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Some known distributions

• Discrete distributions

• Bernoulli
• Binomial
• Geometric
• Poisson

• Continuous distributions

• Uniform
• Exponential
• Normal (Gaussian)

• χ2-distribution
• t-distribution

...will be introduced later in the course ..

... also important in Statistics
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Bernoulli distribution

• X ∼ ber(p)

• Models one trial in an experiment that can result in either success or failure.

.. The associated X is only a indicator for the experiment
Example: tossing a fair coin.

• A random variable X has a Bernoulli distribution with parameter p if:

• X takes the values 1 (for success) and 0 (for failure).

• P(X = 1) = p and P(X = 0) = 1 − p = q

x 0 1
pmf p(x) 1 − p p
cdf F(x) 1 − p 1

• Expectation/Variance E(X) = p, Var(X) = p(1 − p)
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Example

• X ∼ ber(0.7)

Probability mass function Cumulative distribution function



Binomial distribution

• X ∼ B(n, p) or X ∼ b(n, p)

• The binomial distribution models the number of successes in n independent
ber(p) trials.

... B(1, p) is the same as ber(p)
Example: The number of heads in n flips of a coin with

probability p of heads follows a B(n, p) distribution

• X follows a binomial distribution if

• X takes the values 0, 1, 2, 3, . . . , n
• its probability mass function is given by

p(x) = P(X = x) =

(
n
x

)
px · (1 − p)n−x for x ∈ {0, 1, . . . , n}.

... by the Binomial formula we get
n∑

x=0
p(x) =

n∑
x=0

(n
x

)
px · (1 − p)n−x = (p + (1 − p))n = 1

• Expectation/Variance: E(X) = np, Var(X) = np(1 − p)
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Example

• X ∼ B(10, 0.3)

Probability mass function Cumulative distribution function



Example

Dice probabilities

(a) Find the probability of obtaining at least one 6 in four rolls of a die.

• This experiment can be modeled as a equence of four Bernulli trials with
success probablity p = 1

6 = P(die shows 6).
Define the random variable

X = Total number of sixes in four rolls

• Then, X ∼ B(4, 1
6 ) and

P(at least one 6) = P(X > 1) = 1 − P(X = 0)

= 1 −

(
4
0

)(1
6

)0(5
6

)4
= 0.518

• In R: use dbinom()

1-dbinom(0,4,1/6)

[1] 0.5177469



Beispiel

(b) Consider another game; throw a pair of dice 24 times and ask for the probability
of at least two double 6.

• This experiment can be modeled by the binomial distribution with success
probability p, with p = P(roll two sixes) = 1

36 .

• If Y = number of double 6s in 24 rolls, then Y ∼ B(24, 1
36 ) and

P(at least two double sixes) = P(Y > 2) = 1 − P(Y = 0) − P(Y = 1)

= 1 −

(
24
0

)( 1
36

)0(35
36

)24
−

(
24
1

)( 1
36

)1(35
36

)23
≈ 0.1427

• In R: use dbinom()

1-sum(dbinom(0:1,24,1/36))

[1] 0.1426522

oder pbinom()

pbinom(1,24,1/36,lower.tail = FALSE)

[1] 0.1426522



More examples

HW Standardized tests provide an interesting application of probability theory.
Suppose that a test consists of 20 multiple-choice questions, each with 4 possible
answers, of which exactly one is correct. If 17 questions are answered correctly,
the exam is passed. A student comes unprepared for this test and randomly
crosses one of the four possible answers. (If the student guesses on each question,
then the taking of the exam can be modeled as a sequence of 20 independent
events.) Use R to compute the probability that the student will pass the test.

HW From a list of 15 households, 9 are homeowners and 6 households live in rental
housing. Four households are randomly selected from these 15. Find the
probability that the number of households that do not own a home is at least
three.



Geometric distribution

• Geometric distribution with parameter p

• A geometric distribution models the total number of attempts before a
success.

Example: The number of tails before the first head
in a sequence of coin flips (Bernoulli trials).

• The random variable X follows a geometric distribution with parameter p if

• X takes the values 0, 1, 2, 3, . . .

