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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Sämtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).



Reminder: Correlation
X1, . . . , Xn i.i.d. RVs, X1 ∼ N(µx,σ2

x).

Here n = 100
Y1, . . . , Yn i.i.d. RVs, Y1 ∼ N(µy,σ2

y)
also let the pairs (Xi, Yi)i=1,...,n be independent over i = 1, 2, ...
So long, nothing said about the relation between Xi and Yi
This is accomplished (e.g.,) through the notion of correlation
Definition: For the RVs X and Y (withVar(X),Var(Y) ∈ (0,∞)) their
correlation ρ is given as

ρ is also known as Pearson’s coefficient of correlation

ρ := Corr(X, Y) :=
Cov(X, Y)√

Var(X) ·
√
Var(Y)

:=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)
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Reminder: Correlation
X1, . . . , Xn i.i.d. RVs, X1 ∼ N(µx,σ2

x). Here n = 100
Y1, . . . , Yn i.i.d. RVs, Y1 ∼ N(µy,σ2

y)
also let the pairs (Xi, Yi)i=1,...,n be independent over i = 1, 2, ...
So long, nothing said about the relation between Xi and Yi
This is accomplished (e.g.,) through the notion of correlation
Definition: For the RVs X and Y (withVar(X),Var(Y) ∈ (0,∞)) their
correlation ρ is given as

ρ is also known as Pearson’s coefficient of correlation
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Reminder: Correlation
X1, . . . , Xn i.i.d. RVs, X1 ∼ N(µx,σ2

x). Here n = 100
Y1, . . . , Yn i.i.d. RVs, Y1 ∼ N(µy,σ2

y)
also let the pairs (Xi, Yi)i=1,...,n be independent over i = 1, 2, ...
So long, nothing said about the relation between Xi and Yi
This is accomplished (e.g.,) through the notion of correlation
Definition: For the RVs X and Y (withVar(X),Var(Y) ∈ (0,∞)) their
correlation ρ is given as ρ is also known as Pearson’s coefficient of correlation
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Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
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ρ = 0

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation
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ρ = 0.2

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation
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ρ = 0.4

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation
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ρ = 0.6

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa
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ρ = 0.8

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa
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ρ = 0.9

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)

x

µX − 3σX µX µX + 3σX
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ρ = 0.95

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)

x

µX − 3σX µX µX + 3σX
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ρ = 0.99

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)

x

µX − 3σX µX µX + 3σX
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ρ = 1

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)

x

µX − 3σX µX µX + 3σX
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ρ = −0.5

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)

x

µX − 3σX µX µX + 3σX
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ρ = −0.9

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Examples: Correlation

ρ :=
E[(X − E[X])(Y − E[Y])]√
Var(X) ·

√
Var(Y)

x

µX − 3σX µX µX + 3σX
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ρ = −1

ρ positive: the product (X − E[X]) · (Y − E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation

ρ negative: the product (X − E[X]) · (Y − E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Properties of the correlation

x

µX − 3σX µX µX + 3σX
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ρ = −1

x

µX − 3σX µX µX + 3σX
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ρ = −0.9
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µX − 3σX µX µX + 3σX
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ρ = 0
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ρ = 0.8
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µX − 3σX µX µX + 3σX
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The correlation ρ is a measure for the degree of the linear relation

ρ = 0⇔ no linear relation (say: X and Y are uncorrelated)
ρ > 0⇔ positive linear relation
ρ < 0⇔ negative linear relation
|ρ| = 1⇔ perfect linear relation It holds ρ ∈ [−1, 1]
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The correlation ρ is a measure for the degree of the linear relation
ρ = 0⇔ no linear relation (say: X and Y are uncorrelated)

ρ > 0⇔ positive linear relation
ρ < 0⇔ negative linear relation
|ρ| = 1⇔ perfect linear relation It holds ρ ∈ [−1, 1]
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The correlation ρ is a measure for the degree of the linear relation
ρ = 0⇔ no linear relation (say: X and Y are uncorrelated)
ρ > 0⇔ positive linear relation

