Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Exercise 1: Files, Processes, Pipes

Operating SystemsVU
2023w

Axel Brunnbauer, Florian Mihola, David Lung,
Andreas Brandstatter, Peter Puschner

Technische Universitat Wien
Computer Engineering
Cyber-Physical Systems

2023-10-19

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Content

File Handling
p File 10, Streams
Related Processes

» Create a process (fork)
P Load a new program into a process's memory (exec)

P Wait on a process's termination (wait)
IPC via Unnamed Pipes

p Communication between related processes

2/66

ekl Unix File /0

processes,

pipes

File Descriptor
Unix File 1/0

Stream 1/0O

» Non-negative integer
Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes
Redirection of
stdin /stdout

Pitfalls 3/66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0

File Descriptor

» Non-negative integer

P Reference to an entry (= index) in the table of open files

(file descriptor table) of the process

3/66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0

File Descriptor

» Non-negative integer

P Reference to an entry (= index) in the table of open files
(file descriptor table) of the process

» Standard 1/O file descriptors: already present at program
start

3/66

ekl Unix File /0

processes,

pipes

File Descriptor
Unix File 1/0

stream 1/0 » Non-negative integer
Related .
Processes P Reference to an entry (= index) in the table of open files
E[ﬁ’,;ﬁfﬁies (file descriptor table) of the process
'F:'“”face » Standard 1/O file descriptors: already present at program
rocess
Creation start
Program
Execution File desc. | Description POSIX Name stdio Stream
Lrocess on 0 Standard input | STDIN FILENO | stdin
Waiting on a 1 Standard output | STDOUT FILENO | stdout
S"f'd“%”ss 2 Error output STDERR FILENO | stderr
itfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls 3 / 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0

File Descriptor

» Non-negative integer

P Reference to an entry (= index) in the table of open files
(file descriptor table) of the process

» Standard 1/O file descriptors: already present at program

start
File desc. | Description POSIX Name stdio Stream
0 Standard input STDIN FILENO | stdin
1 Standard output | STDOUT FILENO | stdout
2 Error output STDERR FILENO | stderr

» POSIX name is defined in <unistd.h>

3/66

el Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

Unix File I/O

Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes
Redirection of
stdin /stdout

Pitfalls 4 / 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

int open(const char *pathname, int flags, mode_t mode)
Opens an existing file or creates a new file

4/66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

int open(const char *pathname, int flags, mode_t mode)
Opens an existing file or creates a new file

» pathname: path to the file

4/66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

int open(const char *pathname, int flags, mode_t mode)
Opens an existing file or creates a new file
» pathname: path to the file
p flags: One of 0 RDONLY, 0O WRONLY, O RDWR
» Additional flags can be added (via bitwise OR):

P 0 CREAT: create the file if it does not exist
» 0 EXCL: fail if the file already exists

4/66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

int open(const char *pathname, int flags, mode_t mode)
Opens an existing file or creates a new file
» pathname: path to the file
p flags: One of 0 RDONLY, 0O WRONLY, O RDWR
» Additional flags can be added (via bitwise OR):

P 0 CREAT: create the file if it does not exist
» 0 EXCL: fail if the file already exists

P mode: specifies the file mode bits to be applied when a

new file is created

4/66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

int open(const char *pathname, int flags, mode_t mode)
Opens an existing file or creates a new file
» pathname: path to the file
p flags: One of 0 RDONLY, 0O WRONLY, O RDWR
» Additional flags can be added (via bitwise OR):

P 0 CREAT: create the file if it does not exist
» 0 EXCL: fail if the file already exists

P mode: specifies the file mode bits to be applied when a

new file is created
» Returns a file descriptor or -1 on error

4/66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

int open(const char *pathname, int flags, mode_t mode)

Unix File 1/0 Opens an existing file or creates a new file

S e P pathname: path to the file

A » flags: One of 0_RDONLY, 0_WRONLY, O_RDWR

Process » Additional flags can be added (via bitwise OR):
roperties

InteF:face P 0_CREAT: create the file if it does not exist

Process » 0 _EXCL: fail if the file already exists

Creati e . . .

Pr::r: P mode: specifies the file mode bits to be applied when a
Execution new file is created

Pr - H

Termination » Returns a file descriptor or -1 on error

Waiting on a

Child Process .

