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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Sämtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).



Overview

We differentiate:

Probability theory
(Stochastics)

=
Theory of randomness

and

Statistics
=

Description of data −→
(using stochastic models)

xx

—————————————————————————————————–

Today: Short excursion to descriptive Statistics
How do data look like? How can they be summarized?

From then on: inferential Statistics (Modelling)
How did the data occur?
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Scales

We differentiate scales
Categorial data (nominal scale, no ordering)

Do you drink coffee? yes or no (two categories)
What is the color of your hair? blond, brown, black, red, neither (five
categories)

Ordinal data (order, but no metric distance)
How much did you learn in the course? nothing, few, much or very much
(four ordered categories)
How often do you use Tuwel? never, sometimes, often (three ordered
categories)

Metric data (Ratio scale, metric distance, 2*3=6, 0=0)
How large are you? size in cm
How long is the runtime of an algorithm that you implemented? time in
seconds

(Today we stick to metric data)
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Data collection

How long is the runtime of an algorithm that you implemented?

n = 121 students requested (same technical setup)

Results (in seconds):

24.6, 24, 31.4, 29.9, 37.8, 19.9, 46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1, 4.2, 42.8, 25.2, 52.3, 35, 30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5, 34.8, 33.3, 21.9, 37.2, 24, 37, 34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8, 52.3, 27, 23.6, 33.5, 30.8, 20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5, 23.6, 30.3, 49.9, 39, 50.2, 35.7, 11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3, 21.4, 34.7, 47.3, 20.3, 35.4, 41.8, 24.9, 15.2, 42.2, 29.1, 25.1, 22.7, 41, 28.2,
30.3, 25.6, 41.8, 16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7, 34.9, 39.1, 32.2, 43, 12.1, 19.8, 27.4, 39.3, 35, 46.3

We see: n data: x1 = 24.6, x2 = 24.0, . . . , xn = 46.3

We understand: nothing?

Thus: descriptive Statistics→ graphical representation and summary of data
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Stripchart
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At first sight we understand how the n data distribute:
Many data lie close to 30 (typical runtime)

The minimum is about 5 (fastest runtime),
the maximum is about 65 (slowest runtime)
Remark.: the y-value has no meaning. The data are ’jittered’ along the
y-direction for a better overview.



Stripchart

runtimes (n=121)

time [seconds]

●
●

●

● ●●

●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●●

●

●

●

●
●

●●
●

● ●

●

●

●

●
●

● ●
●

●●

●
● ●

●●

● ●

●

● ●

●

●

●

●
● ●●●

● ●
●

●

●
●●

● ● ●

●

●

●● ●

●
●

●

●● ●

●
●● ●

●
●

●
●

● ●

● ●

●

●
●●

●

●

●
● ●

●

●
●

●● ●
●

●

●

●

●

●

● ●

0 10 20 30 40 50 60 70

At first sight we understand how the n data distribute:
Many data lie close to 30 (typical runtime)
The minimum is about 5 (fastest runtime),
the maximum is about 65 (slowest runtime)

Remark.: the y-value has no meaning. The data are ’jittered’ along the
y-direction for a better overview.



Stripchart

runtimes (n=121)

time [seconds]

●
●

●

● ●●

●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●●

●

●

●

●
●

●●
●

● ●

●

●

●

●
●

● ●
●

●●

●
● ●

●●

● ●

●

● ●

●

●

●

●
● ●●●

● ●
●

●

●
●●

● ● ●

●

●

●● ●

●
●

●

●● ●

●
●● ●

●
●

●
●

● ●

● ●

●

●
●●

●

●

●
● ●

●

●
●

●● ●
●

●

●

●

●

●

● ●

0 10 20 30 40 50 60 70

At first sight we understand how the n data distribute:
Many data lie close to 30 (typical runtime)
The minimum is about 5 (fastest runtime),
the maximum is about 65 (slowest runtime)
Remark.: the y-value has no meaning. The data are ’jittered’ along the
y-direction for a better overview.



Stripchart in R

#Enter data

x <- c(24.6, 24.0, 31.4, 29.9,...,39.3, 35.0, 46.3)

#Create stripchart

stripchart(x)

10 20 30 40 50 60

We don’t understand too much - points superposed, axes annotations are
missing, title is missing etc.

→ customize graphic using additional arguments or lowlevel graphics



Stripchart in R

#Enter data

x <- c(24.6, 24.0, 31.4, 29.9,...,39.3, 35.0, 46.3)

#Create stripchart with additional arguments

stripchart(x,method="jitter",pch=19,cex=0.4,axes=FALSE,

xlim=c(0,70),main="runtimes (n=121)",xlab="time [seconds]")

#add x-axis (lowlevelgraphic)

axis(1,at=seq(0,70,10))
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Much more informative!