ρ < 0⇔ negative linear relation
|ρ| = 1⇔ perfect linear relation It holds ρ ∈ [−1, 1]
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The correlation ρ is a measure for the degree of the linear relation
ρ = 0⇔ no linear relation (say: X and Y are uncorrelated)
ρ > 0⇔ positive linear relation
ρ < 0⇔ negative linear relation

|ρ| = 1⇔ perfect linear relation It holds ρ ∈ [−1, 1]
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The correlation ρ is a measure for the degree of the linear relation
ρ = 0⇔ no linear relation (say: X and Y are uncorrelated)
ρ > 0⇔ positive linear relation
ρ < 0⇔ negative linear relation
|ρ| = 1⇔ perfect linear relation It holds ρ ∈ [−1, 1]
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For realizations (xi, yi)i=1,2,...,n estimate ρ through the empirical correlation

r :=
1

n−1

∑n
i=1(xi − x̄)(yi − ȳ)

sx · sy

in R via cor()

here: r ≈ 0.78 It is r ∈ [−1, 1]
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ρ = 0.8

For realizations (xi, yi)i=1,2,...,n estimate ρ through the empirical correlation

r :=
1

n−1

∑n
i=1(xi − x̄)(yi − ȳ)

sx · sy

in R via cor() here: r ≈ 0.78

It is r ∈ [−1, 1]
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ρ = 1

y = b0 + b1x

ρ = 1: the points lie on a line y = b0 + b1x.

For the slope b1 and the intercept b0 it holds

b1 =
sy

sx
and b0 = ȳ − b1 · x̄
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y = b0 + b1x

(x, y)

ad intercept b0:

it is yi = b0 + b1xi for all i = 1, 2, . . . , n
Summation:

∑
i yi =

∑
i(b0 + b1xi) = nb0 + b1

∑
i xi

division through n yields: ȳ = b0 + b1x̄

Thus: b0 = ȳ − b1x̄. Graphically: the line passes the center of mass (x̄, ȳ)
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Thus: b0 = ȳ − b1x̄. Graphically: the line passes the center of mass (x̄, ȳ)
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and b0 = ȳ − b1 · x̄

x

µX − 3σX µX µX + 3σX

III III III II I II I II II III III III III III II II II IIII I II I II IIII II I II III II IIII IIIII II III II I I III III II I I II II IIII

n=100

µ Y
−

3σ
Y

µ Y
µ Y

+
3σ

Y

y

__

__

__

_
_

_

_
__

_

__

_

_
_
_
_
__

____
_

_

_
_

_

_

__
_

_
__

_
_

_
_
___
_

_

_

_

_
__
_

_
_

_

___
__

__
_

_
_
__

____
_
____

_
_
_

_

___

_
_

__

_
_
_
_

_

___

_

_
_
_

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

ρ = 1

y = b0 + b1x

(x, y)

ad intercept b0:
it is yi = b0 + b1xi for all i = 1, 2, . . . , n
Summation:

∑
i yi =

∑
i(b0 + b1xi) = nb0 + b1

∑
i xi

division through n yields: ȳ = b0 + b1x̄
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y = b0 + b1x

(x, y)
sx

sy

ad slope b1:

it is yi = b0 + b1xi for all i = 1, 2, . . . , n as well as ȳ = b0 + b1x̄
difference and squaring: (yi − ȳ)2 = b2

1(xi − x̄)2 for all i = 1, 2, . . . , n
summation and division through n − 1: 1

n−1

∑
i(yi − ȳ)2 = b2

1 · 1
n−1

∑
i(xi − x̄)2

square-root: b1 = sy/sx
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In summary:
yi is ’explained’ by xi

the line passes the center of mass (x̄, ȳ)
regarding the slope think in the standard deviations

one step to the right of size sx results in an increase of size sy

but this particular slope is a consequence of the special case ρ = 1
general ρ induces the factor r (empirical correlation)...
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In summary:
yi is ’explained’ by xi
the line passes the center of mass (x̄, ȳ)

regarding the slope think in the standard deviations
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In summary:
yi is ’explained’ by xi
the line passes the center of mass (x̄, ȳ)
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one step to the right of size sx results in an increase of size sy

but this particular slope is a consequence of the special case ρ = 1
general ρ induces the factor r (empirical correlation)...