Dol int fd = open("~/data.txt", 0_CREAT | O_EXCL | O WRONLY);

Debuggi

HeEte if (fd < 0) {

IpC fprintf(stderr, "open failed: %s\n", strerror(errno));

Pipes exit (EXIT FAILURE);

Redirection of }
stdin/stdout

Pitfalls 4 / 66

Exercise 1:
files,
processes,

pipes

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

ssize_t read(int fd, void *buf, size_t count)
Read up to count bytes from a file

5/ 66

Exercise 1:
files,
processes,

pipes

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0
System calls for file access (see man pages chapter 2)
ssize_t read(int fd, void *buf, size_t count)

Read up to count bytes from a file
p fd: file descriptor

5/ 66

Exercise 1:
files,
processes,

pipes

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0
System calls for file access (see man pages chapter 2)
ssize_t read(int fd, void *buf, size_t count)

Read up to count bytes from a file

p fd: file descriptor
p buf: buffer to be filled with the read data

5/ 66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

ssize_t read(int fd, void *buf, size_t count)
Read up to count bytes from a file
p fd: file descriptor
Provemes P buf: buffer to be filled with the read data

Process

Unix File 1/0
Stream 1/0O

e P count: size of buffer (max number of bytes to read)

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

5/ 66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

ssize_t read(int fd, void *buf, size_t count)
Read up to count bytes from a file
p fd: file descriptor
Provemes P buf: buffer to be filled with the read data
Process

e P count: size of buffer (max number of bytes to read)
Interface P Returns number of bytes effectively read or -1 on error

Process
Creation

Unix File 1/0
Stream 1/0O

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes
Redirection of
stdin/stdout

Pitfalls 5 / 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

ssize_t read(int fd, void *buf, size_t count)
Read up to count bytes from a file
p fd: file descriptor
P buf: buffer to be filled with the read data
P count: size of buffer (max number of bytes to read)
P Returns number of bytes effectively read or -1 on error

char buffer[80];

for (int pos = 0; pos < sizeof(buffer);) {
int numread = read(fd, buffer+pos, sizeof(buffer)-pos);

if (numread < 0) {
// error

} else
pos += numread;

5/ 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

ssize_t write(int fd, void *buf, size_t count)
Write up to count bytes to a file

6/ 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0
System calls for file access (see man pages chapter 2)
ssize_t write(int fd, void *buf, size_t count)
Write up to count bytes to a file
p fd: file descriptor

6/ 66

Exercise 1:
files,
processes,

pipes

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0
System calls for file access (see man pages chapter 2)
ssize_t write(int fd, void *buf, size_t count)

Write up to count bytes to a file

p fd: file descriptor
p buf: buffer with the data to be written

6/ 66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

ssize_t write(int fd, void *buf, size_t count)
Write up to count bytes to a file
p fd: file descriptor
e p buf: buffer with the data to be written

Process

Unix File 1/0
Stream 1/0O

i » count: size of buffer (max number of bytes to write)

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

6/ 66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

ssize_t write(int fd, void *buf, size_t count)
Write up to count bytes to a file
p fd: file descriptor
Bromes p buf: buffer with the data to be written
Process

i » count: size of buffer (max number of bytes to write)
Interface P Returns the number of bytes effectively written or -1

Process
Creation

Unix File 1/0
Stream 1/0O

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes
Redirection of
stdin/stdout

Pitfalls 6 / 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0

System calls for file access (see man pages chapter 2)

ssize_t write(int fd, void *buf, size_t count)
Write up to count bytes to a file
p fd: file descriptor
P buf: buffer with the data to be written
P count: size of buffer (max number of bytes to write)
P Returns the number of bytes effectively written or -1

char buffer[80] = "Data to be written";

for (int pos = 0; pos < sizeof(buffer);) {
int n = write(fd, buffer+pos, sizeof(buffer)-pos);
if (n < 0) {
// error
} else

pos += n;

6/ 66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

int close(int fd)
Close a file

Unix File 1/0
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes

Redirection of

stdin/stdout

Pitfalls 7 / 66

ekl Unix File /0

processes,

pipes System calls for file access (see man pages chapter 2)

int close(int fd)
Close a file

p fd: file descriptor

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes

Redirection of

stdin/stdout

Pitfalls 7 / 66

Exercise 1:
files,
processes,

pipes

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0
System calls for file access (see man pages chapter 2)
int close(int fd)

Close a file

p fd: file descriptor
P Returns 0 on success and -1 on error

766

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Unix File 1/0
System calls for file access (see man pages chapter 2)

int close(int fd)
Close a file

p fd: file descriptor
P Returns 0 on success and -1 on error

if (close(fd) < 0) {

fprintf(stderr, "close failed: %s\n", strerror(errno));

exit (EXIT_FAILURE);

