
AIC Summary
Warning: Use this summary at your own risk and with caution. I may have left out things or not

covered them completely.

4 Evolutions: Infrastructure/Software/Processes/Teamwork:

Dependencies between systems no longer fixed and predetermined → need abilities to deal with

context changes and unanticipated events and people, IoT supports active objects.

Service-oriented approaches: Apache River, OSGi, UPnP

Components vs. services
Components Services

Tight Coupling Loose Coupling

Client/Server P2P

Extendable Composable

Stateless Context independent

Fast Some overhead

Small-medium granularity Medium-coarse granularity

Common Object Request Broker Architecture (CORBA) vs. Web Services (WS)

Feature CORBA WS

Data Model Object Model SOAP model

Client-Server Coupling Tight Loose

Type System IDL, InterfaceDefinitionLang XML

Location Transparency Object references URL

Parameter passing By reference/value By value

Type checking Static and runtime Runtime

Service discovery Naming/Trading service UDDI

Serialization Built into ORB Chosen by user

Enterprise Application Integration

Bridge and Adapters to enable applications working together.

- Bridge: hooks into source app, transforms message, invokes target app

o Problems: heterogeneity, distributed systems, QoS

- Adapters = splitted bridge.

o Source adapter: hooks into source app, puts data in queue of target adapter

o Target adapter: transforms messages into data for target app and invokes it

o Problem: Each target app needs separate adapters to different source message

formats → n*n complexity

▪ First Improvement: neutral message format (n+n complexity)

- Further improvement → Message Broker

on top of queueing, identifies + transforms messages, routes to target → simplifies adapter

creation.

Message oriented middleware (MOM)

infrastructure that involves passing data between apps using common communication channel,

carries self-contained messages.

- Messages sent and received asynchronously.

- Provides:

o Event-driven processing (PubSub-model)

o Reliability + serialization of messages

o Subject-based names and attributes

o Multiple communication protocols

- Messaging system (Integration broker) responsible for managing connection points and

multiple channels between points.

Integration broker, used for message process flow, is a A2A middleware service capable of 1:n, n:1

and n:n message distribution, records & manages contracts between Pubs and Subs. It provides:

- Message transformation

- Business rules processing

- Routing service

- Naming services

- Adapter services

- Repository services

- Events & Alerts

Service oriented computing
For programmatic interactions between autonomous systems, with:

- Loose coupling of systems through self-contained SW-entities (web services)

- Virtualization

- Agile development through composition

- Services provided everywhere

Services
Characteristics:

- Standardized interface
- Self-contained (no dependencies to other services)
- Coarse-grained
- Context-independent
- Allows for Service Composition
- Little integration need

- Available

Types:

- Informational:
relatively simple, provide access to content or expose business applications to others, f.e.
weather or financial info

- Complex:
involve assembly & invocation of pre-existing services, f.e. supply-chain-application

Properties
- Functional → operational characteristics that define overall behavior
- Non-Functional → quality attributes, f.e. performance, scalability, availability, security

State:
- Stateless → can be invoked repeatedly without having to maintain context or state
- Stateful → require that context is preserved between invocations

Granularity
- Simple → fine granularity, discrete, exhibit request/reply-mode
- Complex → Coarse-grained, interactions with other services in single or multiple sessions

Synchronicity
- Synchronous/RPC-style: express request as method call with arguments, returns response

with return value
- Asynchronous/message (or document)-style: requests are entire documents rather than set

of parameters
Loose Coupling
Low degree of dependency between two systems, not need to know behavior or implementation

Well-definedness
Define rules for interfacing and interacting, WSDL allows that.

Service interface
defines service functionality visible to public and provides means to access it.

Service implementation
realizes service interface, whose implementation details are hidden.

SOA – Web Service Framework

BPEL4WS – Orchestration (how a services work)
WS-CDL – Choreography (how services work together)
WS-ReliableMessaging (In-order-, at least once-, at most once delivery)
WS-Security (Security Framework)
WS-Transaction (-AtomicTransaction for short, -BusinessActivity for long duration activities)

WS-Coordination (coordinating multi-party, multi-message WS tasks)
WSDL (web service description language, XML vocabulary to describe WS, extensible and adaptable,
two parts: abstract and concrete)
WS-Policy (define constraints, conditions, service-level requirements and assurances
SOAP (Simple Object Access Protocol, XML-based messaging protocol, defines enveloping
mechanism, processing model for messages, extensibility scheme, binding mechanism for transport)
WS-Addressing (interoperable way of identifying message senders and receivers)
UDDI (Universal description, discovery & integration, flexible directory/registry service for WS, which
are described by WSDL and bounded/invoked using SOAP)
WS-MetaDataExchange (dynamic MDT, like Policy)

Defined for step-by-step adoption, already in widespread use (UDDI partially)

Business Process
An activity, consisting of related tasks, performed in specified sequence, according to business rule,
that produces outcome. Short (minutes, hours)- or Long-Lived. Internally or between business
partners.