• its probability mass function is given by

p(x) = P(X = x) = (1 − p)x · p for x ∈ {0, 1, 2, . . . }

... through the geometric series
∞∑

x=0
kx = 1

1−k , for |k| < 1, we get

∞∑
x=0

p(x) = p ·
∞∑

x=0
(1 − p)x =

p
1−(1−p) = 1

• Expectation/Variance E(X) =
1−p

p , Var(X) =
1−p
p2
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Example

• X ∼ Geometric distribution with p = 0.1

Probability mass function Cumulative distribution function



Example

• Failure times
Geometric distribution is used to model lifetimes of devices or components.

For example, if the probability is 0.001 that a light bulb will fail on any given day,
then the probability that it will last more than 30 days is

P(X > 30) =
∞∑

x=31

0.001(1 − 0.001)x−1 = 0.970

• In R: use dgeom()

1-sum(dgeom(1:29, 0.001))

[1] 0.9704605



Example

HW Suppose that the inhabitants of an island plan their families by having babies
until the first girl is born. Assume the probability of having a girl with each
pregnancy is 0.4 independent of other pregnancies, that all babies survive and
there are no multiple births. What is the probability that a family has 6 boys?



Poisson distribution

• X ∼ P(λ) or X ∼ Poi(λ)

• X has Poisson distribution with parameter λ > 0, if

• X takes the values 0, 1, 2, 3, . . .

• its probability mass function is given by

p(k) = P(X = x) =
λx

x!
· e−λ für x ∈ {0, 1, 2, . . . }

... λ is the intensity parameter

... tusing the exponential series
∞∑

x=0

λx

x! = eλ, for all λ ∈ R, we obtain

∞∑
x=0

p(x) = e−λ ·
∞∑

x=0

λx

x! = 1

Usually, k is interpreted as the number of
times an event occurs in an interval

• Expectation/Variance: E(X) = λ, Var(X) = λ
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x! = eλ, for all λ ∈ R, we obtain

∞∑
x=0

p(x) = e−λ ·
∞∑

x=0

λx

x! = 1

Usually, k is interpreted as the number of
times an event occurs in an interval

• Expectation/Variance: E(X) = λ, Var(X) = λ
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Example

• X ∼ P(3)

Probability mass function Cumulative distribution function



Example

• Waiting time

Consider a telephone operator who, on the average, handles five calls every 3
minutes. What is the probability that there will be no calls in the next minute?
At least three calls?

• Let X = number of calls in a minute. Then X ∼ P(λ), where EX = λ = 5
3 .

Then,

P(no calls in the next minute) = P(X = 0) =
e−

5
3
(

5
3

)0

0!
= 0.189

P(at least three calls in the next minute) = P(X > 3)

= 1 −

2∑
x=0

P(X = k) = 1 −

2∑
x=0

e−
5
3
(

5
3

)x

x!
= 0.234.

• In R: we use dpois()

1-sum(dpois(0:2, 5/3))

[1] 0.2340045



Example

HÜ Web visitors
A website manager has noticed that during the evening hours, about
three people per minute check out from their shopping cart and make an
online purchase. She believes that each purchase is independent of the
others and wants to model the number of purchases per minute.

(1) What model might you suggest to model the number of purchases per
minute?

(2) What is the probability that in any one minute at least one purchase is made?
(3) What is the probability that no one makes a purchase in the next two

minutes?



Binomial-Poisson relationship

• P(λ) distribution as a limit of the B(n, p) distribution

• For Xn ∼ B(n, λn ) it holds

lim
n→∞P(Xn = x) =

λxe−λ

x!

• Interpretation: If there are many independent and identical Bernoulli
experiments with a low probability of success, the number of successes can
be approximated with a Poisson distribution

• Rule of thumb

For n > 50, p 6 1
10 and np 6 10 a random variable X ∼ B(n, p) can be

approximated

P(X = x) =

(
n
x

)
px (1 − p)n−x ≈ (np)x e−np

x!

... we will return to this later in the course...
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Example

• X ∼ B(50, 1
10 )



Example

• X ∼ B(50, 1
10 ) ≈ P(5)



Uniform distribution

• X ∼ U(a, b)

• X is a random variable with uniform distribution over the interval (a, b)
(a < b, a, b ∈ R) if its pdf is of the form

f (x) =
{ 1

b−a , x ∈ (a, b)
0, sonst

• The cdf is given by

F(x) =


0 x 6 a

x − a
b − a

, a < x < b

1, x > b

• Expectation/Variance: E(X) = a+b
2 , Var(X) = (b−a)2

12
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Example

• X ∼ U(a, b)

Probability density function Cumulative distribution function



Exponential distribution

• X ∼ exp(λ) or X ∼ exp(τ), τ = 1
λ

• X has a exponential distribution with the parameter τ > 0 if its pdf is of the
form

f (x) =
{
λ e−λx, x > 0

0, x < 0.

or when λ = 1
τ , the pdf is of the form

f(x) =

{
1
τ e−

1
τ x x > 0

0 x < 0.
.

