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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Sämtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).
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Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data



Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data



Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data



Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data



Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data



Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data



Descriptive statistics

Graphical representations
Summarizing statistics



Graphical representations

stripchart

histogram
boxplot
barplot
plot
...?

runtimes (n=121)

time [seconds]

●
●

●

● ●●

●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●●

●

●

●

●
●

●●
●

● ●

●

●

●

●
●

● ●
●

●●

●
● ●

●●

● ●

●

● ●

●

●

●

●
● ●●●

● ●
●

●

●
●●

● ● ●

●

●

●● ●

●
●

●

●● ●

●
●● ●

●
●

●
●

● ●

● ●

●

●
●●

●

●

●
● ●

●

●
●

●● ●
●

●

●

●

●

●

● ●

0 10 20 30 40 50 60 70

Survey on study satisfaction

contentment

U
ni

30 40 50 60 70 80

A
B
C
D

n =

36
25
16
25



Graphical representations

stripchart
histogram

boxplot
barplot
plot
...?

runtimes (n=121)

time [seconds]

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
10
20
30
40

0 1 2 3 4 5 6

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●



Graphical representations

stripchart
histogram
boxplot

barplot
plot
...?

● ●● ●●●●

0 1 2 3 4 5 6

●●

contentment

U
ni

30 40 50 60 70 80

A
B
C
D



Graphical representations

stripchart
histogram
boxplot
barplot

plot
...?

relative frequncies

0.00
0.05
0.10
0.15
0.20

solid (nsolid=80) soft (nsoft=150)

relative frequencies

0.0
0.1
0.2
0.3
0.4

and standard error (groupwise)



Graphical representations

stripchart
histogram
boxplot
barplot
plot

...?

x

µX − 3σX µX µX + 3σX

III III III II I II I II II III III III III III II II II IIII I II I II IIII II I II III II IIII IIIII II III II I I III III II I I II II IIII

n=100

µ Y
−

3σ
Y

µ Y
µ Y

+
3σ

Y

y

__

_
__

_

_

_
_

__

_

_

__
_

_

_
_
_
_
_

_
____
_

__

_

_

_
__
_
__

_
_

___

_

_
_

_

_

_
_
_
__

_

_

_

___

_
_
_
_

_

_
_

__
__

_

______
_

__

__
_
_
_
__

_

_
_
_

__

_
_

_
_

__
_

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

ρ = 0.8

x

µX − 3σX µX µX + 3σX

III III III II I II I II II III III III III III II II II IIII I II I II IIII II I II III II IIII IIIII II III II I I III III II I I II II IIII

n=100

µ Y
−

3σ
Y

µ Y
µ Y

+
3σ

Y

y

__

_
_
_

_

_

__
_
_

_

_
___
_

_
_
__
_

_
___
__

_
_

_

_

_

___
__
_
_
__
_

_

_
_

_

_
_
_
_
__

_

_

_

___

_

_

_
_

_

_
_

____

_

_
___
_
_
_

__
__
_
_
_

_
_

_

_
_
_

_
_

_
_

__

___

●●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

ρ = 0.6

y = b0 + b1x

(x, y)
sx

sy
rsy

r = 0.57



Graphical representations

stripchart
histogram
boxplot
barplot
plot
...?



Summary statistics

mean x̄

empirical standard deviation s (and emp. variance s2)
minimum x(1) and maximum x(n)

empirical quantiles qp (e.g., median, quartiles)
...?

runtimes (n=121)

time [seconds]

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
10
20
30
40

●

●
●

●

●

●

●●

●●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●●

●●

●
●●

●●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●
●

x x + sx − s s

For details see the lecture: ’Descriptive Statistics’
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Statistical hypothesis test

How compatible are the data with an assertion?

Notion of incompatibility via probability statements within
statistical models (’data interpreted as realizations of random variables’)
Formalized in hypothesis tests (or confidence intervals)
Need additional statistics

test statistics (t-statistic, f -statistic, χ2-statistic etc.)

auxiliary statistics (e.g., standard errors)

p-value

runtimes

time [seconds]
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0.06 µ0x
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1 − α

R(eject) R(eject)

z

Null hypothesis rejected

For general concepts of modeling and testing see the lecture: ’Basic ideas of
hypothesis testing’
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Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)

Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α

⇔ t ∈ R

Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α

⇔ t ∈ R

Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α

⇔ t ∈ R

Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α

⇔ t ∈ R

Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)

Decision: Reject the null hypothesis, because p 6 α

⇔ t ∈ R

Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

1−p



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α

⇔ t ∈ R

Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

1−p



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α⇔ t ∈ R
Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

R R
qα 2 q1−α 2



Example: the (one-sample) t-Test
Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided test)
Decision: Reject the null hypothesis, because p 6 α⇔ t ∈ R
Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

R R
qα 2 q1−α 2



Equivalence of test and confidence interval
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Under H0: T~t(15)

R R
qα 2 q1−α 2

runtimes

time [seconds]

D
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ty
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0.00

0.02

0.04

0.06
● B (n=16)µ0x

C.I.

