Exercise 3:
Sockets

Overview

. Exercise 3: Sockets

Byte Order

Sockets Operating SYStemSVU
Socket AP 2023w

Establishing a
connection

Send and
Receive

Eerci 3 Florian Mihola, David Lung, Andreas Brandstatter,
Material Axel Brunnbauer, Peter Puschner

Technische Universitat Wien
Computer Engineering
Cyber-Physical Systems

2023-12-05

Exercise 3:

Sockets OVG er cew

Inter-process communication
Overview

o Considered so far. ..
Preliminaries .
Byte Order Exchanging data between processes on the same system
Sockets

S » Explicit synchronization between unrelated processes
Establishing a

_ » Shared Memory
connection S h
Send and > Semaphores

Receive > Implicit synchronization between related processes
Exercise 3 . . .
» Blocking read- and write operations
Material .
» Non-related processes via sockets
> Related processes via unnamed pipes

Today. ..

Exchanging data via sockets - either on the same system or
over a network

> Implicit synchronization between unrelated processes

2/29

el Byte Order or Endianness

Sockets

» Sequential ordering of bytes in memory

Overview
fateliminarics int i = 0x12345678; // 8 hex digits = 4 bytes
Byte Order

Socket: . . i .
o » Little endian: little end first = least significant byte first

Socket API
Establishing 2 Byte address | &1 | &i+1 | &i 42| &i+3

conncetion Byte content | Ox78 | Ox56 | 0x34 | 0x12

Send and

Receive

Exercise 3 » Big endian: big end first = most significant byte first
Material Byte address | &1 | &1 +1 | &1 +2 | &L +3
Byte content | Ox12 | Ox34 | Ox56 | 0x78

» Byte order in memory depends on processor architecture
(x86 is little endian)

» When writing multiple bytes, program must take care of
byte order

> Network byte order is big endian
3/29

gl Byte Order or Endianness
Write bytes explicitely in little endian order:

Overview

int i = 0x12345678;
uint8 t buf[sizeof(int)];

Preliminaries
Byte Order

Sockets int pos;
bl for (pos = 0; pos < sizeof(int); pos++)
stablishing a buf[pos] = i >> 8 * pos;

connection

Send and
Receive

fwrite(buf, sizeof(int), 1, out);

Exercise 3

Rlatenzl Read bytes explicitely in little endian order:

uint8 t buf[sizeof(int)];
fread(buf, sizeof(int), 1, in);

int i = 0;

int pos;

for (pos = 0; pos < sizeof(int); pos++)
i |= (int)buf[pos] << 8 * pos;

// 1 == 0x12345678
4/29

el Byte Order or Endianness

Sockets

Overview

Preliminaries
Byte Order
SR uint32_t htonl(uint32_t netlong)
Socket API

Establishing a
gemEsHe » Convert a 32-bit from host byte order to network byte

Send and
Receive Order

Exercise 3

Material uint32_t ntohl(uint32_t netlong)

» Convert a 32-bit integer from network byte order to host

byte order

5/29

Exercise 3:

Sockets SO C ketS

Overview

Preliminaries
Byte Order

» What is a socket?
Sockets

S » Method for interprocess communication (IPC)

ocket API . . i i
Establishing a » Either on a single host or between different hosts in a
connection network (or via internet)

Send and
Receive

Exercise 3

» Common scenario: communication between a client

Material
and a server

» Sockets are handled like files

» Each socket gets a file descriptor
» Reading and writing to the associated file descriptor

6/29

piiall Socket API

Overview

Preliminaries
Byte Order

> Sockets are an interface to the transport layer of a
communication protocol

Sockets

Socket API

Establishing a » Direct communication between client and server: no need
;"”T“':” to know the network layout

end an . . .

Receive » Sockets do not implement application protocols (HTTP,
Exercise 3 FTP: s)
faatcul » Connection-oriented, bidirectional and reliable

communication channel

» The connection is established between two endpoints

» Endpoint on server side: Server IP 4+ known port number
» Endpoint on client side: Client IP + unused port number

7/29

Exercise 3:

Sockets SO C ketS

Address families and socket types

Overview

Preliminaries

i » Address family (network layer)
cAPI » Internet Protocol, version 4 (IPv4)
Establishing a AF_INET — man 7 ip

;::T:::” » Internet Protocol, version 6 (IPv6)
Receive AF_INET6 (IPv6) — man 7 ipv6
Exercise 3 » Unix Domain Sockets (local IPC)
Material AF_UNIX — man 7 unix

» Socket type
» Connection-oriented sockets (stream based)
» SOCK_STREAM, default for IP is TCP
> Connection is identified by two endpoints
» Connection-less sockets (datagram/message based)
» SOCK_DGRAM, default for IP is UDP

8/29

Exercise 3:

il (Client-Server Example

Passive Socket Active

Overview

Socket

(Server) (Client)

Preliminaries Creates communication socket () socket ()

Byte Order endpoint

Sockets Assigns address
to socket

Socket API

Establishing a .