766

ekl Unix File /0
processes,

pipes EINTR

» read() and write() can be interrupted by a signal

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 8 /66

ekl Unix File /0

processes,

pipes EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR

Unix File 1/0

Stream 1/0O
Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes

Redirection of

stdin/stdout

Pitfalls 8 / 66

ekl Unix File /0

processes,

pipes EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR

Stream 1/O

Related » No bytes are read or written

Processes

Unix File 1/0

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC

Pipes

Redirection of

stdin/stdout

Pitfalls 8 / 66

Exercise 1:
files,
processes,

pipes

Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Unix File 1/0
EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR
» No bytes are read or written

P If this happens, just retry

8/ 66

ekl Unix File /0

processes,

pipes EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR

Stream 1/O

Related : » No bytes are read or written

Processes

Unix File 1/0

P If this happens, just retry

Process
Properties

Interface read() without checking for EINTR:

Process

Creation char buffer[80];
Program int pos, numread;

Execution

Process

Termination for (pos = 0; pos < sizeof(buffer);) {

Waiting on a numread = read(fd, buffer + pos, sizeof(buffer) - pos);
Child Process

Pitfalls if (numread < 0) {
Debugging // error

1Pe } else

pos += numread;

Pipes

Redirection of }
stdin/stdout

Pitfalls 8 / 66

ekl Unix File /0

processes,

pipes EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR

Stream 1/O

Related : » No bytes are read or written

Processes

Unix File 1/0

P If this happens, just retry

Process
Properties

Interface read() with checking for EINTR:

Process

Creation char buffer[80];
Program int pos, numread;

Execution

Process

Termination for (pos = 0; pos < sizeof(buffer);) {

Waiting on a numread = read(fd, buffer + pos, sizeof(buffer) - pos);
Child Process

Pitfalls if (numread < 0) {
Debugging if (errno != EINTR)
// other error than EINTR
IPC
} else
pos += numread;

Pipes

Redirection of }
stdin/stdout

Pitfalls 8 / 66

ekl Unix File /0

processes,

pipes EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR

Stream 1/O

Related » No bytes are read or written

Processes

Unix File 1/0

P If this happens, just retry

Process
Properties

Interface write() without checking for EINTR:

Process
Creation

char buffer[80] = "Data to be written";

Program int pos, numwrit;

Execution

Process

Termination for (pos = 0; pos < sizeof(buffer);) {

Waiting on a numwrit = write(fd, buffer + pos, sizeof(buffer) - pos);
Child Process

Pitfalls if (numwrit < 0) {
Debugging // error

1Pe } else

pos += numwrit;

Pipes

Redirection of }
stdin/stdout

Pitfalls 8 / 66

ekl Unix File /0

processes,

pipes EINTR

» read() and write() can be interrupted by a signal
P In this case they return -1 and set errno to EINTR

Stream 1/O

Related » No bytes are read or written

Processes

Unix File 1/0

P If this happens, just retry

Process
Properties

Interface write() with checking for EINTR:

Process
Creation

char buffer[80] = "Data to be written";

Program int pos, numwrit;

Execution

Process

Termination for (pos = 0; pos < sizeof(buffer);) {

Waiting on a numwrit = write(fd, buffer + pos, sizeof(buffer) - pos);
Child Process

Pitfalls if (numwrit < 0) {
Debugging if (errno != EINTR)
// other error than EINTR
IPC
} else
pos += numwrit;

Pipes

Redirection of }
stdin/stdout

Pitfalls 8 / 66

iyl Stream 1/0 in C
processes,
pipes

The functionality descends from a “portable /0O package”
s written by Mike Lesk at Bell Labs in the early 1970s.
Unix File 1/0 (Source: Wikipedia)

Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls o] / 66

iyl Stream 1/0 in C
processes,
pipes

The functionality descends from a “portable /0O package”
s written by Mike Lesk at Bell Labs in the early 1970s.
Unix File 1/0 (Source: Wikipedia)

Stream 1/O

Related

Processes » Standard 1/0 library (portability)

Process
Properties

#include <stdio.h>

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 9 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Stream 1/O in C

The functionality descends from a “portable /0O package”
written by Mike Lesk at Bell Labs in the early 1970s.