... models waiting time
(continuous analogue of geometric distribution)

• The cdf is of the form

F(x) =
{

1 − e−λ x x > 0
0 x < 0.

• Expectation/Variance: E(X) = τ = 1
λ

, Var(X) = τ2 = 1
λ2
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Example

• X ∼ exp(τ), for τ = 0.5, τ = 1 and τ = 2

Probability density function Cumulative distribution function



Example

• Waiting time
Anna noticed that taxies drive past her street on the average of once every 10
minutes. Suppose time spent waiting for a taxi is modeled by an exponential
random variable

X ∼ exp(
1

10
); f (x) =

1
10

e−
x
10 , for x > 0

Calculate the probability of waiting for a taxi between 3 and 7 minutes.

• P(3 < X < 7) =
∫7

3 f (x) dx = F(7) − F(3) ≈ 0.244

• In R: we use pexp()

pexp(7,0.1)-pexp(3,0.1)

[1] 0.2442329



Normal (Gaussian) distribution

• X ∼ N(µ,σ2)

• One of the most important distributions in statistics
and probability theory.

Normal distributions are symmetric with relatively more values at the center of
the distribution and relatively few in the tails.
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Normal distribution

• X ∼ N(µ,σ2)

• X follows a Normal distribution (or Gaussian distribution) with the
parameters µ ∈ R and σ > 0, if its pdf is of the form

f (x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 for x ∈ R

• Expectation/Variance E(X) = µ, Var(X) = σ2
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Normal distribution

• X ∼ N(µ,σ2)

• X follows a Normal distribution (or Gaussian distribution) with the
parameters µ ∈ R and σ > 0, if its pdf is of the form

f (x) =
1√

2πσ2
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(x−µ)2
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Examples

• X ∼ N(µ, 1), for µ = −2, µ = −1, µ = 0, µ = 1 and µ = 2

Probability density function Cumulative distribution function



Examples

• X ∼ N(0,σ2), for σ = 0.5, σ = 1, σ = 2 and σ = 3

Probability density function Cumulative distribution function



Standard Normal distribution

• In particular,

• Z ∼ N(0, 1) is the Standard Normal distribution

• the cdf

Φ(z) = P(Z 6 z) =

∫ z

−∞ f(t) dt =
∫ z

−∞
1√
2π
· e−

t2
2 dt

• Moreover,
Φ(−z) = 1 −Φ(z), for z ∈ R

... the values ofΦ can be read from the Table
or obtained in R by applying pnorm()
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Φ(z) = P(Z 6 z)

• The Table of N(0, 1)-distribution



Table ofΦ(z): Examples

• Φ(0.43) = 0.6664 Φ(0.76) = 0.7764

• Φ(−0.43) = 1 − 0.6664 = 0.3336 Φ(−0.76) = 1 − 0.7764 = 0.2236

• P(−0.76 6 Z 6 0.43) = Φ(0.43) −Φ(−0.76) = 0.4428
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Table ofΦ(z)

• Compute P(|Z| 6 1
2 )

P(|Z| 6
1
2
) = P(−0.5 6 Z 6 0.5)

= Φ(0.5) −Φ(−0.5)

= Φ(0.5) − (1 −Φ(0.5))

= 2 ·Φ(0.5) − 1

= 2 · 0.6915 − 1 = 0.3830
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Φ(z) in R

pnorm(x, mean, sd)
... pnorm (x, µ, σ) uses σwhile in the notation

of the normal distribution N(µ,σ2) is used σ2...

#Values of the cdf of N(0,1) distribution

pnorm(0.5)

[1] 0.6914625

# it is the same as

pnorm(0.5, mean=0, sd=1)

[1] 0.6914625

pnorm(1.3)

[1] 0.9031995

# Values of the cdf of N(3,4) distribution

pnorm(2.5, mean=3, sd=2)

[1] 0.4012937

# it is the same as pnorm((2.5-3)/2)

pnorm(-0.25)

[1] 0.4012937

• We compute P(|Z| 6 1
2 ) ≈ 0.3830 using R:

diff(pnorm(c(-0.5,0.5)))

[1] 0.3829249



Questions

(1) What is the probability that Z ∼ N(0, 1) is at most one /two/three standard
deviations away from the expectation µ = 0?

