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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).
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Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
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Motivation

Is the die fair?

Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white

Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’

What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?

Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)

roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times

the outcome was
red, blue, blue, white , red, green, orange, green, . . . , orange

Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange

Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot

→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)

observed frequencies

0

10

20

21 22 16 17 19 25



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot
→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)

observed frequencies

0

10

20

21 22 16 17 19 25



Motivation

120 throws

Question:
Are the observed frequencies far away from each other?
’Answer’ 1:

relative frequencies and standard error→ rather close?!

observed frequencies
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’Answer’ 2:

meaning of ’fair’: no side is preferred, probability 1/6
per category 120 · 1/6 = 20 occupations expected, if the die is fair
in every category the observed frequencies should then typically be ’close’ to
the expected frequencies
a statistic, that quantifies this discrepancy over all categories, is the
χ2-statistic
→ in the following we construct the so-called χ2-test
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Observed and expected frequencies
Notation

n data (here: n = 120)

fall in d categories (here: d = 6)
xk denotes the number of occupations (number of data) in the k-th
category→ observed frequencies
these are compared to the expected frequencies, assuming that the die is
fair
in order to talk about expectations we need a model

k 1 2 3 4 5 6
∑

xk 21 22 16 17 19 25 120
expected frequencies, if ’fair’ 20 20 20 20 20 20 120

observed frequencies
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From the binomial to the multinomial distribution
Which model could we choose with d = 2 categories?

categories ’success’ and ’failure’
Reminder: A random variable X is called binomial distributed with
parameters n and p, short X ∼ b(n, p), if

P(X = x) =
(

n
x

)
· px · (1 − p)n−x (∗)

while x ∈ {0, 1, . . . , n} (number of successes)
p ∈ (0, 1) (success probability)
and binomial coefficient (

n
x

)
=

n!
x!(n − x)!

read (∗): in n independent ’coin flips’ observe x times a success, each with
probability p. The binomial coefficient states in how many ways the x
successes may have appeared.

it is E[X] = n · p → expected number of successes

extension to d categories→multinomial distribution...
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Multinomial distribution
Definition: A random vector X = (X1, . . . , Xd)

t is called multinomial
distributed with parameters n and p = (p1, . . . , pd)

t, short X ∼ mult(n, p), if

P(X = (x1, . . . , xd)
t) =

(
n

x1, x2, . . . , xd

) d∏
k=1

pxk
k (∗)

while (x1, . . . , xd)
t ∈Nd with

∑d
k=1 xk = n (number of occupations)

p = (p1, . . . , pd)
t ∈ (0, 1)d with

∑d
k=1 pk = 1 (probabilities for occupations)

with multinomial coefficient(
n

x1, x2, . . . , xd

)
:=

n!
x1! · · · xd!

=

(
n
x1

)(
n − x1

x2

)(
n − x1 − x2

x3

)
· · ·

(
n − x1 − · · ·− xd−1

xd

)

(∗)

read (∗): in n independent ’occupations’ of d categories in which the k-th
category is chosen with probability pk, the k-th category was occupied xk
times. The multinomial coefficient states in how many ways the observed
occupations of all categories may have appeared (→ order)
For d = 2 the weights equal the binomial weights
→multinomial distribution is ’extension’ to d categories.
For the k-th component it holds Xk ∼ b(n, pk),
thus particularly E[Xk] = n · pk → ’expected frequencies’
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Model and null hypothesis
n data in d categories (here: n = 120, d = 6)
observed frequencies: x1, · · · , xd

model: let X = (X1, . . . , Xd)
t ∼ mult(n, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

null hypothesis: H0 : p = p0 := (p0,1, . . . , p0,d)
t

claimed occupation probs (here: p0 = (1/d, 1/d, . . . , 1/d)t ↔ ’fair’)
Under H0 expected occupations: EH0 [Xk] = n · p0,k

here EH0 [Xk] = 20, i.e.,. under H0 there are 20 expected per category

k 1 2 3 4 5 6
∑

xk 21 22 16 17 19 25 120

EH0 [Xk] 20 20 20 20 20 20 120

observed frequencies

0

10

20

21 22 16 17 19 25
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The χ2-statistic
n data in d categories
observed frequencies x1, · · · , xd

model: X = (X1, . . . , Xd)
t ∼ mult(n, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

H0 : p = (p0,1, . . . , p0,d)
t

EH0 [Xk] = n · p0,k

the χ2-statistic

x2 :=

d∑
k=1

(xk − EH0 [Xk])
2

EH0 [Xk]

=
(21 − 20)2

20
+· · ·+(25 − 20)2

20
=

1
20

+· · ·+25
20

=
56
20

= 2.8

measures the discrepancy of the observed frequencies from the expected
frequencies under the null hypothesis
A large positive value of x2 means a large discrepancy (’positive’ due to
squares)
Is x2 = 2.8 a large value?
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The χ2-distribution
Definition: Let Z1, . . . , Zd be i.i.d. RVs, with Z1 ∼ N(0, 1).
A random variable X is called χ2-distributed with d degrees of freedom, short
X ∼ χ2(d), if

X ∼ Z2
1 + · · ·+ Z2

d

In words: a χ2(d)-distributed random variable is distributed like the sum
of d squares of independent N(0, 1)-distributed random variables
properties: for X ∼ χ2(d) it holds