Process Model → describes real world steps.

Workflow Model → describes technology interactions that support/interact with/implement

real-world processes.

Composition
Combine and link existing atomic or composed WS,
can occur at design time (static) / at deployment time / at runtime (dynamic).
Dynamic could allow service discovery during runtime based on QoS parameters/requirements, but
services may not answer, send wrong state information or doesn’t meet (non-)functional
requirements.

Requirements
Flexible integration, Recursive composition, Independent of QoS (SoC), Recoverability

Challenges
Discovery, interoperability and efficiency of WS; Execution and monitoring of process.

Orchestration Choreography

Composition for business processes Composition for business collaboration

Define composite services P2P model

Reuse existing WS Define how parties collaborate

Part-of Composition Sequencing Composition

Private Public

Select most suitable WS → QoS required: exhibited when invoked, characterized by operational
metrics.
Application are combinations of services, which can be composed by other services (recursive
composition).
Approaches: Process-based, Requirements driven, AI-based
Protocol for:

- Orchestration (centralized cooperation of services) → BPEL
- Choreography (decentralized cooperation of services) → WS-CDL
- Event-based federation (event-based approach applied to SOA) → WS-Eventing

BPEL
Definition:

- Process-oriented composition language to define concrete and abstract processes

o Concrete: Implementation of business process

o Abstract: Describe externally visible interactions

- Used to specify business collaborations + to implement them as composite WS

- Mainly intended for orchestration

- Relies on WSDL

- Block-structured language

- Allows exception handling and compensation

- BPEL processes are exposed as WSDL services interact with services through their WSDLs

- Basic component: primitive or structured (order in which activities are executed) activity

- Instance-relevant data: containers

- Defines an executable process by specifying

o Activities

o Partners

o Data

o Messages

o Fault handling

Elasticity (Resilience)
- Resource elasticity: SW/human based computing elements multiple clouds

- Quality elasticity: of non-functional parameters (performance, availability, …)

- Costs & benefit elasticity: of rewards and incentives

- Elasticity requirements specified with SYBL

- Pathway functions: to describe elasticity behaviour from general/particular view

- Space functions: to determine if service is in elasticity behaviour

Three Perspectives on IoT: Edge, Cloud, Internet
Edge-perspective → 1:1, 1:N, N:1 mapping of IoT- to Edge-device(s)

 Cloud-perspective → cloud provides core services, edge computers support

IoT devices, use cloud servers for big computation, data storage,

security/privacy, communication between IoT-systems

Missing: cloud is at network edge, not surrounded by edge. Edge computers

don’t have to depend on cloud, could operate autonomous and collaborate

with each other without help of cloud

 Internet-perspective → internet is center of IoT architecture, edge devices

are gateways to internet for IoT devices, each LAN organizable around edge

devices autonomously, so local devices do not depend on cloud.

Therefore: Devices belong to subsystems rather than to a cloud directly.

Remote IoT systems can be connected directly, not via cloud. IoT system can

act autonomously.

Cloud-IoT

Edge/Cloud hybrid IoT (=Horizontal Edge Architecture)

Vertical Edge Architecture

IoT Data Sources
Representation (Structure and represent data)

→ Translation (Interpret data from one modality to another)

→ Alignment (Identify relations among modalities)

→ Fusion (Fuse information from different modalities)

→ Co-learning (Transfer knowledge among modalities)

IoT Computational Units
1. Micro-Services: implement specific functionalities, can be deployed on containerized

infrastructure

2. Micro-Data: encodes contextual information about

a. Devices and resources it needs to collect/send data from/to

b. Type of data it needs to process

c. Data manipulate operations like storing data + results and forwarding data

3. Micro-Computing: executing specific types of computational tasks, realized by using variety

of data storage and analytics programming models

4. Micro-Actuator: implementing programming interfaces for changing or controlling states in

IoT environment

ICT-Views on Smart City
- Traditional: focus on optimizing physical/digital infrastructure, not society

