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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Sämtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).



Motivation

Somebody claims that among the students with math major the
proportion that primarily uses a certain operating system is p0 = 40%

How can we, the statisticians, deals with this assertion?
Collect data!
Survey among n = 49 students: ’Do you use this operating system?’
Possible answers: yes or no
→ categorical data, two categories
the survey yields:
yes, yes, yes, no, yes, no, no, yes, yes, yes, yes, yes, yes, yes, no, yes, no,
no, yes, no, no, yes, yes, yes, yes, yes, yes, yes, no, yes, yes, yes, yes, yes,
no, yes, no, yes, no, yes, no, yes, no, yes, yes, no, yes, yes, no
We do understand: nothing?
Thus, graphical representation, e.g., in a barplot (in R: barplot())
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Relative frequencies

Somebody claims that among the students with math major the
proportion that primarily uses a certain operating system is p0 = 40%
n = 49 students interviewed
In the survey the absolute frequency of the users was 33

This gives a relative frequency (proportion) of h = 33/49 ≈ 0.67
We use h referring to the German Häufigkeit (as f or p are already used elsewhere)

Question:
Is the observed proportion h ’far’ away from the assertion p0?
’Answer’:
The discrepancy can be judged in the context of a statistical model...

...in which we can speak of the variability of the proportion
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Relative frequency
Notation

n data in two categories (here: ’yes’ and ’no’)

Construct binary variables y1, · · · , yn via

yi :=

{
1, if the i-th observation lies in the first category (here: ’yes’)
0, else

Then the relative frequency (of the data in the first category) is

h :=
1
n

n∑
i=1

yi

0 1h ≈ 0.67

p0 = 0.4

relative frequency
Note that we deal here with categorical (or nominal) data which is a completely different data type as the metric

data considered in the previous lectures. However, we mention here that the proportion h is nothing but a mean.

Thus, despite the different data type, we will methodologically proceed analogously to the t-tests, comparing

means. In that sense, nothing new is going to happen in the following...
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Statistical model
Model: Let Y1, . . . , Yn be i.i.d. RVs with Y1 ∼ ber(p), and p ∈ (0, 1)

This means

Yi =

{
1, with probability p
0, with probability 1 − p

The relative frequency (of ’successes’) is given as

H :=
1
n

n∑
i=1

Yi

H is a random variable...

and has a standard deviation

Interpretation: h based on the data is a realization of H
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Asymptotic normality of H
Let Y1, . . . , Yn be i.i.d. RVs with Y1 ∼ ber(p). Let note that

∑n Yi ∼ b(n, p)

H =
1
n

n∑
i=1

Yi

It holds for the expectation

and the variance

’linearity of the expectation

and independence’

E[H] = p

and Var(H) =
p(1 − p)

n

and for n→∞
H − p√

p(1 − p)/n
d−→ N(0, 1) ’central limit theorem’

Note: in the t-test we found the rescaled mean to be exactly(!) t-distributed, (X̄ −µ)/
√

S2/n ∼ t(n − 1), when
assuming normally distributed RVs. Here, we do not make the normal assumption on the RVs and thus will
make use of the normal approximation of H
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The standard error of the relative frequency
Let Y1, . . . , Yn be i.i.d. RVs with Y1 ∼ ber(p) and p ∈ (0, 1)

H =
1
n

n∑
i=1

Yi

Variance

Var(H) =
p(1 − p)

n

Problem: p unknown in practice
Solution: Estimate p via H
Definition: The standard error of H is

SEH :=

√
H(1 − H)

n

Summary:

H is approximately normally distributed, for large n
in expectation H hits the true unknown parameter p
the estimated standard deviation of H is SEH

deviations from the expectation of order 1 · SEH are not unlikely
but deviations of ’many’ SEH are unlikely
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The standard error of the relative frequency

the estimation based on the data yields

seh =

√
h(1 − h)

n
≈ 0.07

0 1h ≈ 0.67

p0 = 0.4

relative frequency

the discrepancy of the observed frequency h = 0.67 and the claimed
proportion p0 = 0.4 is

|h − p0| ≈ 4.1 · seh

this is extremely far, given the typical deviation of H to be about 1 · SEH
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Asymptotic one-sample test for frequencies
Let Y1, . . . , Yn be i.i.d. RVs with Y1 ∼ ber(p) and p ∈ (0, 1)
and let q1−α/2 be the (1 − α/2)-quantile of the N(0, 1)-distribution

Under H0 : p = p0 it holds approximately for large n that

Z :=
H − p0

SEH

d≈ N(0, 1)

and equivalently: the confidence interval

I :=
(
H − q1−α/2 · SEH, H + q1−α/2 · SEH

)
overlaps the parameter p0 with probability about 1 − α

’Structure’ as in the t-test: Z = (♠−♠)/♠ and I = (♠− q · ♠, ♠+ q · ♠)
Thus again: Equivalence of test and confidence interval
α = PH0(Z ∈ R) = · · · = PH0(I = p0) (while R denotes the rejection area of
the two-sided test)
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Evaluation of the data

−4 −2 0 2 4

z

Under H0: Z ≈ N(0, 1)
R R

qα 2 q1−α 2

For the significance level α = 5% it is q1−α/2 ≈ 1.96

→ rejection area R ≈ (−∞,−1.96] ∪ [1.96,∞) (two-sided)
Evaluation of the data z =

h − p0

seh
≈ 4.1

as z ∈ R, we reject H0 on the 5%-level
the p-value is p = PH0(|Z| > |z|) ≈ 4.5 · 10−5 (tiny)
equivalently: the 95%-confidence interval

i ≈ (0.54, 0.80)
does not overlap the claimed parameter p0

Interpretation: the proportion observed in the data is barely compatible
with the claimed population proportion.