(Source: Wikipedia)

» Standard 1/O library (portability)

#include <stdio.h>

» Buffered layer on top of the Unix 1/0

Stream 1/O

Buffer

1/0

9/66

iyl Stream 1/0 in C
processes,
pipes

The functionality descends from a “portable /0O package”
s written by Mike Lesk at Bell Labs in the early 1970s.
Unix File 1/0 (Source: Wikipedia)

Stream 1/O

Related

Processes . e

o » Standard 1/0 library (portability) S 16
:;;::::s #include <stdio.h> Buffer
Process

geatic’" » Buffered layer on top of the Unix 1/0 /0

rogram

Exewtb" P Stream data type: FILE, includes i.a. file

Termination descriptor, pointer to buffer, current
AR position, EOF and error flags

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls o] / 66

iyl Stream 1/0 in C
processes,
pipes

The functionality descends from a “portable /0O package”
s written by Mike Lesk at Bell Labs in the early 1970s.
Unix File 1/0 (Source: Wikipedia)

Stream 1/O

Related

Processes . e

o » Standard 1/0 library (portability) i 11
:;;::::s #include <stdio.h> Buffer
Process

geam" » Buffered layer on top of the Unix 1/0 /0

rogram

Exewtb" P Stream data type: FILE, includes i.a. file

Termination descriptor, pointer to buffer, current
AR position, EOF and error flags

Pitfalls

e P Predefined streams stdin, stdout, stderr
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls o] / 66

iyl Stream 1/0 in C
processes,
pipes

The functionality descends from a “portable /0 package”
T written by Mike Lesk at Bell Labs in the early 1970s.
Unix File 1/0 (Source: Wikipedia)

Stream 1/O

Related

Processes H ili

e » Standard 1/O library (portability) Stream /O
::::::s #include <stdio.h> Buffer
Process

Seam" » Buffered layer on top of the Unix 1/0 Vo
rogram

EX“”“”' P Stream data type: FILE, includes i.a. file

Termination descriptor, pointer to buffer, current
pamnEens position, EOF and error flags

Pitfalls . .

e P Predefined streams stdin, stdout, stderr

IPC » Convention: functions start with “f”: fopen(3),

Pipes fdopen(3), fwrite(3), fprintf(3), ...

Redirection of
stdin/stdout

Pitfalls 9 / 66

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 10 / 66

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the

Unix File 1/0
Qiclic returned stream
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 10 / 66

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the
ta/ returned stream

S » Different 1/0O modes:

Processes > ||r_|| . read—only

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls . / o

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the
Unix File I/O

Stream 110 returned stream

— » Different 1/0O modes:

Processes » "r" : read-only

Process » "w" : write-only (truncate to zero length first)

Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 10 / 66

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the
Unix File I/O
e returned stream
» Different 1/0O modes:
Related
FlipeEEEE » "r" : read-only
P wy no . .
Properties > IIWII . write-only (truncate to zero length first)
Interface > a : append—0n|y

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 10 / 66

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the

ta/ returned stream
» Different 1/0O modes:

Related

Processes » "r" : read-only

P n n o, . .

e > IIWII : write-only (truncate to zero length first)

Interface » a : append—0n|y

Process > "r+" / "w+" / "a+" : read and write (update mode)
Creation H H

Pr::m Read from beginning / truncate to zero length /
Execution ertlng at EOF

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls 10 / 66

Exercise 1:

files, fopen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the

ta/ returned stream
» Different 1/0O modes:

Related

Processes » "r" : read-only

A > "w" : write-only (truncate to zero length first)

literfiea » "a" : append-only

Process > "r+" / "w+" / "a+" : read and write (update mode)
Creation H H

Pr::m Read from beginning / truncate to zero length /
Execution ertlng at EOF

Pri .

e » Returns NULL on failure (errno)

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin/stdout

Pitfalls 10 / 66

Exercise 1:

files, fbpen(3)
processes,

pipes

FILE *fopen(const char *path, const char *mode)

Files P The file at path is opened, and associated with the

ta/ returned stream
» Different 1/0O modes:

Related

Processes » "r" : read-only

A > "w" : write-only (truncate to zero length first)
Interface > "a": append_only

Process > "r+" / "w+" / "a+" : read and write (update mode)
Creation H H

Pr::m Read from beginning / truncate to zero length /
Execution ertlng at EOF

Pri .

e » Returns NULL on failure (errno)

Waiting on a

Child Process i

—_— FILE *input = fopen("data.txt", "r");

