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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Sämtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).



Motivation
At four universities students of a certain study program were interviewed
regarding the level of their satisfaction with the study situation. An extensive
survey had to be filled out. Subsequently, for every respondent a global value
of ’contentment’ was evaluated.
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Question?
The median value of contentment of the respondents from Uni A was
about the same as the median of which Uni?

D

The third quartile of the respondants of Uni C was about?

60
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Reminder: One-sample situation
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H0 : µ = µ0

Mean x̄ far away from µ0?
Answer: Yes! Many standard errors sem = s/

√
n away (approx. 6 · sem)

In the model X1, . . . , Xn i.i.d. RVs with X1 ∼ N(µ,σ2) it holds under H0

T = X̄−µ0
SEM ∼ t(n − 1)

The estimated standard deviation of X̄ is 1 · SEM (not 6 · SEM)
Judge the evaluated data t = x̄−µ0

sem according to the t(n − 1)-distribution
Here: p < α = 5% resp. t ∈ R, thus reject H0 on the α level
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Message:
We judge the discrepancy of x̄ and µ0 in the units ’standard error’

sem =
s√
n



Today: Two-sample situation
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The satisfaction (x1, . . . , xn1 ) of the students from Uni A (’index 1’) has the
tendency to be smaller than the satisfaction (y1, . . . , yn2 ) in Uni B (’index 2’)
Can this discrepancy observed in the data be easily explained by chance,
if there is actually no difference between the Unis (in the ’populations’ of
all students of the program)?
Measure discrepancy through the distance of means ȳ and x̄
Question: Is this discrepancy large? Respectively, are the means far apart?
Answer: This depends on the standard errors semy and semx
semy is the standard error of ȳ, i.e., based on the data (yj)j only, and analogously semx is based on the (xi)i.
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Question: Is this discrepancy large? Respectively, are the means far apart?

Answer: This depends on the standard errors semy and semx
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Standard errors!
Discrepancy huge
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(while the means in the upper and lower graphic coincide)

Thus: discrepancy large if the standard errors small
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Two-sample t-statistic

The two-sample t-statistic

t =
ȳ − x̄√

sem2
y + sem2

x

measures the discrepancy of the means in relation to their standard errors
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Here: t ≈ 3.1

→ Need a model, in order to explicitly judge the value of t
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Model

Model: Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+
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Independence
Normal distribution
Each group has their own (unknown) parameters
in particular there is a possible ’shift’
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Null hypothesis

Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2
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2) ∈ R×R+ ×R×R+
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Null hypothesis: H0 : µ1 = µ2
i.e., distributions are not shifted against each other, ’no difference’

In the model, how unlikely is the observed discrepancy, resp. t ≈ 3.1, if
H0 holds true, and hence there is no shift?
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Distribution of the t-statistic
Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+

Under H0 : µ1 = µ2 it holds (approx), that

T :=
Ȳ − X̄√

SEM2
y + SEM2

x

∼ t(ν)

t(ν) is the t-distribution with ν degrees of freedom

ν depends on the sample sizes n1 und n2, as well as on the standard
errrors SEMx and SEMy → sufficient if R knows ν
Why is this distribution plausible?

Due to independence, standardization of the difference Ȳ − X̄ yields
(Ȳ−X̄)−(µ2−µ1)√
σ2

2/n2+σ
2
1/n1

∼ N(0, 1)

But under H0 the difference in expectations µ2 − µ1 vanishes
The estimation of σ1 and σ2 again yields heavier tails as in N(0, 1)

Rough approximation: If H0 holds true, then |t| ≈ 1 is a typical value,
while |t| ' 3 barely happens (as T is approx N(0, 1) distributed)
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(Ȳ−X̄)−(µ2−µ1)√
σ2

2/n2+σ
2
1/n1

∼ N(0, 1)

But under H0 the difference in expectations µ2 − µ1 vanishes
The estimation of σ1 and σ2 again yields heavier tails as in N(0, 1)

Rough approximation: If H0 holds true, then |t| ≈ 1 is a typical value,
while |t| ' 3 barely happens (as T is approx N(0, 1) distributed)



Distribution of the t-statistic
Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+

Under H0 : µ1 = µ2 it holds (approx), that

T :=
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The estimation of σ1 and σ2 again yields heavier tails as in N(0, 1)

