
Random variables and distributions
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Recall

• Let (Ω,P(Ω), P) be a probability space.

• Discrete: Sample spaceΩ is countable/listable (finite or infinite)

• Ω = {ω1,ω2, . . . }, P(ωi) = pi

• Probability table

Elementary events ωi ω1 ω2 . . . ωn . . .
Probability pi p1 p2 . . . pn . . .

∑
i pi = 1

0 6 pi 6 1

• Probability of an event A
P(A) =

∑
ω∈A

P(ω)

• Continuous: Ω is a subset of the real numbers

• We now introduce random variables.
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Example: A game with two dice

• Random experiment: We roll a die twice and write down the outcomes as (i, j),
where i is the result of the first and j is the result of the second die.

• Probability space (Ω,P(Ω), P): Ω = {(i, j)
∣∣ i, j = 1, . . . 6}, P({(i, j)}) = 1

36 .

• Game: We win $500 if the sum is 7, otherwise we lose $100.
• We denote this payoff function by

X(i, j) =

{
500 if i + j = 7

−100 if i + j , 7.

...This function is an example of a random variable.

A random variable assigns a number
to each outcome in a sample space.
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Random variables

• A (measurable) function
X : Ω→ R

which assigns a real number X(ω) = x to everyω ∈ Ω

ω ∈ Ω 7→ X(ω) = x ∈ R

is called a random variable.

• The number x ∈ R is called the realization of X.

• The set of values of X is the image space (or feature space)

{ x
∣∣ X(ω) = x, ω ∈ Ω }
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Random variables

• Two different types of random variables:

• Discrete

• If the image space is finite or countably infinite,
the random variable X is discrete.

• Continuous

• A random variable X that can take values in one or more intervals, i.e. values
that are infinite and uncountable are called continuous.

• Example:

• The number of cash registers opened in a grocery store is a discrete
random variable.

The time spent waiting in the queue is a continuous random variable.
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Discrete random variables

• The probability mass function (pmf) of a discrete random variable X is
the function

p(a) = P(X = a).

... auf Deutsch: Wahrscheinlichkeitsgewichtungsfunktion (Gewichte)

• It always holds 0 6 p(a) 6 1

• We allow a to be any real number, i.e. a ∈ R.
If a is a value that X never takes, then p(a) = 0.

• Example

LetΩ be our earlier sample space for rolling two dice.
Let M to be the maximum value of the two dice:

M(i, j) = max(i, j).

• M is a discrete random variable. We describe it by listing its possible values
and the probabilities associated with those values.

value a 1 2 3 4 5 6
pmf p(a) 1

36
3

36
5
36

7
36

9
36

11
36

6∑
a=1

p(a) = 1
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Continuous random variables

• (Ω,A, P) is a probability space.

• Continuous range of values [c, d], [0, 1], [0,+∞), (−∞,+∞)

• A random variable X is continuous if there exists a function f such that
for any c 6 d it holds

P(c 6 X 6 d) =
∫ d

c
f (x) dx.

• f (x) is called the probability density function
(density function or density)

... auf Deutsch: Wahrscheinlichkeitsdichtefunktion
(Dichtefunktion oder Dichte)

• Properties:

• f is nonnegative: f(x) > 0

• The area under f is one:
∫+∞
−∞ f(x) dx = 1
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Continuous random variables

• Visualization

P(c 6 X 6 d) =
∫ d

c
f (x) dx

= Area under f between c and d

Probability density function and probability



Continuous vs. discrete random variables

• The probability density function f (x) of a continuous random variables
(pdf) is the analogue to the probability mass function p(x) of a discrete
random variable (pmf).

• Important differences:

• In contrast to p(x), the probability density function f (x) is not a probability.
We have to integrate it to get probability.

• Since f (x) is not a probability, there is no restriction that f (x) is less than or
equal to 1.



Cumulative distribution function

• The cumulative distribution function (cdf) of a random variable X is the
function F defined by

FX(x) = P(X 6 x), for all x ∈ R.

Auf Deutsch: Verteilungsfunktion

• FX(x) = F(x) ist defined for all real values x.

• A cumulative distribution function satisfies the following properties:

(1) 0 6 F(x) 6 1 for all x ∈ R

(2) F is monotonically increasing, i.e. from x 6 y it follows F(x) 6 F(y)

(3) lim
x→−∞F(x) = 0 and lim

x→+∞F(x) = 1

(4) F is right continuous, i.e. lim
h↘0

F(x + h) = F(x) for all x ∈ R.