(2) What is the probability that X ∼ N(0, 32) is at most one /two/three standard
deviations away from the expectation µ = 0?

(3) How do the answers to question (2) change if we change µ?

... The following probabilities should be calculated
P(X ∈ [µ− σ,µ+ σ])
P(X ∈ [µ− 2σ,µ+ 2σ])
P(X ∈ [µ− 3σ,µ+ 3σ])
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Probabilities of the normal distribution

(1) Let Z ∼ N(0, 1). Then,

P(−1 6 Z 6 1) ≈ 0.68

P(−2 6 Z 6 2) ≈ 0.95

P(−3 6 Z 6 3) ≈ 0.997

# one sigma-away from mu=0

diff(pnorm(c(-1,1)))

[1] 0.6826895

# two sigmas-away from mu=0

diff(pnorm(c(-2,2)))

[1] 0.9544997

# three sigmas-away from mu=0

diff(pnorm(c(-3,3)))

[1] 0.9973002



Probabilities of the normal distribution

(2) Let X ∼ N(µ,σ2).

• Standardization
Z =

X − µ

σ
∼ N(0, 1)

... Standardizing any normal random variable X
produces the standard normal Z

... We use Z for a N(0, 1)

−3 −1 1 2 3

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ
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Probabilities of the normal distribution

(2) Let X ∼ N(µ,σ2).

• Standardization
Z =

X − µ

σ
∼ N(0, 1)

... Standardizing any normal random variable X
produces the standard normal Z

... We use Z for a N(0, 1)

• Then,

P(µ− σ 6 X 6 µ+ σ) = P(−1 6
X − µ

σ
6 1) = P(|Z| 6 1) ≈ 0.68

P(µ− 2σ 6 X 6 µ+ 2σ) = P(−2 6
X − µ

σ
6 2) = P(|Z| 6 2) ≈ 0.95

P(µ− 3σ 6 X 6 µ+ 3σ) = P(−3 6
X − µ

σ
6 3) = P(|Z| 6 3) ≈ 0.997

... the 68-95-99.7-Rule
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The 68-95-99.7-Rule

• The 68-95-99.7-Rule applies to probabilities of the normal distribution

• 68% of the area of a normal distribution is within one standard
deviation of the mean.

• Approximately 95% of the area of a normal distribution is within two
standard deviations of the mean.

• Approximately 99.7% of the area of a normal distribution is within three
standard deviations of the mean.
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Properties

• Let X ∼ N(µ,σ2) and let FX be its cdf.

• Afine transformation

Y = a + bX ∼ N(a + bµ, b2σ2)

• p-quantile

xp = µ+ σ zp

where zp = Φ−1(p) denotes the p-quantil of N(0, 1)

• Symmetry of the N(0, 1) with respect to zero

zp = −z1−p

• in R: qnorm()
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Properties

• Let X1, X2, . . . , Xn be independent identically distributed (iid) random
variables with Xi ∼ N(µ,σ2)

• For the mean it holds

X̄ =
1
n

n∑
i=1

Xi ∼ N(µ,
σ2

n
)

• X̄ is also normally distributed
• the expectation of X̄ is µX̄ = µ (the same as the expectation of Xi)
• the standard deviation of X̄ equals σX̄ = σ√

n (reduction by factor 1√
n )

... we are going to prove this!
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The mean of iid normally distributed rvs

• For the mean it holds

X̄ =
1
n

n∑
i=1

Xi ∼ N(µ,
σ2

n
)

• X̄ ist also normally distributed
• the expectation of X̄ is µX̄ = µ
• the standard deviation of X̄ equals σX̄ = σ√

n

µxµx − 3σx µx + 3σx

σx = σ n= σ n
µx = µ= µ

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ



Examples

(1) As a group, the Dutch are among the tallest people in the world. The average
Dutsch man is 184 cm tall. If a normal model is appropriate and the standard
deviation for men is about 8 cm, what percentage of all Dutsch men will be over
two meters?

Answer:

• Let X denotes the height of a Dutch man. Then, X ∼ N(184, 82).

• We want to calculate P(X > 200).