Rough approximation: If H0 holds true, then |t| ≈ 1 is a typical value,
while |t| ' 3 barely happens (as T is approx N(0, 1) distributed)



Judgement of the discrepancy

How unlikely is the observed discrepancy, resp. t ≈ 3.1, if H0 holds true, i.e., if
there is no difference in the population means?
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’Business as usual’

Under H0 : µx = µy it is T ∼ t(27.3)
From the data we compute t ≈ 3.1
p-value: p = PH0(|T| > |t|) ≈ 0.004
For α = 5% (previously set) it is t ∈ R (⇔ p 6 α), i.e., reject H0 on the
5%-level
Interpretation: A discrepancy as extreme as observed in the data appears
only in about 4 of 1000 cases, if there is no difference between the Unis. In
this sense the data speak against the null hypothesis.
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Remark

Uni B: y1, . . . , yn2

Uni A: x1, . . . , xn1
t =

ȳ − x̄√
sem2

y + sem2
x
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We perfomed a two-sided test (null hypothesis: H0 : µ1 = µ2 )
Alternative HA : µ1 , µ2
Extreme values of t speak against H0 (here: H0 rejected)

One-sided tests:

right-sided: HA : µ1 < µ2

Large values of t speak against H0 (here: H0 rejected)
left-sided: HA : µ1 > µ2

Small values of t speak against H0 (here: H0 not rejected)
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t-test in R (according to ’Welch’)

# Enter data

x <- c(...)

y <- c(...)

# Perform t-test

t.test(y,x,...)

# Output

Welch Two Sample t-test

data: y and x

t = 3.1365, df = 27.311, p-value = 0.004067

alternative hypothesis:

true difference in means is not equal to 0

95 percent confidence interval:

3.641362 17.396356

sample estimates:

mean of x mean of y

61.31892 50.80006

The t-test presented is also known as the Welch-test
The degrees of freedom 27.3 can be read from here



Generalization
Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+

Under H0 : µ1 = µ2 it holds (approx) that

T =
Ȳ − X̄√

SEM2
y + SEM2

x

∼ t(ν)

H0 reformulated: d := µ2 − µ1 = 0 (no difference)

Generalization of the null hypothesis: H0 : d = d0 (difference is d0 ∈ R)

Under H0 : d = d0 it holds (approx) that

T :=
(Ȳ − X̄) − d0√
SEM2

y + SEM2
x

∼ t(ν)

Analogous procedure, the only difference is that d0 has to be subtracted in the
numerator of t (Statistic has the same structure as in the one-sample case:
T = [♠−♠]/♠)
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(Ȳ − X̄) − d0√
SEM2

y + SEM2
x

∼ t(ν)

Analogous procedure, the only difference is that d0 has to be subtracted in the
numerator of t (Statistic has the same structure as in the one-sample case:
T = [♠−♠]/♠)



Generalization
Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+

Under H0 : µ1 = µ2 it holds (approx) that

T =
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Example

Under H0 : d = 0 (⇔ µ1 = µ2)→ reject H0

30 40 50 60 70 80

A

B n =

16
25

|

|

−6 −4 −2 0 2 4 6

Under H0: T~t(27.3)
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——————————————————————————————————

Unter H0 : d = 5 (⇔ µ2 = µ1 + 5)→ do not reject H0
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t-test in R

# Enter data

x <- c(...)

y <- c(...)

# perform t-test

t.test(y,x,mu=5,...)

# Output

Welch Two Sample t-test

data: y and x

t = 1.6456, df = 27.311, p-value = 0.1113

alternative hypothesis:

true difference in means is not equal to 5

95 percent confidence interval:

3.641362 17.396356

sample estimates:

mean of x mean of y

61.31892 50.80006

Where does the confidence interval come from?