General: linear relation plus error
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ρ = 0.6

For |ρ| , 1 the relation is ’only’ approximately linear

yi = β0 + β1xi

+ei

while ei is denoted the (i-th) error, respectively, the (i-th) residual
thus the assumed relation is: linear proportion plus error
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(xi, yi)

For |ρ| , 1 the relation is ’only’ approximately linear
yi = β0 + β1xi +ei

while ei is denoted the (i-th) error, respectively, the (i-th) residual
thus the assumed relation is: linear proportion plus error
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ρ = 0.6

(xi, yi)

yi = β0 + β1xi +ei
in principle there are many possible lines

Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line
i.e., search β0 and β1 such that

∑n
i=1 e2

i =
∑n

i=1(yi − [β0 + β1xi])
2 minimal

the minimizers b0 and b1 yield the regression line y = b0 + b1x
procedure called ’method of least squares’
the estimators b0 and b1 are the least-squares estimators for β0 and β1
greek βj↔ parameters (’unknown’), latin bj↔ statistics / estimators (’known’, functions of the (xi, yi)i)
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yi = β0 + β1xi +ei
in principle there are many possible lines
Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line
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i=1 e2
i =

∑n
i=1(yi − [β0 + β1xi])
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the minimizers b0 and b1 yield the regression line y = b0 + b1x
procedure called ’method of least squares’
the estimators b0 and b1 are the least-squares estimators for β0 and β1
greek βj↔ parameters (’unknown’), latin bj↔ statistics / estimators (’known’, functions of the (xi, yi)i)
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in principle there are many possible lines
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the estimators b0 and b1 are the least-squares estimators for β0 and β1
greek βj↔ parameters (’unknown’), latin bj↔ statistics / estimators (’known’, functions of the (xi, yi)i)
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greek βj↔ parameters (’unknown’), latin bj↔ statistics / estimators (’known’, functions of the (xi, yi)i)
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Regression line: b0 and b1
For the slope and the intercept of the regression line it holds

b1 = r ·
sy

sx
and b0 = ȳ − b1 · x̄
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ρ = 0.6

y = b0 + b1x

Meaning:

the regression line passes the center of mass (x̄, ȳ)
one step to the right of size sx yields an increase of size r · sy

For the derivation of b1 and b0 see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog,
Springer Berlin



Regression line: b0 and b1
For the slope and the intercept of the regression line it holds

b1 = r ·
sy

sx
and b0 = ȳ − b1 · x̄
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ρ = 0.6

y = b0 + b1x

(x, y)

Meaning:
the regression line passes the center of mass (x̄, ȳ)

one step to the right of size sx yields an increase of size r · sy
For the derivation of b1 and b0 see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog,
Springer Berlin
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Meaning:
the regression line passes the center of mass (x̄, ȳ)
one step to the right of size sx yields an increase of size r · sy

For the derivation of b1 and b0 see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog,
Springer Berlin
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Meaning:
the regression line passes the center of mass (x̄, ȳ)
one step to the right of size sx yields an increase of size r · sy

For the derivation of b1 and b0 see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog,
Springer Berlin



Regression line: examples

b1 = r ·
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and b0 = ȳ − b1 · x̄
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in fact, the data have their own standard deviations sx and sy

however, the relation is negligible r ≈ −0.01
and thus, the regression line is found flat
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in fact, the data have their own standard deviations sx and sy

however, the relation is negligible r ≈ −0.01

and thus, the regression line is found flat
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y = b0 + b1x



Data analysis: regression line
Is there a relation between age and weight in teenage years?

n = 20 teenagers of age between 13 and 19 years interviewed→ data (xi, yi)i=1,...,n

the relation is approximately linear, i.e., yi = β0 + β1xi + ei

the data show a strong positive correlation, r ≈ 0.9

For the regression line we estimate b0 ≈ 6.7[kg] and b1 ≈ 3.3[kg/year]

interpretation: per year the weight of a teenager increases about 3.3kg in the mean

prediction: a 16-year old weighs in the mean 6.7 + 3.3 · 16 = 59.5kg
Attention: predictions meaningful only in the observed range [13, 19].