• It holds:
• P(X > x) = 1 − P(X 6 x) = 1 − F(x) and

• P(a 6 X 6 b) = F(b) − F(a).
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Example: Maximum of two dice

• Discrete random variables
(a) LetΩ be our sample space from the example with two dice.

Let M be the maximum of the two dice: M(i, j) = max(i, j).

From the distribution table

value a 1 2 3 4 5 6

pmf p(a) 1
36

3
36

5
36

7
36

9
36

11
36 1

cdf F(a) 1
36

4
36

9
36

16
36

25
36 1

we get, for example

F(9) = 1, F(−2) = 0, F(2.5) = 4
36 and F(π) = 9

36 .
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value a 1 2 3 4 5 6

pmf p(a) 1
36

3
36

5
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7
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11
36 1

cdf F(a) 1
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4
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9
36
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Example: Maximum of two dice

• Discrete random variables
(a) LetΩ be our sample space from the example with two dice.

Let M be the maximum of the two dice: M(i, j) = max(i, j).

• We summarize, the cdf of M is of the following form

F(a) = FM(a) =



0 a < 1
1
36 1 6 a < 2
4
36 2 6 a < 3
9
36 3 6 a < 4
16
36 4 6 a < 5
25
36 5 6 a < 6
1 a > 6

.



Example: Sum of two dice

(b) LetΩ be our sample space for the same example of rolling two dice.

Let X be the sum of two dice: X(i, j) = i + j.

• e.g. {X = 8} = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} and P(X = 8) = 5
36

• In general, the pmf of X is of the form

P(X = x) =
6 − |7 − x|

36
, for x = 2, 3, . . . , 12

the distribution table

value x 2 3 4 5 6 7 8 9 10 11 12
pmf p(x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

5
36 1

cdf F(x) 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

25
36 1

• e.g. F(5.3) = P(X 6 5.3)
= P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 10

36
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Example: Sum of two dice

• The probability mass function

P(X = x) =
6 − |7 − x|

36
, for x = 2, 3, . . . , 12



Example: Sum of two dice

• The graph of the cumulative distribution function is a step function.



Continuous random variable: Cumulative
distribution function

• The cumulative distribution function of a continuous random variable
X is given by

F(x) = P(X 6 x) =
∫ x

−∞ f (t) dt

• P(a 6 X 6 b) = F(b) − F(a)

=
b∫

−∞ f (x)dx −
a∫

−∞ f (x)dx =
∫b

a f (x) dx

• It also holds F ′(x) = f (x) for all x



Example

• Let X has the density function

f (x) =
{

3, x ∈ [0, 1
3 ]

0, else

(a) Compute P(0, 1 6 X 6 0.2) and P(0.1 6 X 6 1).

(b) Find the cumulative distribution function.

• Answer:

(a) P(0, 1 6 X 6 0.2) =
∫0.2

0.1 f (x)dx =
∫0.2

0.1 3 dx = 0.3

(or area of rectangle = 3 · 0.1 = 0.3)

P(0, 1 6 X 6 1) =
∫1

0.1 f (x)dx = 0.7

(b) The cumulative distribution function F(x) = P(X 6 x) has the form

F(x) =


0, x < 0

3x, 0 6 x < 1
3

1, x > 1
3

.
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More examples

HW Let X has range [0, 1] and probability density function f (x) = ax2.

(a) What is the value of a?

(b) Compute the cumulative distribution function (cdf) FX(x).

(c) Compute P(1 6 X 6 2).

HW Let Y has range [0, b] and its cdf is given by

FY(y) =


0, y < 0
y2

9 , 0 6 y < b
1, y > b

(a) What is the value of b?

(b) Find the density function f (y) of Y.



Generalized inverse and quantile function

• One often needs the inverse function of a cdf F.

• As a cdf is not necessary strictly monotonically increasing,
one needs the notion of the generalized inverse of F

F−1(p) := inf {x
∣∣ F(x) > p} for p ∈ (0, 1).

• If F is strictly monotonically increasing, then F−1 is the (usual) inverse
function of F.

• A function that assigns the value F−1(p) to every p ∈ (0, 1) is called
quantile function

xp = F−1(p) for p ∈ (0, 1) ⇐⇒ F(xp) = p for p ∈ (0, 1)

• xp is a p-quantil of F
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Example: continuous random variable

• A p-quantil of F is obtained from

FX(xp) = P(X 6 xp) =

∫ xp

−∞ f (t) dt = p ⇐⇒ xp = F−1
X (p)



Example: continuous random variable

• A p-quantil of F is obtained from

FX(xp) = P(X 6 xp) =

∫ xp

−∞ f (t) dt = p ⇐⇒ xp = F−1
X (p)



Quartiles

• A 50%-quantil x0.5 of F is called median.

