2.1

- **a)** Theory question: For n+1 knots and values, what is the highest degree for which an interpolation polynomial can be guaranteed to have a unique existence? also for lower/higher degrees?
- **b)** Interpolate through $\left(\frac{1}{2}\,,1\right)\left(1,\frac{3}{2}\right)(2,5)$ through f'(0) .
- c) How are the Chebychev knots defined? Explain why these are a good choice. (Because they are chosen to minimize the error because they affect the weights. There are formulas for the $\omega_{i,n}^{\rm cheb}$ and for the errors with $\omega_{i,n}^{\rm cheb}$)

2.2

a) $\left[0, \frac{3}{2}\pi\right]$, decompose into equidistant mesh with 3 intervals, draw mesh. what is h? Use composite trapezoidal rule,

compute $\int_0^{\frac{3}{2}\pi} x \sin(x) dx$.

- $\textbf{b)} \text{ For general } f \in C^{(2)}\left(\left\{0,\,\frac{3\pi}{2}\right]\right) \text{ write formula for error } \int_0^{\frac{3}{2}\pi} f(x)dx T_n(f) \text{ , where } T_n(f) \text{ is trapezoidal.}$
- c) General estimate find mesh-width h to $\left|\int x \sin(x) dx T_n(x \sin(x))\right| \leq 0,01$.

hint: use $x \sin x^{(2)} = 2 \cos x - x \sin x$

2.3

- a) Give example of a matrix where the LU decomposition is impossible but possible with pivot.
- b) Compare inverse shift with Rayleigh. (List pros and cons of both and explain what they do)

2.4

- a) Define contraction and why/how is it needed/related to fixed point/newton method.
- b) When and how does newton method converge quadratically?

2.5

- a) Convengence/complexity of neville p(x)
- **b)** Is quadrature with $\sum \omega_i = 1$ for constant functions always exact?
- c) For Newton Cotes if n->infinity is the quadrature exact? False
- d) The midpoint rule is more efficient than gaussian quadrature? False
- e) Convergence behaviour of power iteration method? I think $C|\frac{\lambda_2}{\lambda_1}|^l$ where l is iteration step
- **f)** What order is simpson rule? h^4 i.e. 4
- g) SVD is used for overdetermined systems? False
- etc. more theory.