- Societal: Active involvement of individuals to achieve collective benefits

- Holistic: Include all stakeholders into active management, Integrated management of

infrastructure → new values

Cyber-Human Smart City Values
- Infrastructural: Traditional management of city-owned infrastructure, integral management

of privately owned IoT devices for common benefits

- Societal: inclusion and empowerment of citizens, direct democracy, formation of ad-hoc

teams for collective activities

- Business: New work models by management mechanisms, New business models by

augmenting overall city infrastructure, microtransactions and dynamic crowdsourced

workforce.

Cloud computing
Demand for services varies with time and is unknown in advance.

But: Overprovisioning → unnecessary costs, Underprovisioning → lost revenue and customers

Three cloud service models:
- IaaS - (Cloud) Infrastructure as a Service → Deliver infrastructure as service: VMs, storage

(Amazon EC2, S3)

Highest customization possibilities

- PaaS - (Cloud) Platform as a Service →Deliver computing platform and solution stack as

service (Google App Engine)

PaaS apps faster developed than IaaS, Vendor lock-In, cheaper to run than IaaS

- SaaS - (Cloud) Software as a Service → Deliver piece of software as service: Google Docs

Is ready very fast, but not fully customizable to needs, Vendor lock-in

Cloud system may provide any or all of these through external APIs.

Virtualization
Abstract view on resources, possible on platform-, memory-, storage- and network-level.

Benefits:
- Higher degree of capacity utilization

- Consolidation

- Fault Tolerance

Two types of Virtualization
- Hardware-level: Emulating virtual computer hardware → VMs

Hypervisors = VMMs, Type 1 (HW-) & 2 (OS-level)  distinction not always clear

Techniques:

o Full-Virtualization

Completely abstracted from HW, Hypervisor translates all OS calls on the fly

o Native (HW-Assisted)-Virtualization

Efficient full virtualization with help of HW capabilities (primarily host-CPU → VT-x)

o Paravirtualization

Efficient and lightweight technique with near-native performance, Hypervisors

provides API  Guest OS calls, does not require CPU extensions (like VT-x) but kernel

support and drivers

- OS-level: OS-Kernel manages coexistence of multiple isolated spaces → Containers, have

small overhead, nearly native performance, more elastic than hypervisors but not secure as

VMs

Four cloud deployment models
- Public Cloud – Open to public, owned by organization selling cloud services

Advantages:

o Lower costs (pay per use) + no upfront costs for hw/sw

o No maintenance

o High scalability

o High reliability

- Private Cloud – Operated solely for one organization

Advantages

o Flexibility – customized environment to meet needs

o Security – Tighter control possible

o Compliance – with regulations

o Self-reliance

- Community Cloud – Shared by several organizations

- Hybrid Cloud – Composition of the other models

Advantages:

o Control

o Flexibility/Scalability

o Cost-effective

Top 10 Obstacles and Opportunities for Cloud Computing
Obstacles Opportunities

Availability/Business Continuity Use multiple cloud providers

Data Lock-in Standardize APIs, Enable Hybrid C2

Data Confidentiality & Auditability Deploy Encryption, VLANs, Firewalls

Data Transfer Bottlenecks FedExing Disks; Higher BW Switches

Performance Unpredictability Better VM support; Flash Memory

Scalable Storage Invent it

Bugs in large distributed systems Invent debugger for distributed VMs

Scaling Quickly Invent Auto-Scaler based on ML

Reputation Fate Sharing Reputation guarding services like for mail

Software Licensing Pay-for-use license

AWS Offerings
Elastics Computing Cloud (EC2) = VMs with different capabilities (different VM resources/configs,

vCPU, regions and availability zones), 4 types of billing:

- On-Demand (pay per use)

Flexible, not long-term → dynamics scaling, good for unpredictable workloads or dev/testing

- Reserved Instances

Cheaper, but long-term. Good for known, steady workload

- Spot Instances

Bidding of spare EC2 capacity → big discounts, good for apps flexible start/end-times that

require cheap run.

- Dedicated Hosts

Dedicated physical server for meeting compliance targets.