Debugging

if (input == NULL) {
IpC fprintf(stderr, "fopen failed: %s\n", strerror(errno));

Pipes exit (EXIT FAILURE);
Redirection of }
stdin/stdout

Pitfalls 10 / 66

Il fdopen(3)
processes,
pipes

Files FILE *fdopen(int fd, const char *mode)

Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 11 /66

Il fdopen(3)
processes,
pipes

Files FILE *fdopen(int fd, const char *mode)

Unix File I/O
Stream 1/O

P Associates a stream with a file descriptor

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 11 /66

Il fdopen(3)
processes,
pipes

Files FILE *fdopen(int fd, const char *mode)

Unix File I/O
Stream 1/O

P Associates a stream with a file descriptor
» fd: file descriptor

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 11 /66

Il fdopen(3)
processes,
pipes

Files FILE *fdopen(int fd, const char *mode)

Unix File I/O
Stream 1/O

P Associates a stream with a file descriptor

Related » fd: file descriptor
Processes > mode: I/O mode

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

11 /66

Il fdopen(3)
processes,
pipes

T FILE *fdopen(int fd, const char *mode)
Unix File I/O
Stream 1/O

P Associates a stream with a file descriptor

Related » fd: file descriptor
Processes > mode: I/O mode

Process

Properties » Returns NULL on failure (errno)

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

11 /66

Il fdopen(3)
processes,
pipes

T FILE *fdopen(int fd, const char *mode)
Unix File I/O
Stream 1/O

P Associates a stream with a file descriptor

Related » fd: file descriptor
Processes > mode: I/O mode

Process

Properties » Returns NULL on failure (errno)

Interface

Process

Creation .

Program int fd = open(...);
Execution if (fd < 0) {

Process // error

Termination }

Waiting on a

Child Process FILE *f = fdopen(fd, ety
Pitfalls if (f == NULL) {

Debugging // error

IPC }

Pipes

Redirection of
stdin/stdout

Pitfalls 11 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Reading and Writing

Function Description

fread Reads n elements, each s bytes long

fgets Reads a line (up to "\n")

fgetc Reads a character

fwrite Writes n elements, each s bytes long

fputs Writes a C-string

fputc Writes a character

fprintf Formatted printing

fseek Set the file position indicator

Since POSIX.1-2008:

getline Reads a line into a dynamically allocated buffer

12/ 66

Exercise 1:

ey, Stream Status

processes,
pipes

int ferror(FILE *stream)

Files p ferror tests the error indicator of the stream

Unix File I/O -
Stream 1O (0 = error flag not set).

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 13 /66

Exercise 1:

fles, Stream Status

processes,
pipes

int ferror(FILE *stream)

Files p ferror tests the error indicator of the stream

Unix File I/O -
Stream 1O (0 = error flag not set).

Related

Processes int feOf(FILE *Stream)

Process

Properties P feof tests the end-of-file indicator of the stream (e.g.
Interface . H H
P:mss functions fgets and fgetc set this flag upon reaching
Creation the end of file)

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 13 / 66

Exercise 1:

fles, Stream Status

processes,
pipes

int ferror(FILE *stream)

Files p ferror tests the error indicator of the stream

Unix File I/O -
Stream 1O (0 = error flag not set).

Related i
Processes Int feOf(FILE *Stream)
Process .
Properties P feof tests the end-of-file indicator of the stream (e.g.
Interface . H H
e functions fgets and fgetc set this flag upon reaching
Creation the end of file)
Program
Execution
Process int clearerr(FILE *stream)
Termination
LG enc P clearerr resets error and end-of-file indicators
ild Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 13 / 66

Exercise 1:

fles, Stream Status

processes,
pipes

int ferror(FILE *stream)

Files p ferror tests the error indicator of the stream

Unix File I/O -
Stream 1O (0 = error flag not set).

Related i
Processes Int feof(F”_E *Stream)
Process .
Properties P feof tests the end-of-file indicator of the stream (e.g.
Interface . . H
Brocees functions fgets and fgetc set this flag upon reaching
Creation the end of file)
Program
Execution
Process int clearerr(FILE *stream)
Termination
LG enc P clearerr resets error and end-of-file indicators
ild Process
Pitfalls
Debugging int fileno(FILE *stream)
IPC . . .
Pipes P fileno returns the file descriptor of a stream

Redirection of
stdin/stdout

Pitfalls 13 / 66

Exercise 1:

fles, Stream Status

processes,
pipes

int ferror(FILE *stream)

Files p ferror tests the error indicator of the stream

Unix File I/O -
Stream 1O (0 = error flag not set).