Two-sample t-test and confidence interval
Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+×R×R+

d = µ2 − µ1

Let q1−α/2 be the (1 − α/2)-quantile of the t(ν)-distribution (R knows ν)

Under H0 : d = d0 it holds (approx)

T :=
(Ȳ − X̄) − d0√
SEM2

y + SEM2
x

∼ t(ν)

and equivalently: The confidence interval

I :=
(
(Ȳ − X̄) − q1−α/2 ·

√
SEM2

y + SEM2
x, (Ȳ − X̄) + q1−α/2 ·

√
SEM2

y + SEM2
x

)
overlaps the parameter d0 with probability (approx) 1 − α

C.I. has ’structure’ as in the one-sample case: I = (♠− q · ♠, ♠+ q · ♠)
Derivation analogously: α = PH0(T ∈ R) = · · · = PH0(I = d0)

For n1, n2 large: possibly use normal approximation, i.e., replace t(ν) with
N(0, 1). In this case the normality assumption of the RVs can be dropped
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(Ȳ − X̄) − q1−α/2 ·

√
SEM2

y + SEM2
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Question
Can H0 : µ2 = µ1 be rejected on the 5%-level?

40 50 60 70 80 90 100

n =

36
25

Here t-test naively:

x̄ ≈ 75 and ȳ ≈ 60 (balances in equilibrium)

sx ≈ 10 and sy ≈ 12 (approx bell-shaped distributions, ≈ 2/3 of the data captured)

semx ≈ 10/5 = 2 and semy ≈ 12/6 = 2→means are far apart

t ≈ 60 − 75√
22 + 22

=
−15√

8
≈ −15√

9
= −5 (extreme value!)

R ≈ (−∞,−2] ∪ [2,∞) (as 97.5%-quantile of N(0, 1) is q ≈ 1.96 ≈ 2)

t ∈ R, thus reject H0

. . . or equivalently

C.I. ≈ (−15 − 2 · 3,−15 + 2 · 3) = (−21,−9) does not overlap d = 0

Again: Clear, only naive estimations. But t ≈ −5 is extreme, regardless of our rough
estimation. What does R say?
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x̄ ≈ 75 and ȳ ≈ 60 (balances in equilibrium)

sx ≈ 10 and sy ≈ 12 (approx bell-shaped distributions, ≈ 2/3 of the data captured)

semx ≈ 10/5 = 2 and semy ≈ 12/6 = 2→means are far apart

t ≈ 60 − 75√
22 + 22

=
−15√

8
≈ −15√

9
= −5 (extreme value!)

R ≈ (−∞,−2] ∪ [2,∞) (as 97.5%-quantile of N(0, 1) is q ≈ 1.96 ≈ 2)

t ∈ R, thus reject H0

. . . or equivalently

C.I. ≈ (−15 − 2 · 3,−15 + 2 · 3) = (−21,−9) does not overlap d = 0

Again: Clear, only naive estimations. But t ≈ −5 is extreme, regardless of our rough
estimation. What does R say?
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t-test in R
# Enter data

x <- c(...)

y <- c(...)

# Perform t-Test

t.test(y,x,...)

# Output

Welch Two Sample t-test

data: y and x

t = -4.9829, df = 56.052, p-value = 6.358e-06

alternative hypothesis:

true difference in means is not equal to 0

95 percent confidence interval:

-21.097942 -8.998583

sample estimates:

mean of x mean of y

59.27828 74.32654

Our naive estimations were very precise (absurd how well it fits). But again: Even if
the estimations in the picture were biased and we had obtained e.g., t ≈ −4, then still
this would have been an extreme value!
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Model ’Welch’: Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+

A different approach, also known as Student’s t-test, assumes the variances to
be equal in both groups

Model ’Student’: Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2) for j = 1, . . . , n2 with (µ1,µ2,σ2) ∈ R×R×R+

In our data, the spread in both groups is similar, so Student’s additional
assumption is plausible. (In general, Welch’s version is applicable to a wider
range of data, as it allows for different variances in both groups)
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It is S2
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x
n2+n1−2 , which is often called the pooled empirical variance

downside Student: need spread to be similar in both groups
upside Student: the test is exact and the degrees of freedom have a simple form

For a derivation of Student’s t-test see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog,

Springer Berlin
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t-test in R (according to ’Student’)

# Enter data

x <- c(...)

y <- c(...)

# Perform t-test

t.test(y,x,var.equal=TRUE ,...)

# Output

Two Sample t-test

data: y and x

t = 3.2846, df = 39, p-value = 0.002163

alternative hypothesis:

true difference in means is not equal to 0

95 percent confidence interval:

4.041178 16.996539

sample estimates:

mean of x mean of y

61.31892 50.80006

The argument var.equal allows to assume equal variances (’Student’)
The degrees of freedom are n2 + n1 − 2 = 16 + 25 − 2 = 39



Thank you!