Histogram

runtimes (n=121)

time [seconds]
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Description of the distribution of data
Here: approximately bell-shaped, i.e., unimodal and symmetric

Absolute frequencies in the intervals {(10k, 10(k + 1)] : k = 0, 1, . . . , 6}
given through the height of the bars
e.g.: 10 data are > 10 and 6 20, for short

∑n
i=1 1(10,20](xi) = 10

Consequence: The sum of the bar heights is n = 121
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Description of the distribution of data
Here: approximately bell-shaped, i.e., unimodal and symmetric
Absolute frequencies in the intervals {(10k, 10(k + 1)] : k = 0, 1, . . . , 6}
given through the height of the bars
e.g.: 10 data are > 10 and 6 20, for short

∑n
i=1 1(10,20](xi) = 10

Consequence: The sum of the bar heights is n = 121
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Histogram in R

# Histogram with additional arguments

hist(x,las=1,xlab="time [seconds]",ylab="Frequency",

main="runtimes (n=121)",col="lightblue")
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Histogram

The same algorithm was implemented by 16 other students after they
attended a certain programming course (group B)
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Idea: Norm the areas→ total area of 1 each
The distributions are now nicely visible:
shifted against each other and about bell-shaped each.
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What happens when norming?
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Mean and empirical standard deviation
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summarized nicely by two prominent statistics, i.e., functions of the data:

1. the mean x̄→where? (location)
2. the (empirical) standard deviation s→ how variable? (dispersion)
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Mean and empirical standard deviation

Data x1, x2, . . . , xn

The mean is

x̄ :=
1
n

n∑
i=1

xi

(center of mass of the data)

The (empirical) variance is

s2 :=
1

n − 1

n∑
i=1

(xi − x̄)2

’the mean squared deviation of the data from the mean’

The (empirical) standard deviation is

s =
√

s2

’the square root of the variance’
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Mean and empirical standard deviation

Data x1, x2, . . . , xn

x̄ :=
1
n

n∑
i=1

xi s2 :=
1

n − 1

n∑
i=1

(xi − x̄)2 s =
√

s2

Random variable X (here discrete)

E[X] :=
∑

x · P(X = x) Var(X) := E[(X − E[X])2] σX :=
√
Var(X)

Remark:

The factor n − 1 in s2 (instead of e.g., n) has technical reasons

We speak about the corrected empirical variance, while for large n this
correction has no practical relevance.
Analogy to the ’universe of randomness’: mean↔ expectation
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Notation

Convention:
We use capital letters for random variables, e.g.,

X1, X2, . . . , Xn (’random’)

and lowercase letters for data or realizations of the random variables

x1, x2, . . . , xn (’non-random’)

Outlook:

The main idea of statistical modelling:

Treat data x1, x2, . . . , xn (’real world’)

as realizations of random variables X1, X2, . . . , Xn (’universe of randomness’)

Note that we evaluate statistics either on data, e.g., x̄ = (1/n)
∑n xi (→ non-random), or

on random variables X = (1/n)
∑n Xi (→ random)

more on modeling in the following sessions
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Mean and empirical standard deviation

Back to the data. . . runtimes (n=121)
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Data x1, x2, . . . , xn

x̄ =
1
n

n∑
i=1

xi s2 =
1

n − 1

n∑
i=1

(xi − x̄)2 s =
√

s2

Evaluation

x̄ ≈ 32.3 s2 ≈ 107.4 s ≈ 10.4

in R via

mean(x) var(x) sd(x)
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Mean and empirical standard deviation

Geometrical interpretation of the mean x̄
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x

Numerically: x̄ = (0 + 3 + 4 + 5)/4 = 3

Geometrically: Center of mass
points of same mass on a balance
Where is the center of rotation ∆, such that the balance is in equilibrium?
Consequence: Naive estimation from graphic
Distribution not bell-shaped but asymmetric
few large values ’pull’ x̄ to the right
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Numerically: x̄ = (0 + 3 + 4 + 5)/4 = 3

Geometrically: Center of mass
points of same mass on a balance
Where is the center of rotation ∆, such that the balance is in equilibrium?
Consequence: Naive estimation from graphic
Distribution not bell-shaped but asymmetric
few large values ’pull’ x̄ to the right
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= 1
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2 +02 +12 +22) = 14
3 → s =

√
14
3

Large deviations from the mean have a large impact (squaring)
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Naive estimation of s (only for bell-shaped distributions!)
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Fact: About 2/3 of the data lie in the s-neighborhood of x̄
Turn the tables

Estimate x̄ (→ balance)
Capture 2/3 of the data around x̄

Numerically: x̄ ≈ −0.1 and s ≈ 0.94
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Mean and empirical standard deviation
We used: For a bell-shaped distribution about 2/3 of the data lie in the
s-neighborhood of x̄. But why?
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Recall: Normal distribution N(µ,σ2)

Let X ∼ N(µ,σ2). Then P(X ∈ [µ− σ,µ+ σ]) ≈ 0.68 ≈ 2/3
X falls in the σ-neighborhood of µ with probability about 2/3
Consider data n = 100 independent copies X1, . . . , Xn of X
data x1, . . . , xn are interpreted as realizations of X1, . . . , Xn, reasonable as data is approx bell-shaped