T Marks socket as passive,
listening for incoming

Send and connections

[REE)
Blocks until the

connection is established

accept()

Exercise 3

Material

&

—

(repeated) data transfers
in both directions

&

!

A
connect ()

g Saa

write()

close() close()

9/29

Exercise 3:

il System Call: socket()

Overview

Preliminaries int socket(int family, int type, int protocol)

Byte Order

Sockets » Creates a communication endpoint (socket)

Socket API f | dd f |

Establshing 3 amily address family

connection type Socket type

Send and . .

Receive protocol communication protocol to be used
Exercise 3 » address family + type usually imply protocol
Material » 0 for default-protocol

» Return value: File descriptor of the newly created socket
or -1 on failure (— errno)

int sockfd = socket(AF _INET, SOCK STREAM, 0);

if (sockfd < 0)
// error

10 /29

Exercise 3:

il (Client-Server Example

Passive Socket Active

Overview

Socket

(Server) (Client)

Preliminaries Creates communication socket () socket ()

Byte Order endpoint

Sockets Assigns address
to socket

Socket API

Establishing a .

T Marks socket as passive,
listening for incoming

Send and connections

[REE)
Blocks until the

connection is established

accept()

Exercise 3

Material

&

—

(repeated) data transfers
in both directions

&

!

A
connect ()

g Saa

write()

close() close()

11/29

Sl System Call: bind()

Overview

PP int bind(int socket, struct sockaddr *address,

S Qi socklen_t addr_len)

Sockets
Socket API

> Assigns the specified address to a socket
Establishing a
connection

socket file descriptor of the socket
R address data structure with the desired address
Exercise 3 addr_len size of the address data structure

Material

» Return value: 0 on success, -1 on failure (— errno)

struct sockaddr in *sa;

if (bind(sockfd, sa, sizeof(struct sockaddr in)) < 0)
// error

12 /29

Exercise 3:

smigll (Client-Server Beispiel

Passive Socket Active

Overview

Socket

(Server) (Client)

Preliminaries Creates communication socket () socket ()

Byte Order endpoint

Sockets Assigns address
to socket

Socket API

Establishing a .

T Marks socket as passive,
listening for incoming

Send and connections

[REE)
Blocks until the

connection is established

accept()

Exercise 3

Material

&

—

(repeated) data transfers
in both directions

&

!

A
connect ()

g Saa

write()

close() close()

13 /29

Exercise 3:

il System Call: listen()

Overview

Preliminaries

int listen(int socket, int backlog)
Byte Order

Sockets

p—— » Listen for connections on a socket (= mark it as passive)
Eetablihinels » For connection-oriented protocols only
connection

send and socket socket file descriptor
ecelve
Ererciee 3 backlog number of connection requests, which are

Materia managed in a queue by the OS, until the
server accepts them

» Return value: 0 on success, -1 on failure (— errno)

if (listen(sockfd, 1) < 0)
// error

14 /29

Exercise 3:

il (Client-Server Example

Passive Socket Active

Overview

Socket

(Server) (Client)

!

Preliminaries Creates comn'_lunication socket () socket ()
endpoint

Byte Order
Sockets Assigns address
Socket API to socket

Establishing a .
connection Marks socket as passive,

listening for incoming

Send and connections
Receive

Blocks until the accept ()

Exercise 3 connection is established

Material

&

conn
(repeated) data transfers
in both directions

&

e’ct()

g Saa

write()

close() close()

15 /29

Exercise 3:

il System Call: accept()

int accept(int socket, struct sockaddr *address,

P socklen_t *addr_len)

Byte Order

Sockets » Accept a new connection on a socket (passive, server)
Socket API socket socket file descriptor

e address pointer to a sockaddr structure where the
Send and address of the connecting socket is returned
Ererciee 3 (actual type depends on protocol, e.g.