Related

Processes int feof(F”_E *Stream)
Process .
Properties P feof tests the end-of-file indicator of the stream (e.g.
Interface . . H
Brocees functions fgets and fgetc set this flag upon reaching
Creation the end of file)
Program
Execution
Process int clearerr(FILE *stream)
Termination
LG enc P clearerr resets error and end-of-file indicators
ild Process
Pitfalls
Debugging int fileno(FILE *stream)
IPC . . .
Pipes P fileno returns the file descriptor of a stream

Redirection of

stdin/stdout e.g. fileno(stdout) -> 1
Pitfalls 13 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

fflush(3), fclose(3)

int fflush(FILE *stream)
P fflush enforces writing of buffered data

14 / 66

Il fflush(3), fclose(3)
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related

int fflush(FILE *stream)
Processes

T P fflush enforces writing of buffered data

Properties

Interface

int fclose(FILE *stream)

Process
Creation

Program P fclose calls fflush and closes the stream and the
Sxeeution associated file descriptor.

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 14 / 66

Il fflush(3), fclose(3)
processes,
pipes

Files
Unix File I/O
Stream 1/O

S int fflush(FILE *stream)
P::::::s » fflush enforces writing of buffered data

Properties

Interface

int fclose(FILE *stream)

Process
Creation

Program P fclose calls fflush and closes the stream and the
Sxeeution associated file descriptor.

Process
Termination

Wbl Return 0 on success, EOF on failure (errno)
ild Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls 14 / 66

Exercise 1:

ol Stream |/O Examples

processes, . .
pipes Read and write files

Read the content of an input file line by line and write it to an

Files output file
Unix File I/O

Stream 1/O

char buffer[1024];

o FILE *in, *out;

Processes

Process if ((in = fopen("input.txt", "r")) == NULL)
Properties // fopen failed

Interface

Process if ((out = fopen("output.txt", "w")) == NULL)
Creation // fopen failed

Program
Execution

while (fgets(buffer, sizeof(buffer), in) != NULL) {
Coees on if (fputs(buffer, out) == EOF)
// fputs failed

Waiting on a
Child Process }

Pitfalls
Db if (ferror(in))

pe // fgets failed

Pipes fclose(in);

fclose(out);

Redirection of
stdin/stdout

Pitfalls 15 / 66

Exercise 1:

flos, Processes

processes,
pipes

Files

SRSl \Why should we create processes?
Stream 1/O

Related P Divide up a task

Processes

Process > Simpler application design
Properties > Greater concurrency

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

16 / 66

Exercise 1:

fles, Processes

processes,
pipes

Files

SRSl \Why should we create processes?
Stream 1/0O

Related P Divide up a task

Processes

Process > Simpler application design
Properties » Greater concurrency

Interface

Process
Creation

Example

Program . .
Execution A server listens to client requests. The server process starts a

Process

Trocess new process to handle each request and continues to listen for
ermination

Waiting on a further connections.
Child Process

Pithalle The server can handle several client requests simultaneously.

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

16 / 66

Exercise 1:

fles, Process vs. Thread

processes,
pipes

. fork(2) vs. pthreads(7)
Unix File I/O

; Process 0
Stream |/O

Related process
Processes image

Process b
Properties Ss

Interface

data

Process
Creation

text

Program
Execution

Thread 0

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

17 / 66

Exercise 1:

fles, Process vs. Thread

processes,
pipes

. fork(2) vs. pthreads(7)
Unix File I/O

, Process 0 Process 1
Stream 1/O

Related process process
Processes image image
Process

Properties bss bss

Interface

data data

Process
Creation

text text

Program
Execution

Thread 0 Thread 0

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

18 / 66

Exercise 1:

fles, Process vs. Thread

processes,
pipes

. fork(2) vs. pthreads(7)
Unix File I/O

Process 0
Stream 1/0O

Related process
Processes image

Process b
Properties Ss

Interface data

Process
Creation

text

Program
Execution

Thread 0 Thread 1 Thread 2 Thread 3
Process

Termination | stack, ... | | stack, ... | | stack, ... | | stack, ... |
Waiting on a

Child Process
Pitfalls

Debugging

IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

19/ 66

Exercise 1:

fles, Process vs. Thread

processes,
pipes

. fork(2) vs. pthreads(7)
Unix File 1/0

, Process 0 Process 1
Stream 1/O

Related process process
Processes image image
Process

Properties bss bss

Interface

data data

Process
Creation

text text

Program
Execution

Thread 0 Thread 1 Thread 0
Process

Termination | stack, ... | | stack, ... |
Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