The proportion within µ± σ lies close to 2/3 (→ Law of large numbers)
X̄ and S consistently estimate µ and σ (→ Law of large numbers)
Also the proportion within X̄ ± S is close to 2/3
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If the data are not distributed approximately bell-shaped, then this
interpretation is not useful

Here x̄ is not a typical observation. Much more data lie left of x̄ than right
of it
s does not describe the typical deviation of x̄. Almost all of the data lie
within the s-neighborhood of x̄, only few outliers lie outside of it
x̄ and s should not be used for the description of the location and the
dispersion of the data
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Consists of a box and two whisker (’Schnurrhaare’, meow!)
Four sections, contain at least 1/4 of the data
→ five statistics:

Minimum, smallest observation
Maximum, largest observation
Median (m), at least 50% of the data > m and at least 50% are 6 m
1st quartile (q1/4), at least 25% are 6 q1/4 and at least 75% are > q1/4

3rd quartile (q3/4), at least 75% are 6 q3/4 and at least 25% are > q3/4

Interpretation:
Median m is a measure for the location of the observations (→where?)
Interquartile range q3/4 − q1/4 (width of the box) is a measure for the
dispersion of the data (→ how variable?)
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3rd quartile (q3/4), at least 75% are 6 q3/4 and at least 25% are > q3/4

Interpretation:
Median m is a measure for the location of the observations (→where?)

Interquartile range q3/4 − q1/4 (width of the box) is a measure for the
dispersion of the data (→ how variable?)
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Empirical quantile (general)
Definition: Given n data x1, . . . , xn. Let p ∈ (0, 1). A number qp ∈ R is
called an (empirical) p − quantile, if
i. the proportion of the data that are smaller or equal qp is at least p and
ii. the proportion of the data that are larger or equal qp is at least 1 − p.

In formulas:

i. :
1
n

n∑
i=1

1(−∞,qp](xi) > p and ii. :
1
n

n∑
i=1

1[qp,∞)(xi) > 1 − p

We already know three prominant candidates (with their own name):
a median is a 50%-quantile (p = 1/2)
a 1st quartile is a 25%-quantile (p = 1/4)
a 3rd quartile is a 75%-quantile (p = 3/4)
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Empirical quantile (general)
Definition: Given n data x1, . . . , xn. Let p ∈ (0, 1). A number qp ∈ R is
called an (empirical) p − quantile, if
i. the proportion of the data that are smaller or equal qp is at least p and
ii. the proportion of the data that are larger or equal qp is at least 1 − p.
In formulas:

i. :
1
n

n∑
i=1

1(−∞,qp](xi) > p and ii. :
1
n

n∑
i=1

1[qp,∞)(xi) > 1 − p

Example: Four observations x = (1, 2, 3, 4)t
superscript t denotes the transpose

Many medians: Every number in the interval [2, 3] is a median
Often: Define the unique median as the mean value of the bounds, here 2.5
Analog: Every number in [1, 2] is 1/4-quantile, the unique quartile is 1.5
Many quantiles equal: The number 2 is a p-quantile for every p of [0.25, 0.5]

Remark.: These kind of ’exotic’ messages may support the understanding
of the definition of a quantile. The main message however is, that the
boxplot appropriately summarizes many data using only five simple
statistics
Take home: Many data→ at first sight: ′′1/4, 1/4, 1/4, 1/4 ′′
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Boxplot in R

#Boxplot, horizontal representation

boxplot(x,horizontal=TRUE ,...)

● ●

runtimes

time [seconds]

0 10 20 30 40 50 60 70

Attention: per default a whisker ranges to the observartion which is most far
away from the box, but does not exceed 1.5 times the interquartile range.
Extreme values (’outliers’) are plotted seperately.



Boxplot in R

#Boxplot, Whisker up to the most extreme values

boxplot(x,horizontal=TRUE,range=0,...)

runtimes

time [seconds]

0 10 20 30 40 50 60 70

Through the argument range=0 the whiskers are extended to the extreme
values



Boxplot

Reminder
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x s

due to the asymmetric distribution of the data, x̄ and s should not be used
for the description of the location and the dispersion

The five statistics of the boxplot are more appropriate for the description
of the data
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Questions

Comparison of four groups A, B, C und D

● ●

●

●

runtimes

time [seconds]

gr
ou

p

0 10 20 30 40 50 60 70

A
B
C
D

The slowest runtime in C was about?

65
The fastest runtime in A is about? 5
The median runtime in D is about? 30
What is the percentage of runtimes in group B that are smaller than 20?
about 75%
Were 50% of the runtimes in A faster than 75% of the times in C? yes
In group B, apart from a single runtime all others were faster than half of
those of group A, half of those of C and half of those of D. Correct
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Thank you!