Materiat sockaddr_in), NULL possible

addr_len pointer to the size of the structure in address

» Blocks if there is no pending request

» Returns a new socket (file descriptor) for the first pending
connection or -1 on error (— errno)

Overview

int connfd = accept(sockfd, NULL, NULL);

if (connfd < 0)
// error

16 / 29

Exercise 3:

il System Call: connect()

Overview

int connect(int socket, const struct sockaddr *address,

Preliminaries

R socklen_t addr_len)
Sockets

Socket API » Initiate a connection (active, client)
Establishi . .

connection. socket socket file descriptor

Send and address address of the server (destination)
1\

Exercise 3 addr__len size of the address structure
Material » Returns after the connection has been established

» The operating system of the client selects an arbitrary,
unused port

struct sockaddr in server addr;

if (connect(sockfd, &server addr, sizeof(server_addr)) < 0)
// error

17 /29

Sl octaddrinfo(3)
int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints, struct addrinfo **res)

Overview

Preliminaries

Byte Order » Create a suitable socket address with getaddrinfo(3)

Sockets node Hostname (e.g. “localhost”, “173.194.44.232",

Socket/Ahl “google.com™) or NULL (for usage with bind())
e service port no. or name of service (e.g. “80", “http”)

Send and hints Selection criteria

Receive

res Destination address for the resulting addrinfo
structure (filled by getaddrinfo)

» Returns 0 on success or an error code (no use of errno!)
> See also gai_strerror(3) and freeaddrinfo(3)

Exercise 3

Material

struct addrinfo hints, *ai;
memset (&hints, 0, sizeof(hints));
hints.ai family = AF _INET;
hints.ai socktype = SOCK STREAM;

int res = getaddrinfo("localhost", "1280", &hints, &ai);
if (res !'= 0)
fprintf(stderr, "getaddrinfo: %s\n", gai strerror(res));

18 /29

Exercise 3:

vl Example: getaddrinfo()

Client

Overview

struct addrinfo hints, *ai;
Preliminaries memset (&hints, 0, sizeof hints);
Byte Order hints.ai family = AF_INET;

Sockets hints.ai socktype = SOCK STREAM;

Socket API

iﬁﬂiﬂ?a int res = getaddrinfo("localhost", "1280", &hints, &ai);

Send and if (reS I= 0) {
Receive // error

Exercise 3 }

Material

int sockfd = socket(ai->ai family, ai->ai socktype,
ai->ai protocol);
if (sockfd < 0) {
// error
}

if (connect(sockfd, ai->ai addr, ai->ai addrlen) < 0) {
// error
}

freeaddrinfo(ai);

19 /29

Exercise 3:

vl Example: getaddrinfo()

Server
Ossivien struct addrinfo hints, *ai;
Preliminaries memset (&hints, 0, sizeof hints);
Byte Order hints.ai family = AF_INET;
Sockets hints.ai socktype = SOCK STREAM;
St G hints.ai flags = AI PASSIVE;
iﬁﬂiﬂfa int res = getaddrinfo(NULL , "1280", &hints, &ai);

Send and if (reS I= 0) {
Receive // error

Exercise 3 }

Material

int sockfd = socket(ai->ai family, ai->ai socktype,
ai->ai protocol);
if (sockfd < 0) {
// error
}

if (bind(sockfd, ai->ai addr, ai->ai addrlen) < 0) {
// error
}

freeaddrinfo(ai);

20 /29

Exercise 3:

vl ccthostbyname(3)

Overview

Preliminaries

Byte Order getaddrinfo replaces the obsolete function gethostbyname

Sockets

Socket API » gethostbyname does not support IP version 6 and is
Establishing a

connection obSO|ete

Send and .
Receive » Most of the C socket examples that can be found online

Exercise 3 still use the old gethostbyname

Material

» You must not use gethostbyname and related
functions (i.e. gethostbyaddr, gethostbyname2,
gethostent_r, gethostbyaddr_r, gethostbyname_r,
gethostbyname2_r, ...) during the exercises or the
exams!

21/29

Exercise 3:

il (Client-Server Example

Passive Socket Active Socket
Otz (Server) (Client)
Preliminaries Creates communication socket ()
Byte Order endpoint

Sockets Assigns address
Socket API to socket

Establishing a

connection Marks socket as passive, listen()
listening for incoming

Send and connections

Receive

Blocks until the accept ()

Exercisel3 connection is established
Material v
< connect ()
: (repeated) data transfers
' A4 in both directions
1
: REQUEST
1
1
1
: REPLY
1
Y Y

close() close()

22/29

Exercise 3:

el Scnd and Receive
write(2) and read(2)

Overview

Preliminaries » After the connection has been established, the file

Byte Order descriptor of the socket is used to read and write data
Sockets)))

St G » Use read and write the same way as with files

Establishing a

connection char buf[80],

Send and int pos, cnt;

Receive

Exercise 3 for (pos = 0; pos < sizeof(buf);) {

Material cnt = read(sockfd, buf + pos, sizeof(buf) - pos);

if (cnt < 0) {
if (errno != EINTR)

// other error than EINTR
} else

pos += cnt;

}

> You can also use the Stream /O with fdopen() (take care
with buffering, use fflush() to send the data!)