II way: Use R
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(1) As a group, the Dutch are among the tallest people in the world. The average
Dutsch man is 184 cm tall. If a normal model is appropriate and the standard
deviation for men is about 8 cm, what percentage of all Dutsch men will be over
two meters?

Answer:
• Let X denotes the height of a Dutch man. Then, X ∼ N(184, 82).

• We want to calculate P(X > 200).

We also know
Z =

X − µ

σ
=

X − 184
8

∼ N(0, 1)

I way: We use the table and calculate

P(X > 200) = P
(

X − 184
8

>
200 − 184

8

)
= P (Z > 2)

= 1 − P (Z 6 2)

= 1 −Φ(2)

= 1 − 0.9772 = 0.0228 = 2.28%

II way: Use R
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Examples

(1) As a group, the Dutch are among the tallest people in the world. The average
Dutsch man is 184 cm tall. If Normal model is appropriate and the standard
deviation for men is about 8 cm, what percentage of all Dutsch men will be over
two meters?

Answer:
• Let X denotes the height of a Dutch man. Than X ∼ N(184, 82).

• We want to calculate P(X > 200).

II way: Use R

pnorm(184,200,8)

[1] 0.02275013

# or

1-pnorm(184,200,8, lower.tail=FALSE)

[1] 0.02275013

# or

pnorm(184,200,8, lower.tail=TRUE)

[1] 0.02275013



Beispiele

(2) Suppose you need 20 minutes, on average, to drive to work, with a standard
deviation of 2 minutes. Suppose a Normal model is appropriate for the
distribution of driving times.

(a) How often will you arrive at work in less than 22 minutes?
(b) How often will it take you more than 24 minutes?

Answer:

• Let X be the time you need to arrive to work. Then, X ∼ N(20, 22).

• We want to compute P(X < 22) and P(X > 24).

• First we standardise X

Z =
X − µ

σ
=

X − 20
2

∼ N(0, 1)

and then compute the probabilities

P(X < 22) = P
(

X − 20
2

<
22 − 20

2

)
= P (Z < 1) = Φ(1) = 0.8413

P(X > 24) = P (Z > 2) = 1 −Φ(2) = 1 − 0.9772 = 0.0228
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Examples

(3) Let Y ∼ N(10, 32).

(a) Find 0.7-quantile of Y.
(b) Find the value y0 such that it holds P(Y > y0) = 0.1

Answer:

(a) Z = Y−µ
σ

= X−10
3 ∼ N(0, 1)

If F is the distribution function of Y, then 0.7-quantile y0.7 satisfies

F(y0.7) = 0.7 .

This means P(Y 6 y0.7) = 0.7.

Then,

0.7 = P(Y 6 y0.7) = P
(

Z 6
y0.7 − 10

3

)
= Φ

(
y0.7 − 10

3

)

and
y0.7 − 10

3
= Φ−1(0.7) =⇒ y0.7 = 3 ·Φ−1(0.7) + 10
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• We find the valueΦ−1(0.7) in Table of standard normal distribution.

We see Φ(0.53) = 0.7019 und concludeΦ−1(0.7) ≈ 0.53.

Then, 0.7-quantil of Y is

y0.7 ≈ 3 ·Φ−1(0.7) + 10 = 11.59

• in R we use qnorm()
Φ−1(0.7) = qnorm(0.7, mean=0, sd=1) = 0.5244
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Examples

(b) We look for y0 such that it satisfies P(Y > y0) = 0.1, i.e.

0.1 = P(Y > y0) = 1 − P(Y < y0) = 1 − P
(

Z <
y0 − 10

3

)
= 1 −Φ

(
y0 − 10

3

)
Then,

Φ

(
y0 − 10

3

)
= 0.9

which leads to
y0 = 3 ·Φ−1(0.9) + 10.

• We use R:

y0 = 3 · qnorm (0.9, 0, 1)+ 10 = 13.8447

or
y0 = qnorm(0.1, 10,3, lower.tail = FALSE) = 13.84465
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Examples

HW Miraculin is a protein naturally produced in a rare tropical fruit. It can convert a
sour taste into a sweet taste. Consequently, miraculin has the potential to be an
alternative low-calorie sweetener.
A group of Japanese environmental scientists investigated the ability of a hybrid
tomato plant to produce miraculin. For a particular generation of the potato
plant, the amount X of miraculin produced (measured in micrograms per gram of
fresh weight) had a mean 105.3 and a standard deviation of 8.0. Assume that X is
normally distributed.