80-year old
people do not weigh about 270kg. Similarly, the intercept b0 = 6.7 is biologically
meaningless (newborns don’t weigh about 6.7kg in the mean)
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Is there a relation between age and weight in teenage years?
n = 20 teenagers of age between 13 and 19 years interviewed→ data (xi, yi)i=1,...,n

the relation is approximately linear, i.e., yi = β0 + β1xi + ei

the data show a strong positive correlation, r ≈ 0.9
For the regression line we estimate b0 ≈ 6.7[kg] and b1 ≈ 3.3[kg/year]
interpretation: per year the weight of a teenager increases about 3.3kg in the mean
prediction: a 16-year old weighs in the mean 6.7 + 3.3 · 16 = 59.5kg

Attention: predictions meaningful only in the observed range [13, 19].

80-year old
people do not weigh about 270kg. Similarly, the intercept b0 = 6.7 is biologically
meaningless (newborns don’t weigh about 6.7kg in the mean)
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Regression line in R
# Enter data, x- and y- values as vectors

x <- c(...)

y <- c(...)

# Calculate regression line

lm(y˜x)

# Output

Call:

lm(formula = y ˜ x)

Coefficients:

(Intercept) x

6.701 3.322

lm(y∼x)means: describe the yi as a linear function of the xi plus error,
thus yi = β0 + β1 · xi + ei, and estimate the intercept β0 and the slope β1
through least-squares (lm() for ’linear model’).
the estimated intercept is b0 ≈ 6.7 and the estimated slope is b1 ≈ 3.3.
the regression line can be added to a plot via abline(lm(y∼x)).
Alternatively ’by hand’ as before: b1 = r · sy/sx and b0 = ȳ − b1 · x̄.



Significance test for the slope
n = 20 teenagers asked for their age and weight→ data (xi, yi)i=1,...,n

b0 ≈ 6.7 and b1 ≈ 3.3

question: can the positive relation observed in the data have easily happened by
chance, if there was actually no difference in the mean weights in population of
all teenagers between 13 and 19 years?

Answers: this depends on the variability of the estimated slope b1

More precisely, need a statistical model in which we can speak about the
variability of the estimated slope
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Linear regression model
Model: For i = 1, . . . , n let

Yi = β0 + β1 · xi + σZi,

with Z1, . . . , Zn i.i.d. RVs and Z1 ∼ N(0, 1), and (β0,β1,σ) ∈ R×R×R+

Null hypothesis: H0 : β1 = 0 (no relation of age and weight)
Intuitively implausible, as around xi ≈ 14 all yi in the lower tail, while for xi ≈ 18 all yi in the upper tailThe pairs (xi, yi)i are given data and yi is interpreted as a realization of Yi

Yi depends on linear proportion β0 + β1 · xi as well as a random error σZi

consequence: in the context of the model, the least-squares estimators B0
and B1 for β0 and β1 become random statistics...

and have a standard error
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B0 and B1 least-squares estimators for β0 and β1

the variance σ2 is estimated from the residuals via

S2
r :=

1
n − 2

n∑
i=1

[Yi − (B0 + B1 · xi)]
2

Definition: Sr is called the standard error of the regression
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Standard error of the slope B1 – Definition
B0 and B1 least-squares estimators for β0 and β1

Definition: The standard error of the slope B1 is

SEB1 :=
Sr

sx ·
√

n − 1

while

Sr =

√√√√ 1
n − 2

n∑
i=1

[Yi − (B0 + B1 · xi)]2

denotes the standard error of the regression and

s2
x =

1
n − 1

n∑
i=1

(xi − x̄)2

is the (non-random) empirical variance of the data (xi)i

Note: In general a standard error denotes an estimator for the standard deviation of a statistic, for example

the standard error of the regression Sr estimatesVar(Y1)
1/2 = σ

the standard error of the slope SEB1 estimatesVar(B1)
1/2 = σ/(sx

√
n − 1) (latter equality not shown)

the standard error of the mean SEM estimatesVar(Z̄)1/2 = σ/
√

n (not used in this context)
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Standard error of the slope B1 – Intuition
The standard error of the slope B1 is
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Why is SEB1 plausible? In other words: How ’variable’ is the regression line?