• A 25%-quantil x0.25 of F is called lower quartile

• A 75%-quantil x0.75 of F is called upper quartile



Expected value

• The expected value (expectation)

• For the discrete random variable with the values x1, x2 . . . and pmfs p(xi), the
expected value of X is defined by:

E(X) =
∑

xi · p(xi) = x1 · p(x1) + x2 · p(x2) + . . .

• Let X be a continuous random variable with the density f (x).
The expected value of X is defined by:

E(X) =

∫+∞
−∞ x · f (x) dx

It is assumed that the sum and the integral
are absolute convergent!

• It is a weighted mean (average) of the possible outcomes of X.

• It is a measure of the central tendency.
Moment of order one of X.
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Properties of E(X)

(e1) E(aX + b) = aE(X) + b, a, b ∈ R

(e2) E(aX + bY) = aE(X) + bE(Y), a, b ∈ R

(e3) For a function h it holds

E(h(X)) =
∑

h(xi) · p(xi) respectively E(h(X)) =

∫+∞
−∞ h(x) · f (x) dx.

Particularly:

• E(Xk) ... the moment of order k of X

• µk = E
(
(X − E(X))k

)
... the central moment of order k of X

• µ2 = E
(
(X − E(X))2

)
= Var(X) ...is the variance of X

• σ =
√

Var(X) ... is the standard deviation of X

(e4) Let X and Y be independent. Then it holds E(X · Y) = E(X) · E(Y).
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• µk = E
(
(X − E(X))k

)
... the central moment of order k of X

• µ2 = E
(
(X − E(X))2

)
= Var(X) ...is the variance of X

• σ =
√

Var(X) ... is the standard deviation of X

(e4) Let X and Y be independent. Then it holds E(X · Y) = E(X) · E(Y).
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(v4) Let X and Y be independent. Then it holds

Var(X + Y) = Var(X) + Var(Y).
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Example

It is given
X x 3 4 5 6

pmf p(x) 1
4

1
2

1
8

1
8

(a) Compute E(X) and E(3X − 2).

(b) Compute E(X2) and Var(X).

Answer:

(a) E(X) = 3 · 1
4 + 4 · 1

2 + 5 · 1
8 + 6 · 1

8 = 33
8 and

E(3X − 2) = 3 · E(X) − 2 = 3 · 33
8 − 2 = 83

8

... We have used the properties of the expectation.

The second option:

Y = 3X − 2 y 7 10 13 16

pmf p(y) 1
4

1
2

1
8

1
8

E(3X − 2) = E(Y) = 7 · 1
4 + 10 · 1

2 + 13 · 1
8 + 16 · 1

8 = 83
8
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Example cont.

(b) E(X2) = 9
4 + 16

2 + 25
8 + 36

8 = 18

Var(X) = E(X2) − (E(X))2 = 18 − ( 33
8 )

2.



Transformations

• Let X be a continuous random variable, i.e. its density fX is known.

• What is the distribution of a transformation

Y = g(X)

with g : R→ R?

• Method: Use the cumulative distribution function of X

• Determine FX.

• Determine FY for Y = g(X).

• Find fY(y) = F ′Y(y).
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Another example

Let X has the density function

f (x) =
{

ax4, x ∈ [0, 1]
0, otherwise .

(a) Find a.

(b) Compute E(X) and Var(X).

(c) Find the median value of X.

(d) Let X1, X2, . . . , X25 are independentand identically distributed (i.i.d.) copies
of X. Let X̄ be their average (mean), i.e.

X̄ =
1

25

25∑
i=1

Xi.

Compute the standard deviation of X̄.

(e) Let Y = 2X3 + 1. Find the density of Y.



Another example: Solution

(a) From 1 =
∫1

0 ax4 dx we obtain a = 5.