(a) Find P(X > 120).
(b) Find P(100 < X < 110).
(c) Find the values a for which P(X < a) = 0.25.



R-functions

• The following functions in R may be used:

pbinom() dbinom() qbinom() rbinom()

pexp() dexp() qexp() rexp()

pnorm() dnorm() qnorm() rnorm()

punif() dunif() qunif() runif()

ppois() dpois() qpois() rpois()

• The prefix dmeans the probability density function or the probability mass
function, pmeans the cumulative distribution function, q stays for the
quantile value and r returns a random simulation.

• The root binom stays for binomial distribution, while exp stays for
exponential distribution, norm for normal distribution, unif for uniform
distribution and pois for Poisson distribution.

• For example, dnorm is the height of the density of a normal curve while dbinom
gives the probability of an outcome of a binomial distribution.
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Various examples

HW High temperatures in Vienna for the month of August follow a uniform
distribution over the interval 22 to 27 degrees Celsius. Find the temperature
which 90% of the August days exceed.

HW A construction zone on a highway has a posted speed limit of 40 miles per hour.
The speeds of vehicles passing through this construction zone are normally
distributed with a mean of 46 miles per hour and a standard deviation of 4 miles
per hour. Find the percentage of vehicles passing through this construction zone
that is exceeding the posted speed limit.

HW The length of a workpiece is normally distributed with µ = 3 and σ = 0.2. All
workpieces that are shorter than 2.8 or longer than 3.2 are considered to be rejects.
What is the probability that a workpiece is rejected?



Various examples

HW It is known from a certain mailbox advertisement that in two out of 1000 people a
purchase contract is concluded based on this advertisement. What is the
probability that out of 800 people who find the advertisement in your mailbox,

(1) no one
(2) at most three
(3) at least four

will conclude a purchase contract?

HW Let Z a standard normal random variable and let X = 5Z + 1.
(1) Calculate P(|X| 6 1).
(2) Recall that the probability that Z is within one standard deviation of its

mean is approximately 68%. What is the probability that X is within one
standard deviation of its mean?



Various examples

HW It is known that the time X (in hours), that a technician needs to repair a machine,
follows an exponential distribution with parameter λ = 2.

(1) Calculate the associated distribution function F and sketch it as well as its
density.

(2) What is the probability that the technician needs

(i) at most half an hour
(ii) between 0.2 and 0.4 hours

(iii) more than 12 minutes

for the repair?

(3) How many hours are required on average for the repair of a machine? Also
determine the variance of the repair time.



Questions



A few multiple-choice questions

(1) Jan wants to compute in R the probability of obtaining at least one 6 when rolling
a fair dice 4 times. He should use the command

a. 1-pbinom(0,4,1/6)
b. dbinom(0,4,1/6)
c. qbinom(0,4,1/6)
d. rbinom(0,4,1/6)

(2) The distribution of cholesterol levels for patients in a cardiology practice follows
a normal distribution with a mean of 220 and a standard deviation of 40. In this
practice, the probability that a patient has a cholesterol level less than 140 is the
same as the probability that a patient has a cholesterol level reading more than

.

a. 320
b. 300
c. 340
d. 400



A few multiple-choice questions

(3) Let Z be a standard normal random variable and let X = −4Z + 0.5. Calculate

P(|X| 6 0.5).

Use the values given in the table below.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051

Table 1: Cumulative distribution function of the standard normal distribution

a. 0.0987
b. 0.1915
c. 0.1987
d. 0.4013



A few multiple-choice questions

(4) In a list of 15 households, 9 own homes and 6 do not own homes. Four
households are randomly selected from these 15 households. Find the probability
that the number of households in these four who own homes is at most one.

a. 0.1536
b. 0.1792
c. 0.3456
d. 0.4752

(5) A literature professor decides to give a 20-question true-false quiz. Each question
is worth 1 point. He wants to choose the passing grade so that the probability of
passing a student who guesses on every question is less than 0.1. What score
should be set as the lowest passing grade?

a. 12
b. 13
c. 14
d. 15



A few multiple-choice questions

(6) A coating machine coats film between 120 and 210 microns with a uniform
random distribution. If any section of film with a coating greater than 200 microns
cannot be sold, approximately how much of the product must be scrapped?

a. 1/3
b. 1/2
c. 1/7
d. 1/9



Thank you for your attention!


