiction. It

follows a+ b
√
2 6= 0.

Secondly, we have to check that there is an inverse (reciprocal) element of this
form. To do so, consider 1

a+b
√
2

where we multiply numerator and denominator
by a− b

√
2

1

a+ b
√
2
=

a− b
√
2

(a+ b
√
2)(a− b

√
2)

=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2︸ ︷︷ ︸
∈Q

− b

a2 − 2b2︸ ︷︷ ︸
∈Q

√
2 (2)

Note that we can replace b by −b in both sides of equation 1. From this follows
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that if (a, b) 6= (0, 0) then a − b
√
2 6= 0. As a consequence (a + b

√
2)(a − b

√
2) in

equation 2 is a product of two non-zero numbers. Then a2 − 2b2 6= 0.

So finally (S,+, ·) is a field.

Using equation 2 we get

(3− 5
√
2)−1 =

1

3− 5
√
2
=

3

32 − 2 · 52
− 5

32 − 2 · 52
·
√
2 =

3

−41
− 5

−41
·
√
2
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Exercise 107

Some interesting definitions Task description Determine whether the set T = {a +
b
√
2 + c

√
3 | a, b, c ∈ Q} with the usual addition and multiplication is a field. If yes,

prove it. If not, describe the smallest field (a subfield of R) that contains T .

Solution

Definition A field is a commutative ring with unity in which every nonzero
element is a unit.

Nice hint

For the sake of a contradiction, suppose T is a field. Let

• a, c = 0 and b = 1 to get
√
2 ∈ T

• a, b = 0 and c = 1 to get
√
3 ∈ T

Then
√
2 ·

√
3 ∈ T . However,

√
2 ·

√
3 =

√
6 is an irrational number. So there is no

way to set a, b, c ∈ Q such that
√
6 is in T . Consequently, T is not closed under

multiplication. Hence T is not a field.

By multiplying two arbitrary elements of T and using
√
2
2
= 2 and

√
3
2
= 3

(a1 + b1
√
2 + c1

√
3)(a2 + b2

√
2 + c2

√
3)

= a1a2 + 2b1b2 + 3c1c2︸ ︷︷ ︸
u∈Q

+(a1b1 + a2b1)︸ ︷︷ ︸
v∈Q

√
2 + (a1c1 + a2c1)︸ ︷︷ ︸

w∈Q

√
3 + (b1c2 + b2c1)︸ ︷︷ ︸

x∈Q

√
6

we get a term of the form u+ v
√
2 + w

√
3 + x

√
6.

By multiplying two arbitrary elements of that new form and using the identity
√
6 =√

2
√
3

(a1 + b1
√
2 + c1

√
3 + d1

√
6)(a2 + b2

√
2 + c2

√
3 + d2

√
6)

=a1a2 + 2b1b2 + 3c1c2 + 6d1d2 + (a1b2 + b1a2 + 3c1d2 + 3d1c2)
√
2+

(a1c3 + 2b1d2 + c1a2 + 2d1b2)
√
3 + (a1d2 + b1c2 + c1b2 + d1a1)

√
6

we get a term of the new form again. This means that, in contrast to the first one,
the new form is closed under multiplication.

• StackExchange
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• StackExchange

In fact, we can show that T ′ = {a+ b
√
2 + c

√
3 + d

√
6 | a, b, c, d ∈ Q} is a subfield of

R.

Definition (Subfield test) Let F be a field and let K be a subset of F
with at least two elements. K is a subfield of F if, for any a, b(b 6= 0) in
K, a− b and ab−1 belong to K.

First of all,

(a1 + b1
√
2 + c1

√
3 + d1

√
6)− (a2 + b2

√
2 + c2

√
3 + d2

√
6)

=(a1 − a2) + (b1 − b2)
√
2 + (c1 − c2)

√
3 + (d1 − d2)

√
6

is in T ′. It is sufficient to show that the reciprocal exists. It does not have to be given
explicitly.

1

a+ b
√
2 + c

√
3 + d

√
6
=

1

(a+ b
√
2 + (c+ d

√
2)
√
3
=

(a+ b
√
2)− (c+ d

√
2)
√
3

(a+ b
√
2)2 − 3(c+ d

√
2)2

The numerator is of the form a+ b
√
3 and (by multiplication of) a+ b

√
2+ c

√
3+d

√
6.

In other words terms of the form a+ b
√
2+ c

√
3+ d

√
6 can be arranged into elements

of the form a + b
√
3. By multiplication we see that the denominator is of the form

a+ b
√
2. We already found the reciprocal of a+ b

√
2 in the previous exercise.
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Exercise 109

It would have been smart to multiply with complex conjugates, apparently

Task description Determine the minimal polynomial of
√
3 + i

(a) over Q

(b) over R

(c) over C

Solution

Definition If a is algebraic over a field F , then there is a unique monic
irreducible polynomial p(x) in F [x] such that p(a) = 0. Such a polynomial
is called the minimal polynomial for a over F .