20/ 66

el Process Hierarchy

processes,
pipes

Files systemd-+-ModemManager- - -2* [{ModemManager}]
Unix File 1/0 -NetworkManager-+-dhclient
A P Every process has a sbrt-dbus. - - (abyt Loy tuorkianager}]
/ - -dbus- - - -dbu
el parent process :g;ﬁ:grt-wa“h-logl
Processes ;
H PR -acpid

v— P Exception: init gty

IPropfertles process (lnlt, :gkzactl

nterface . . .
S SyS'temd) -audltd-T-audlspd-f:zgﬂﬁgg’é;h
Creation ‘-{auditd}

Program > EVery process has a -automount- - -7*[{automount}]

E A . . -avahi-daemon- - -avahi-daemon

xecution unique ID (pid t) chronyd

Process -colord---2*[{colord}]
Termination > ShOW process -crong
Waiting on a . -cups

Child Process h|erarchy: -gbus-daemog

. -dnsmasq- - -dnsmasq

HUEIE pstree(1) -firewalld-- -{firewalld}

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

21/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Memory Layout of a Process

virtual memory
of a process

kernel
space

argv, envp

user stack

v

shared memory

?

heap

bss

data

text

22 /66

Exercise 1:

fls, Properties of a Process in Linux

processes,
pipes

Files
Unix File I/O
Stream 1/O

Related Scheduling Priority, CPU time, ...

Processes

Eo— Identification PID, owner, group, ...
Properties

Interface Memory Management Pointer to MMU information

State Running, waiting, ...

Process

Pt Signals Mask, pending

Program

LeBEm Process Relations Parents, siblings

Process
Termination

A e S P Show process info: cat /proc/<pid>/status

Pitfalls P See struct task structin sched.h

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls 23 / 66

Exercise 1:
files,
processes,
pipes

Files

Unix File I/O
Stream 1/O
Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Interface

fork / exec / exit / wait

P fork(2) — creates a process
(copies the process image)

p exec(3) - loads a program
(replaces the process image of a
process with a new one)

p exit(3) - exits a process

» wait(2) - awaits the exit of
child processes

parent

fork

wait

child

exec

exit

24 / 66

Exercise 1:
files,
processes,
pipes

Files

Unix File I/O
Stream 1/O
Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Process Creation
fork

P Creates a new process

» New process is an identical copy
of the calling process — except
PID, pending signals, ...

P Calling process is the parent of

the created process, the child —
processes are related

» Both processes run parallel and
execute the same program (from
the fork call on)

parent

fork

wait

child

exec

exit

25 / 66

il Process Creation

processes,
pipes fork

Files

Unix File I/O
Stream 1/O

e P Create the process

Processes . .
Process #include <unistd.h>

Properties

Interface pld_t fO rk(VOid) ’
Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

26 / 66

il Process Creation

processes,
pipes fork

Files

Unix File I/O
Stream 1/O

P Create the process

Related
Processes

Process #include <unistd.h>

Properties

Interface pld_t fo rk(VOid) ’
Process
Creation

Program P Distinguish between parent and child
via return value of fork

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

26 / 66

il Process Creation

processes,
pipes fork

Files

Unix File I/O
Stream 1/O

P Create the process

Related
Processes

Process #include <unistd.h>

Properties

Interface pld_t fo rk(VOid) ’
Process
Creation

Program P Distinguish between parent and child
via return value of fork

-1 On error

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

26 / 66

il Process Creation

processes,
pipes fork

Files
Unix File I/O
Stream 1/O
P Create the process
Related
Processes . A
Process #include <unistd.h>
Properties
Interface pid_t fork(void);
Process -
Creation
e » Distinguish between parent and child
xecution .
brocees via return value of fork
Termination _1 On error
Waiti .
A B 0 In the child process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

26 / 66

il Process Creation
Mo I

Files
Unix File I/O
Stream 1/O
P Create the process
Related
Processes .)
T #include <unistd.h>
Properties
Interface pld t fork(VOid);
Process -
Creation
e » Distinguish between parent and child
xecution .
brocees via return value of fork
Termination _1 On error
Waiti .
A B 0 In the child process
Pitfalls >0 In the parent process

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

26 / 66

il Process Creation

processes,

T Before fork()