23 /29

Exercise 3:

el Scnd and Receive

Stream 1/0O - Example without error handling

Overview

struct addrinfo hints, *ai;
memset (&hints, 0, sizeof(hints));

Preliminaries

s Ol hints.ai family = AF INET;

Sockets hints.ai socktype = SOCK STREAM;

Socket API

Establishing a getaddrinfo("neverssl.com", "http", &hints, &ai);
connection

Send and int sockfd = socket(ai->ai_ family, ai->ai socktype,
Receive ai->ai _protocol);

Exercise 3 connect(sockfd, ai->»ai_addr, ai->ai addrlen);

Material

FILE *sockfile = fdopen(sockfd, "r+");

fputs("GET / HTTP/1.1\r\nHost: neverssl.com\r\n\r\n",
sockfile);
fflush(sockfile); // send all buffered data

char buf[1024];

while (fgets(buf, sizeof(buf), sockfile) != NULL)
fputs(buf, stdout);

Add error handling to this code!

24 /29

Exercise 3:

el Scnd and Receive
send(2) and recv(2)

Overview

Preliminaries

Byte Order

Sockets int send(int socket, const void *msg, size_t msg_len, int flags)
Socket API

Establishing a

connection int recv(int socket, void* buf, size_t buf_len, int flags)
Send and
Receive

Ererciee 3 » Spezializations of write und read for sockets

Material

» Return value and first three arguments same as for write
und read
» Additional argument: flags

» MSG_DONTWAIT - Non-blocking send/receive
» MSG_WAITALL - Block until all data was received
(exceptions: error, signal received)

25 /29

Exercise 3:

il (Client-Server Example

Passive Socket Active Socket
Overview (Server) (Client)
Preliminaries Creates communication socket ()
endpoint

Byte Order
Sockets Assigns address
Socket API to socket

Establishing a .
T Marks socket as passive,
listening for incoming

Send and connections
Receive)
Blolcks.untll thg accept ()

Exercisel3 connection is established
Material

! A4

connect ()
(repeated) data transfers
in both directions Y
write()

g S

close() close()

26 /29

Exercise 3:

gl Socket Options

Overview

Preliminaries

o oot int setsockopt(int socket, int level, int option_name,
yte Order

Sockets const void *option_value, socklen_t option_len)
Socket API

Establishing a

—— » Set options on a socket (see man page for full list:
Send and

Send a1 setsockopt(2), socket(7), ip(7))

Exercise 3 » Useful to avoid the error “Address already in use”
Material (EADDRINUSE) with bind upon restarting your server
program (otherwise the port remains unusable for
approximately 1 min after the server was terminated)

int optval = 1;

setsockopt(serverfd, SOL SOCKET, SO REUSEADDR, &optval,
sizeof optval);

27 /29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API

Establishing a
connection

Send and
Receive

Exercise 3

Material

Exercise 3

Client and server for HTTP

v

v

v

v

v

v

3A: Client
3B: Server
IPC via stream-oriented sockets

Implement a subset of the HTTP (HyperText Transfer
Procotol), used for requesting websites

Your server can serve files to a web browser (e.g. Firefox)

Your client can request files from webservers
(unfortunately most webservers require HTTPS)
» http://pan.vmars.tuwien.ac.at/osue/
» http://neverssl.com/
» http://www.nonhttps.com/

28 /29

http://pan.vmars.tuwien.ac.at/osue/
http://neverssl.com/
http://www.nonhttps.com/

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a

connection

Send and
Receive

Exercise 3

Material

Material

» OSUE-Wiki: Sockets
http://wiki.vmars.tuwien.ac.at/sockets
» The GNU C Library Reference Manual,
Ch. 12 (Stream 1/0), Ch. 16 (Sockets)
http:
//www.gnu.org/software/libc/manual/html node/
> Beej's Guide to Network Programming
http://beej.us/guide/bgnet/

29 /29

http://wiki.vmars.tuwien.ac.at/sockets
http://www.gnu.org/software/libc/manual/html_node/
http://www.gnu.org/software/libc/manual/html_node/
http://beej.us/guide/bgnet/

	Overview
	Preliminaries
	Byte Order

	Sockets
	Socket API
	Establishing a connection
	Send and Receive

	Exercise 3
	Material