It is ’intuitively stable’ if
Sr (the estimator for σ) is small

here on right side

sx (the variability of the (xi)i data) is large

here on left side

n (the number of observations) is large

here on right side
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Why is SEB1 plausible? In other words: How ’variable’ is the regression line?
It is ’intuitively stable’ if

Sr (the estimator for σ) is small

here on right side

sx (the variability of the (xi)i data) is large

here on left side

n (the number of observations) is large here on right side



Significance test for the slope B1

For i = 1, . . . , n let
Yi = β0 + β1 · xi + σZi,

with Z1, . . . , Zn i.i.d. RVs and Z1 ∼ N(0, 1), and (β0,β1,σ) ∈ R×R×R+

q1−α/2 the (1 − α/2)-quantile of the t(n − 2)-distribution

Under H0 : β1 = β
(0)
1 it holds

T :=
B1 − β

(0)
1

SEB1

∼ t(n − 2)

and equivalently: the confidence interval

I :=
(
B1 − q1−α/2 · SEB1 , B1 + q1−α/2 · SEB1

)
overlaps β(0)

1 with probability 1 − α

known structure: T = (♠−♠)/♠ and I = (♠− q · ♠, ♠+ q · ♠)
typically: null hypothesis β(0)

1 = 0↔ no relation
In the model both β0 and β1 are estimated, thus df = n − 2
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Data analysis: significance test for the slope
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evaluation of the data t =
b1 − 0

seb1

≈ 8.7

for the significance level α = 5% it is q1−α/2 ≈ 2.1
→ rejection area R ≈ (−∞,−2.1] ∪ [2.1,∞) (two-sided)
As t ∈ R we reject H0 : β1 = 0 on the 5%-level
the p-value is p = PH0(|T| > |t|) ≈ 7.5 · 10−8 (tiny)
Interpretation: The positive relation observed in the data is barely
compatible with the assertion that there is no relation.

If H0 holds true,
then we observe in less than one of 107 cases a relation that is at least as
extreme as the relation observed (p < 10−7)
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Significance test for slope B1 using R
# Enter data, x- and y- values as vectors

x <- c(...)

y <- c(...)

# compute regression line

rg <- lm(y˜x)

# perform test

summary(rg)

# Output

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7005 6.0949 1.099 0.286

x 3.3222 0.3826 8.684 7.47e-08 ***

...

2nd row: slope, 1st row: intercept (usually not interesting)
b1 ≈ 3.3, seb1 ≈ 0.4, t ≈ 8.7, p ≈ 7.5 · 10−8

there are also other statistics returned (not shown here), for example a
summary of the residuals or the standard error of the regression sr, etc.



Check model assumptions
Model: For i = 1, . . . , n let

Yi = β0 + β1 · xi + σZi,

with Z1, . . . , Zn i.i.d. RVs and Z1 ∼ N(0, 1), and (β0,β1,σ) ∈ R×R×R+
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linear model: observe a linear proportion plus error

normal distributed errors: the data are distribute bell-shaped around the
line
constant variance σ2: the spread of the errors does not change with age
independence: it is plausible to assume the errors as independent, as the
teenagers were ’randomly’ chosen for the survey. Besides linearity we
observe no further ’structure’ in the data
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Linear regression naively
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estimate regression line via eye

slope: b1 ≈ (70 − 50)/(19 − 13) = 20/6 ≈ 3
standard error of the slope: seb1 = sr/(sx ·

√
n − 1)

≈ 3/(2 · 4) = 3/8√
n − 1 =

√
19 ≈ 4

standard deviation of the data (xi)i: sx ≈ 2, as x̄ ≈ 16 and about 2/3 of the
data in [14, 18]
standard error of the regression: sr ≈ 3, captures about 2/3 of the data
’around the regression line’

t = b1/seb1 ≈ 8 (huge!)
for α = 5% the rejection area is R ≈ (−∞,−2] ∪ [2,∞)
reject H0
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standard error of the regression: sr ≈ 3, captures about 2/3 of the data
’around the regression line’

t = b1/seb1 ≈ 8 (huge!)
for α = 5% the rejection area is R ≈ (−∞,−2] ∪ [2,∞)

reject H0



Linear regression naively
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n − 1 =
√

19 ≈ 4
standard deviation of the data (xi)i: sx ≈ 2, as x̄ ≈ 16 and about 2/3 of the
data in [14, 18]
standard error of the regression: sr ≈ 3, captures about 2/3 of the data
’around the regression line’

t = b1/seb1 ≈ 8 (huge!)
for α = 5% the rejection area is R ≈ (−∞,−2] ∪ [2,∞)
reject H0



Thank you!