Definition K ⊆ L field, α ∈ L algebraic over K. M(x) ∈ K[x] \ {0} is a
minimal polynomial of α if

1. M(α) = 0

2. degM(x) minimal with this property

3. M(x) monic (leading coefficient 1)

Let a =
√
3 + i. For p(x) = x we get p(a) =

√
3 + i. Using −a directly gives

p(x) = x− a = x− (
√
3 + i)

and then p(a) = a − a = 0. Any minimal polynomial must have deg p(x) at least 1
because otherwise we cannot calculate p(a), so as deg p(x) = 1 it is minimal. Also the
coefficients 1 and

√
3 + i are complex, so this is the minimal polynomial over C.

We continue with this polynomial by using the property i2 = −1 and calculating
squares to eliminate i.

p(x) = 0 = x−
(√

3 + i
)

x−
√
3 = i

i2 = x2 − 2x
√
3 + 3

p(x) = 0 = x2 − 2x
√
3 + 4
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and verify that p(a) = 0. It is minimal because without using x2 to get i2 = −1 we
cannot remove the imaginary part.

Theorem (Reducibility Test for Degrees 2 and 3) Let F be a field. If
f(x) ∈ F [x] and deg f(x) is 2 or 3, then f(x) is reducible over F if and
only if f(x) has a zero in F .

The roots of the new p(x) are
√
3 ± i, so they are not in R. Consequently p(x) is

irreducible over R. The coefficient 2
√
3 is in R but not Q. The remaining coefficients

are also in R. So x2 − 2x
√
3 + 4 is our minimal polynomial over R.

We continue by squaring again to eliminate
√
3.

0 = x2 − 2x
√
3 + 4

4x2 · 3 = (x2 + 4)2 = x4 + 8x2 + 16 (3)
0 = x4 + 8x2 − 12x2 + 16

p(x) = 0 = x4 − 4x2 + 16

and verify that p(a) = 0. There must be a second square operation because the root
and the i are connected by +. Hence, p(x) is minimal.

We verify that x4 − 4x2 + 16 is irreducible. The associated quadratic polynomial
x2− 4x+16 has roots 2± 2i

√
3 ∈ C. So by the reducibility test there is no root in the

real numbers. We can use the previous identity 3 of p(x) and (a− b)(a+ b) = a2 − b2

to get a factorization with real number coefficients

x4 − 4x2 + 16 =
(
x2 + 4

)2 − 12x2

=
(
x2 + 4

)2 − (√
12x

)2

=
(
x2 −

√
12x+ 4

)(
x2 +

√
12x+ 4

)
The roots of the quadratic equations are

√
3 ± i ∈ C and −

√
3 ± i ∈ C. As no root

is a real number, x4 − 4x2 + 16 consists of two polynomials over the real numbers
that are irreducible over the real numbers by the reducibility test. If x4 − 4x2 + 16
were reducible over the rational numbers, the two factorizations in Q[x] and R[x] would
coincide. Hence, x4−4x2+16 is irreducible over the rational numbers and our minimal
polynomial over Q.
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Exercise 110

Here also apparently multiplying the conjugates is sufficient for the polynomial Task
description Same question as exercise 109 but for

√
2 +

√
3.

Solution Let a =
√
2 +

√
3. For p(x) = x we get p(a) =

√
2 +

√
3. Using −a directly

gives
p(x) = x− a = x−

(√
2 +

√
3
)

and then p(a) = a − a = 0. Any minimal polynomial must have deg p(x) at least 1
because otherwise we cannot calculate p(a), so as deg p(x) = 1 it is minimal. Also
the coefficients

√
2 and

√
3 are real numbers, so this is the minimal polynomial over

R. As the real numbers are a subset of the complex numbers, this is also the minimal
polynomial over C.

For the rational numbers we calculate

0 = x−
(√

2 +
√
3
)

x =
√
2 +

√
3

x2 = 2 + 2
√
2
√
3 + 3

x2 − 5 = 2
√
6

x4 − 2x2 · 5 + 52 = 4 · 6
p(x) = 0 = x4 − 10x2 + 1

If I remember correctly, we did not do very much Galois theory or vector space things
in the lecture. So a solution without much of it.

The zeros of p(x) are x1 =
√
2+

√
3, x2 =

√
2−

√
3, x3 = −

√
2+

√
3 and x4 = −

√
2−

√
3.

Therefore over the reals we have the factorization

p(x) = (x− x1)(x− x2)(x− x3)(x− x4).

It is not sufficient to check that none of the roots are rational, because p(x) could still
have quadratic factors with rational coefficients. If p(x) = f(x)g(x) were a factoriza-
tion as a product of two quadratics with rational coefficients, then x1 must be a zero
of one of the factors. Without loss of generality we can assume that f(x1) = 0. This
means that the other zero of f(x) must be either x2, x3 or x4. But we can check that
none of
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(x− x1)(x− x2) = (x−
√
2)2 − (

√
3)2 = x2 − 2

√
2x− 1

(x− x1)(x− x3) = (x−
√
3)2 − (

√
2)2 = x2 − 2

√
3x+ 1

(x− x1)(x− x4) = x2 − (
√
2 +

√
3)2 = x2 − 5− 2

√
6

have rational coefficients. Therefore p(x) has no quadratic factors with rational coef-
ficients, and hence must be irreducible.

Mathonline

Irreducibility

15

http://mathonline.wikidot.com/the-minimal-polynomial-of-2-3-over-q
https://math.stackexchange.com/a/1665486/844881