X > 0
E[X] = d ’linearity of the expectation, and E(Z2

1) = Var(Z1) = 1’

Var(X) = 2d ’independence, andVar(Z2
1) = E(Z4

1)− E(Z2
1)

2 = 3 − 1 = 2

R knows it well: rchisq(), pchisq() etc.
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The χ2-test (goodness of fit)
Let X = (X1, . . . , Xd)

t ∼ mult(n, p), with p ∈ (0, 1)d and
∑d

k=1 pk = 1

Under H0 : p = (p0,1, . . . , p0,d)
t it holds (approximately)

X2 :=

d∑
k=1

(Xk − EH0 [Xk])
2

EH0 [Xk]

d≈ χ2(d − 1)

in fact, it holds that X2 d−→ χ2(d − 1) as n→∞

here: n = 120 and d = 6, as well as p0 = (1/6, . . . , 1/6)t

for α = 5% the (1 − α)-quantile of the χ2(5)-distribution is q1−α ≈ 11.1
rejection area: R = [q1−α,∞) (one-sided, x2 large speaks against H0)
data: x2 = 2.8 < R→ can not reject H0

p ≈ 0.73.

If the null hypothesis holds true, then we observe in about 7 of
10 cases a discrepancy, which is at least as extreme as in the data. The
observed discrepancy is not at all unlikely
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The χ2-test, goodness of fit (example 2)
Let X = (X1, . . . , Xd)

t ∼ mult(n, p), with p ∈ (0, 1)d and
∑d

k=1 pk = 1

Under H0 : p = (p0,1, . . . , p0,d)
t it holds (approximately)

X2 :=

d∑
k=1

(Xk − EH0 [Xk])
2

EH0 [Xk]
≈ χ2(d − 1)

Here: n = 120 and d = 6, as well as p0 = (1/6, . . . , 1/6)t

For α = 5% the (1 − α)-quantile of the χ2(5)-distribution is q1−α ≈ 11.1
Rejection area: R = [q1−α,∞)

data: x2 = 35.2 ∈ R,→we can reject H0
p < 10−5. If H0 holds true, then we observe in less than 1 of 100000 cases a
discrepancy which is at least as extreme as in the data. The data are not at
all compatible with the null hypothesis

Intuitively rather unfair
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Loaded die (example 3)
Somebody claims: ’I loaded the die’

, in a way that
1.: the three sides rot, yellow and white appear with the same frequency
2.: orange appears twice as often as these three
3.: the sides green and blue each half as often as the upper three

Model: X = (X1, . . . , X6)
t ∼ mult(120, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

H0 : p = (1/6, 1/3, 1/12, 1/6, 1/12, 1/6)t (’loaded die’)
k 1 2 3 4 5 6

∑
xk 17 39 10 17 8 29 120

EH0 [Xk] 20 40 10 20 10 20 120

Intuitively rather unfair

17 39 10 17 8 2917 39 10 17 8 29
0

20

0

x2 :=

d∑
k=1

(xk − EH0 [Xk])
2

EH0 [Xk]

=
(17 − 20)2

20
+

(39 − 40)2

40
+ · · · = 9

20
+

1
40

+ · · · = 5.375

for α = 5% we obtain the rejection area R ≈ [11.1,∞)

data: x2 = 5.375 < R,→ can not reject H0

(p ≈ 0.37)
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Remarks

Initial question:
How good do the observed frequencies fit to the frequencies expected
under the null hypothesis?
→ the χ2-test is also known as goodness of fit test

the χ2-statistic is asymptotically χ2(d − 1)-distributed (n→∞)

1. The approximation gets better the more data are found in the categories
2. Why are the degrees of freedom d − 1 (and not d)?

Intuition: if we know that the first d − 1 categories are occupied with
S =

∑d−1
k=1 Xi data, then it follows that the last category is occupied with n − S

data
→ only d − 1 categories are ’free’

3. Why is the χ2-distribution reasonable?

Intuition: the summands of the χ2-statistic are squares of rescaled sums
(frequencies)

.

Thus, according to the central limit theorem, each of the d
summands is approximately distributed as the square of a
N(0, 1)-distributed random variable. Under independence we would
approximately obtain the χ2(d)-distribution. But the ’slight dependence’ of
the d summands (see. 2) results in the reduction of a degree of freedom.
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χ2-test in R
# Enter data

die <- c("red","blue","blue","yellow",...)

# Calculate frequencies , e.g., via

x <- table(die)

# Enter claimed probabilities

p0 <- c(1/6,1/3,1/12,1/6,1/12,1/6)

# Perform chiˆ2-test

chisq.test(x,p=p0,...)

# Output

Chi-squared test for given probabilities

data: x

X-squared = 5.375, df = 5, p-value = 0.3718

If p=p0 is not set (default), then equal probabilities are assumed (’fair’), i.e.,
p0 = (1/d, . . . , 1/d)
For few data (n small) a so-called ’continuity correction’ (according to Yates) is
performed. For that, in the χ2-statistic the numerator of every summand is
(before squaring) replaced by its absolute value, then subtracted by 1/2 and then
squared. Idea: conservative behavior (reject less easily)→ ’counteract a bad
approximation through the χ2-distribution’.
The continuity correction can be controlled through the logical argument correct.



Thank you!