Reject H0 if and only if µ0 is not overlapped by the confidence interval
i := (x̄ − q1−α/2 · sem, x̄ + q1−α/2 · sem) with sem := s/

√
n

Recall that the upper test and confidence interval are referred to as ’Student’s’
versions (one-sample situation).
But also remember that the structure of the test statistic and the confidence
interval is inherited to other situations, i.e., ’more general’

T =
♠−♠
♠

and I = (♠− q · ♠, ♠+ q · ♠)

while ♠ denotes some summary statistic, ♠ denotes the null-parameter, and ♠
a standard-error of the statistic, see e.g., the two-sample situation.
For details see the lecture: ’Surrounding the one-sample t-test’
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Two-sample t-test

30 40 50 60 70 80

A

B n =

16
25

d=5

|

|

Let X1, . . . , Xn1 , Y1, . . . , Yn2 be independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+ ×R×R+

d = µ2 − µ1

Let q1−α/2 be the (1 − α/2)-quantile of the t(ν)-distribution (R knows ν)

Under H0 : d = d0 it holds (approx)

T :=
(Ȳ − X̄) − d0√
SEM2

y + SEM2
x

∼ t(ν)

and equivalently: The confidence interval

I :=
(
(Ȳ − X̄) − q1−α/2 ·

√
SEM2

y + SEM2
x, (Ȳ − X̄) + q1−α/2 ·

√
SEM2

y + SEM2
x

)
overlaps the parameter d0 with probability (approx) 1 − α

Under H0 : d = 5 (⇔ µ2 = µ1 + 5)→ here: can not reject H0 (→Welch-test)

For details see the lecture: ’Surrounding the two-sample t-test’
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Under H0 : d = 5 (⇔ µ2 = µ1 + 5)→ here: can not reject H0 (→Welch-test)

For details see the lecture: ’Surrounding the two-sample t-test’
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ANOVA
Model:

Let X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 , . . . , Xk,1, . . . , Xk,nk be independent RVs
and for i = 1, . . . , k let Xi,j ∼ N(µi,σ2) for j = 1, . . . , ni,
with (µ1, . . . ,µk,σ2) ∈ Rk ×R+

Thus, k groups and n =
∑k

i=1 ni observations in total

Under H0 : µ1 = · · · = µk it holds

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

∼ F (k − 1, n − k)

contentment

U
ni
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Here: reject H0.
For details on comparisons on multiple groups see the lecture: ’Analysis of
variance and multiple testing’
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Linear regression
For i = 1, . . . , n let

Yi = β0 + β1 · xi + σZi,
with Z1, . . . , Zn i.i.d. RVs and Z1 ∼ N(0, 1), and (β0,β1,σ) ∈ R×R×R+

q1−α/2 the (1 − α/2)-quantile of the t(n − 2)-distribution

estimators B0, B1 and Sr via ’least-squares’, SEB1 = Sr/(sx ·
√
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Here: reject H0 : β1 = 0
For details on correlation and linear regression see the lecture: ’Linear
Regression’
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For i = 1, . . . , n let

Yi = β0 + β1 · xi + σZi,
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and equivalently: the confidence interval
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(
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)
overlaps β(0)

1 with probability 1 − α

Here: reject H0 : β1 = 0
For details on correlation and linear regression see the lecture: ’Linear
Regression’
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Frequencies
Let Y1,1, . . . , Y1,n1 , Y2,1, . . . , Y2,n2 be independent RVs with Y1,i ∼ ber(p1) for
i = 1, . . . , n1 and Y2,j ∼ ber(p2) for j = 1, . . . , n2,

and (p1, p2) ∈ (0, 1)2

let q1−α/2 be the (1 − α/2)-quantile of the N(0, 1)-distribution

math

CS 'yes' 'no'

0 1

relative frequency

h1

h2

Hj :=
1
nj

nj∑
i=1

Yj,i and SEHj :=

√
Hj(1 − Hj)

nj

Here: can not reject H0 : p2 = p1

For details on frequencies see the lecture: ’Proportions’
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SE2
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H1

d≈ N(0, 1)

and equivalently: the confidence interval
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√
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+ SE2

H1
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The χ2-test (goodness of fit)
Let X = (X1, . . . , Xd)

t ∼ mult(n, p), with p ∈ (0, 1)d and
∑d

k=1 pk = 1

Under H0 : p = (p0,1, . . . , p0,d)
t it holds (approximately)

X2 :=

d∑
k=1

(Xk − EH0 [Xk])
2

EH0 [Xk]

d≈ χ2(d − 1)

in fact, it holds that X2 d−→ χ2(d − 1) as n→∞
here: n = 120 and d = 6, as well as p0 = (1/6, . . . , 1/6)t

Let q1−α denote the (1 − α)-quantile of the χ2(d − 1)-distribution
Here: can not reject H0

observed frequencies

0

10

20

21 22 16 17 19 25

For details see the lecture: ’The χ2-test (goodness of fit)’
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The χ2-test for independence
Model: Let X = (X1,1, . . . , Xd1,d2)

t ∼ mult(n, p)
with p = (p1,1, . . . , pd1,d2)

t ∈ (0, 1)d1·d2 and
∑

j,k pj,k = 1

Under H0 : p = p0 := (p1,· · p·,1, . . . , pd1,· · p·,d2)
t ∈ (0, 1)d1·d2

and
∑d1

j=1 pj,· =
∑d2

k=1 p·,k = 1it holds (approximately)

X2 :=
∑

j,k

(
Xj,k −

Xj,··X·,k
n

)2

Xj,··X·,k
n

d≈ χ2((d1 − 1) · (d2 − 1))

in fact, it holds that X2 d−→ χ2((d1 − 1)(d2 − 1)) as n→∞
Here: d1 = 2, d2 = 4, i.e., X2 H0

∼ χ2(3) (approx)
Xj,·, X·,k, pj,· and p·,k are the ’marginal frequencies / probabilites’
Let q1−α denote the (1 − α)-quantile of the χ2([d1 − 1] · [d2 − 1])-distr.
Here: reject H0

solid (nsolid=80) soft (nsoft=150)

frequencies of colors

0

20

40

60
depending on the underground

For details see the lecture: ’The χ2-test for independence’
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Thank you!