If H0 holds true, then we
observe in less than one of 2000 cases a discrepancy which is at least as
extreme as in the data (p < 1/2000)→we are very inclined to doubt H0
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Transition to the two-sample situation
Somebody claims that the proportion p1 of students with a math major
that primarily use a certain operating system equals the proportion p2 of
students with a computer science (CS) major that use it

n1 = 49 students with a math- and n2 = 64 with a CS major interviewed
observed absolute frequencies of users are 33 and 37
this gives the relative frequencies h1 ≈ 0.67 and h2 ≈ 0.58
Question: Are the proportions h1 and h2 far away?
Answer: No! The standard errors seh1 and seh2 (typical variability) are
large in relation to the distance

It is seh1 =

√
h1(1 − h1)

n1
and seh1 =

√
h2(1 − h2)

n2

Frequencies without standard errors are way less meaningful
Example:16times more students asked→quatering of the seh→ distance ’large’
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Statistical model
Model: Let Y1,1, . . . , Y1,n1 , Y2,1, . . . , Y2,n2 be independent RVs with
Y1,i ∼ ber(p1) for i = 1, . . . , n1 and Y2,j ∼ ber(p2) for j = 1, . . . , n2,

and (p1, p2) ∈ (0, 1)2

particularly both groups have their own success probability
Null hypothesis H0 : p1 = p2

no difference in the success probabilities

For the construction of the test statistic we need

first: the relative frequencies (of ’successes’) in both groups

H1 :=
1
n1

n1∑
i=1

Y1,i and H2 :=
1
n2

n2∑
j=1

Y2,j

second: a standard error of the difference of H2 and H1, via√
SE2

H2
+ SE2

H1

while

SEH1 =

√
H1(1 − H1)

n1
and SEH2 =

√
H2(1 − H2)

n2
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Two-sample test for frequencies
Let Y1,1, . . . , Y1,n1 , Y2,1, . . . , Y2,n2 be independent RVs with Y1,i ∼ ber(p1) for
i = 1, . . . , n1 and Y2,j ∼ ber(p2) for j = 1, . . . , n2,

and (p1, p2) ∈ (0, 1)2

let q1−α/2 be the (1 − α/2)-quantile of the N(0, 1)-distribution

Under H0 : p2 − p1 = 0 it holds (approximately)

Z :=
(H2 − H1) − 0√

SE2
H2

+ SE2
H1

d≈ N(0, 1)

and equivalently: the confidence interval

I :=
(
(H2 − H1) − q1−α/2 ·

√
SE2

H2
+ SE2

H1
, (H2 − H1) + q1−α/2 ·

√
SE2

H2
+ SE2

H1

)
overlaps 0 with probability about 1 − α

Again:
known structure: Z = (♠−♠)/♠ and I = (♠− q · ♠, ♠+ q · ♠)
more precisely, Z has the structure of the Welch-statistic
direct generalization for the difference p2 − p1 = d0 , 0
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Evaluation of the data

math

CS 'yes' 'no'

0 1

relative frequency

h1

h2

−4 −2 0 2 4

z

Under H0: Z ≈ N(0, 1)
R R

qα 2 q1−α 2

For the significance level α = 5% it is q1−α/2 ≈ 1.96

→ rejection area R ≈ (−∞,−1.96] ∪ [1.96,∞) (two-sided)
Evaluation of the data

z =
h2 − h1√
se2

h2
+ se2

h1

≈ −1.05

Because z < R we cannot reject H0 on the 5%-level
the p-value is p = PH0(|Z| > |z|) ≈ 0.3
equivalently: the 95%-confidence interval

i ≈ (−0.27, 0.08)
does overlap zero
Interpretation: the discrepancy of the observed proportions barely gives
us reason to doubt the null hypothesis.

If H0 holds true, then in about
every third case we will observe a discrepancy, that is at least as large as
in our data (p ≈ 1/3)
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the p-value is p = PH0(|Z| > |z|) ≈ 0.3
equivalently: the 95%-confidence interval

i ≈ (−0.27, 0.08)
does overlap zero
Interpretation: the discrepancy of the observed proportions barely gives
us reason to doubt the null hypothesis. If H0 holds true, then in about
every third case we will observe a discrepancy, that is at least as large as
in our data (p ≈ 1/3)



Remark

In R the associated test and confidence intervals are implement in e.g.,
prop.test()

However, some statistics are slightly adjusted
the main reason: the approximation through the normal distribution can
be quite ’rough’
In general, one should be cautious if either the sample size n is small, or if
the frequencies h (resp. p) are close to either 0 or 1The rescaled frequency H is

H − p√
p(1 − p)/n

d≈ N(0, 1)

left: approximation unreasonable :-( right: quite plausible :-)
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Thank you!