(b) The expectation and variance are

µ = E(X) =

∫ 1

0
5x5 dx =

5
6

Var(X) =

∫ 1

0
(x −

5
6
)2 5x4dx = 5

∫ 1

0
(x6 −

5
3

x5 +
25
36

x4)dx =
5

252
≈ 0.02

σ =
√

Var(X) ≈ 0.14

(c) First we calculate the cumulative distribution function

FX(x) =


0, x < 0
x5, 0 6 x < 1
1, x > 1

Median x0.5 solves the equation

FX(x0.5) = 0.5

Then, FX(x0.5) = x5
0.5 = 0.5 and x0.5 =

5√0.5 ≈ 0.87.
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Another example: Solution

(d) First we compute the variance of E(X̄) and Var(X̄) of
X̄ = 1

25 (X1 + X2 + · · ·+ X25).

E(X̄) =
1
25

E(X1 + · · ·+ X25) = E(X) =
5
6

Var(X̄) =
1

252 Var(X1 + X2 + · · ·+ X25) =
1

252 (Var(X1) + · · ·+ Var(X25))

=
1

252 · 25Var(X) =
Var(X)

25
< Var(X).

Also, σX̄ = σ
5 ≈ 0.028.

(e) In order to find pdf of Y = 2X3 + 1, we use the cdf of X

FY(y) = P(Y 6 y) = P(2X3 + 1 6 y) = P(X 6
3

√
y − 1

2
)

= FX(
3

√
y − 1

3
) =


0, y < 1

(
y−1

2 )
5
3 , 1 6 y < 3

1, y > 3
.

Also,

fY(y) = F ′Y(y) =
{

5
6 · (

y−1
2 )

2
3 , 1 < y < 3

0, else
.
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Examples

HW Let X be a random variable that takes on values 0, 2 and 3 with probabilities 0.3,
0.1 and 0.6 respectively. Let Y = 3(X − 1)2.

(a) Compute E(X) and Var(X).
(b) Compute E(Y).
(c) Let FY(y) be the cdf of X. What is FY(7)?

HW Let X be a random variable with the cdf

F(x) =


0 for x < 0

x(2 − x) for 0 6 x < 1
1 for x > 1

.

(a) Compute P(X < 0.4).
(b) Compute E(X).
(c) Find the moment of order four of X.
(d) Find the median, upper and lower quartiles.



Examples

HW Let X be a random variable with the range [0, 1] and cumulative distribution
function

F(x) = 2x2 − x4, for 0 6 x 6 1.

(a) Verify that F is a cumulative distribution function.
(b) Compute P( 1

4 6 X 6 3
4 ).

(c) What is the probability density of X?

HW Let X be a random variable with the cumulative distribution function FX. Let X1

and X2 be independent and identically distributed (i.i.d.) copies from X. Let
Y = max{X1, X2}. Find the distribution function FY of Y with respect to FX.

HW An enthusiastic football fan gives away Tototips every week, using the digits 0
(draw), 1 (home win), 2 (victory) with the help of the probability function

P(X = k) =
{ 1

4 + ak + bk2 k = 0, 1, 2
0 else

with unknown values a and b. However, it is known that for his tips it holds
P(X = 1) = 1/4. Determine a and b and the corresponding distribution function.



Questions



A few multiple-choice questions

(1) Let X be a random variable with probability density function of the form

f (x) =
{
−2x, −1 6 x 6 0

0, else .

Compute P(− 3
4 6 X < − 1

2 ).

a. 5/16
b. 1/2
c. 7/8
d. 19/64

(2) Let

F(x) =


0 x < 0
2x 0 6 x < 0.5
1 x > 0.5

be the cumulative distribution function of a random variable X and let
Y = 2X + 1. Then, the expectation E(Y) equals

(a) 0.25
(b) 0.5
(c) 1.5
(d) 0.75



A few multiple-choice questions

(3) A random variable X has a probability distribution as follows:

X 0 1 2 3
P(X) 2k 3k 13 k 2k

where k is a positive constant. The probability P(X < 2.0) is equal to
a. 0.90

b. 0.25
c. 0.65
d. 0.15

(4) Let X be a random variable that takes values −2, −1, 0, 1 and 2, each with
probability 1/5. Let Y = X2. Then,

a. Cov(X, Y) > 0
b. Cov(X, Y) < 0
c. VarY < 2VarX
d. VarY = 2VarX

... Note: We will learn soon what is the covariance Cov(X, Y)!



A few multiple-choice questions

(5) Suppose a bookie will give you $6 for every $1 you risk if you pick the winners in
three ballgames. Thus, for every $1 you bet you will either lose $1 or gain $5.
What is the bookie’s expected earnings per dollar wagered?

a. − $2/8
b. $34/8
c. $2/8
d. $21/27



Thank you for your attention!