Three types of storage services in AWS
1. Simple storage service (S3) – Object-based, persistent

2. Elastic block store (EBS) – behave like raw, unformatted; can used as FS or DBMS, accessible

for single EC2, transient by default → persisted via snapshots in S3

3. Elastic file system (EFS) – Standard file system → persistent, mountable. Accessible by

multiple EC2 instances; auto-scaling.

Simple Queue Service (SQS): message queue aiming at scalability manage by amazon → can scale

transparently, components can fail safely, can delay delivery of messages. Either LIFO or FIFO.

QoS = Quality of Service
Measure for (technical) quality of a (web or cloud) service, f.e.:

- Performance

- Availability

- Failure rate

- Security

- Trust

- Compliance

- Costs

Instance-level, Performance-related QoS metrics:
- Round-trip Time & Response Time

Time from request is issued at client to moment server’s response is received by client

o RTT: First byte out – last byte in

o RT: Last byte out – first byte in

- Latency, time a message spends in transport medium

- Processing Time, time needed executing requested operation

- Wrapping Time, time needed by client or service to (un)marshal messages

- Execution Time = Processing + Wrapping

Aggregated QoS metrics:

- Throughput → max. number of requests processed by service in given timeframe.

- Availability → probability that service is operative at any time = uptime / downtime + uptime

o Redundancy example with 1 service interface (availability 0.99), 3 web servers (each

0.9 availability) and 5 DB instances (each 0.85 availability):

→ 0.99 * (1 – 0.1^3) * (1 – 0.15^5) = 0.9889

SLAs
=specific agreements between client and service on QoS terms.

Mostly relevant for B2B interactions, contain:

- Concrete SLOs

- Metrics and their definitions

- Concrete target values

- Penalties for non-achievement

- Validity period

- Responsible monitory entity

IoT-Continuum
Gartner: IoT is a network of physical object that contain embedded technology to communicate and

sense or interact with their internal states or the external environment.

Networking techniques:

- Wireless P-/LAN for connectivity at local/personal space: Bluetooth, Wi-Fi, ZigBee

→ High(er) throughput, lower coverage, local gateway as aggregation point

- WAN for direct access to “remote” gateway: 4G, 5G

- LPWANs use event-driven or periodic transmission, long-range wireless connectivity, operate

at very low power, very large number of devices → networking HW should be cheap:

o LoRa – proprietary, low cost, unlicensed spectrum

o SigFox – proprietary, very low bandwidth, unlicensed spectrum

o LTE-M, NB-IoT – Used by operators, can reuse some 4G HW

- LoRa and SigFox quite similar, NB-IoT better in Scalability, QoS and Latency Performance, but

not so good in coverage, deployment and cost efficiency.

Device
- Typically resource constrained

- Special-purpose embedded SW or RTOS for MCU-

based devs

- General purpose OS might be possible

- HAL: access to HW resources, sensors

- SW for communication

- SW to remotely control device

Gateway
- More powerful, general-purpose OS

- 1+ runtime environments for different apps

- >= 2 different NW interfaces/technologies

- Storage + processing capabilities at edge

- App-level protocols for pushing device messages to

cloud

IoT cloud platform
- Runs on cloud →scalability, large volumes of events

and data

- Supports multiple app-level protocols, data formats,

device types

- App-enablement: Expose well-defined APIs

- Message-routing to different subs

- Centralized device + gateway registration

Key design principles for IoT stacks
- Loose coupling

- Modularity

- Platform independence

- Open standards

- Well-defined APIs

Microservices
Another incarnation of SOA, popular recently, set of application principles added to SOA

fundamentals → Many independent components, consumed via services.

Characteristics:

- Independently deployable small components

- Communicates through well-defined APIs

- Performs a small, business-oriented functionality

- Not externally exposed

- Developed by a small-2-pizza-team

Advantages:

- Small understandable functionality units focused on business needs

- Lightweight → quick to deploy and scale

- Good fault isolation

- Possibly independent teams

- Easy CI/CD

Drawbacks:

- Not a panacea

- Much inter-service communication and coordination

- Duplication of data

- CI/CD requires tooling support

Serverless computing aka FaaS cloud model
A piece of executable business logic uploaded as a function to cloud provider. May be simpler and

cheaper is use case is right.

➔ Define mappings for inputs and outputs (cloud-based storage/DBs, messages/queues)

➔ Define metadata (triggers, runtime parameters, failure strategy)

➔ When triggers fires, function is executed

➔ Pay-per-use

➔ Scaling per invocation

Cloud, Fog, Edge
Typical cloud designs: collect and process data centralized, but through emerging number of IoT

applications more data is generated, and more processing power is available at Edge → usable?

Edge & Fog Computing → bring computation close to end-devices.

Edge vs. Fog
Fog Edge

System-level horizontal architecture
that distributes resources and services
anywhere along continuum from Cloud
to Things

Distributed computing performed near the
boundary between pertinent digital and
physical entities (=edge)

Wider scope

Deeply hierarchical, multi-layer
architecture

Spans up to edge of operator’s NW

Computation anywhere among
collaborating entities along continuum

Computation on-device or 1 hop away

Multi-access Edge computing (MEC)
Narrower but more clearly defined case of edge computing.

- Architecture s and interfaces to standardize → deployment of 3rd party apps to edge

- Tailored to NW-operator controlled edge infrastructure

- Consumer-oriented, Operator and 3rd party-oriented services

- Critical enabler for 5G →Enables URLLC and eMBB services.

- Difference from traditional clouds → end-user context available to edge apps

Typical workflow

Prepare app → Onboard app to MEC system → Instantiate app → App instance subs to MEC services

it wants to consume

Intelligence at edge
Massive amounts of data generated at edge → valuable input for ML tasks. Traditional way: send

data to cloud, train at cloud, distribute new ML model to end devices.

Challenges for traditional way:
Performance - Huge amount of data to be communicated, but low bandwidth.

Privacy - sensitive data is generated at the edge

→ Due to increased power and storage on edge (AI chips, runtime environments on small-factor

devices) and new regulations (data minimization principle), train models directly on remote devices

without revealing the data, only send outcomes to create a global model with multiple local models

= Federated learning

Security – a cross-cutting concern
CANAI – Confidentiality, Availability, Non-repudiation, Authentication, Integrity

Security within IoT-Cloud continuum:

- Heterogenous devices which may belong to different domains and (dis)appear

- Loosely coupled SW components

- Fragile full stack solutions

- Wide attack surface

- Operation in unknown or untrusted environments

- Advantage of malicious actors because of:

o Out-of-date FW/SW

o Massive IoT numbers

o Physical access

Key Principles:

- Assume hostile edge

- Test for scale

- Expect isolation, exploit autonomy

- Protect uniformly

- Limit what you can

- Support full lifecycle

Relevant exam questions
Name and briefly describe the benefits of using Web services. At least 3 technical and

2 business benefits.

What is an Enterprise Application Integration adapter, what are its disadvantages, how

can you make it better?

Sketch the SOA triangle (including descriptions)

Describe technologies and interactions (WSDL, UDDI, SOAP?)

The empty fields of Web Services framework are given. Fill them up properly.

Describe the difference between functional and non-functional properties

Meaning of loosely coupled and stateless web services?

Challenges of autonomous service composition (at least 3)

Describe the difference between orchestration or choreography

Process vs. Workflow model

What is BPEL? what is used for? Describe language characteristics, what 2 types of

activities does it offer. How does BPEL achieve recursive composition with WSDL?

Describe 3 elasticities discussed in the lecture

Describe these 3 intrinsic cloud characteristics Resource Pooling, Service metering,

Elasticity?

Public / private / hybrid cloud: Explain in 1 sentence respectively and give 2

advantages per cloud model

Private Cloud vs Public Cloud

From a cloud centric perspective: Sketch and explain: Edge/cloud hybrid infrastructure

with IoT devices

Explain: Horizontal and Vertical offloading (you can use the sketch from subquestion

above)

Why would you as a provider use virtual machines instead of actual hardware

machines?

Example given (volatile computation demand for video surveillance, minimize cost),

which cloud products would you use and why?

Calculate availability value (no numbers, formula has to be written down) for 1 load

balancer, 3 web servers, 5 db servers

Example given (DNA analysis that will take >1 year, minimize cost), would you use EC2

On-demand, Reserved, Spot or Dedicated instances?

Single choice questions Yes/No
- Is availability an aggregated, serverside QoS attribute for web services?
- Workflow models implement real-world process models
- Web Services are by design tightly coupled
- BPEL, WSDL and SOAP are encoded/transmitted with JSON
- Do BPEL-scopes define variable visibility within the process?
- Response-time is a server-side web service QoS characteristic
- BPEL is mainly intended for choreography
- Web services almost always represent result in JSON
- QoS monitoring is only possible at server side