Files

Parent process
Unix File I/O

Stream 1/0O

Related PC
Processes

int cid = fork()

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

27/ 66

il Process Creation

processes,

T Before fork()

Al Parent process
Unix File I/O

Stream 1/0O

Related PC e .- --

Processes . .
int cid = fork()
Process

Properties

Interface

Process
Creation

Program

Sxeeution After fork()
Process
Termination

Waiting on a .
Child Process Parent process Child process

Pitfalls

Debugging

IPC .) . .
: int cid = fork() int cid = fork()
IFpes PC o] ee PC] .-
Redirection of
stdin/stdout

Pitfalls 27 / 66

il Process Creation
"'Z?SZS:S' Example

Files pid t pid = fork();

Unix File I/O

Stream 1/O SWitCh (pld) {

Processes case -1:

T fprintf(stderr, "Cannot fork!\n");
Properties exit (EXIT FAILURE);
Interface

Creston case 0:

Program // child tasks
Execution s

Tenmination el

Waiting on a default:

Child Process // parent tasks
Pitfalls -

Debugging break;

IPC }

Pipes

Redirection of
stdin /stdout

Pitfalls 28 / 66

Exercise 1:
files,
processes,
pipes

Files

Unix File I/O
Stream 1/O
Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Process Creation
Child

Child inherits from parent:

» Opened files (common access!)
» File buffers
P Signal handling

p Current values of variables

29/ 66

il Process Creation
processes,

pipes Chlld

Files Child inherits from parent:
Unix File I/O

Stream 1/0O

» Opened files (common access!)
Related .
s » File buffers

Process

Properties » Signal handling

Interface

Pesss p Current values of variables

Creation

Program
Execution

Process BUt:

Termination

pamnEens » Variables are local to process (no influence)

Pitfalls

P Signal handling can be re-configured

Debugging

IPC » Communication (IPC) via pipes, sockets, shared memory,
Pipes

Redirection of
stdin/stdout

Pitfalls

29/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O

Stream 1/0O
Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Program Execution

exec

P Load a new program into a
process’s memory

P Executes another program

P In the same process
(PID remains the same)

parent

fork

wait

child

exec

exit

30/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O

Stream 1/0O
Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Program Execution

exec Family!

int
int

int
int
int

int

execl(const char *path, const char *arg, ...);

execlp(const char *file, const char *arg,

execle(const char *path, const char *arg,
char *const envpl[]);

execv(const char *path, char *const argv[l]);
execvp(const char *file, char *const argv([]);

fexecve(int fd, char *const argvl[],
char *const envpl[]);

Frontend of execve(2)

31/66

el Program Execution
"":fiﬁisfs' exec Family

Files
Unix File I/O

Stream 1/0 p execl{’} - variable number of arguments

Related : — arguments via array

P:::::s » exec{’ip — searching the environment variable $PATH for
e the program specified

E;g;;fn P execi’le — environment? can be changed

Program p» fexecve — accepts file descriptor (instead of path)

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

P 2FYI: environ(7) 32 /66

Exercise 1:

s, Program Execution

processes, .
pipes exec Family

Files
Unix File 1/0

S 1/ p execl{’} - variable number of arguments

Related > exec

Processes

arguments via array

Process
Properties

— searching the environment variable $PATH for
Interface the program SPeCiﬁed

Process » exec{’ie — environment? can be changed

Creation |

Program p» fexecve — accepts file descriptor (instead of path)
Waiting on a

Execution
Note Argument Passing!
Child Process a i
ol P 1st argument is the program’s name (argv[0])!

Debugging P Last argument must be a NULL pointer!
IPC

Process
Termination

Pipes

Redirection of
stdin/stdout

Pitfalls 2FYI: environ(7) 32/ 66

Exercise 1:

Fles, Program Execution

processes,
pipes Example: execv(), execvp()

Files
Unix File I/O

Stream 1/0O #include <unistd.h>

Related
Processes

Process
Properties char *cmd[] = { "ls", "-1", (char *) 0 };
Interface

Process execv("/bin/1s", cmd);

Creation

Program // or:
Execution // eXeCVp("1s" 0 Cmd),'

Process
Termination

Waiting on a fprintf(stderr, "Cannot exec!\n");
Child Process exit (EXIT_FAI LURE) 5

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

33/66

Exercise 1:

Fles, Program Execution

processes,
pipes Example: execl(), execlp()

#include <unistd.h>

Files
Unix File I/O

Stream 1/O ") N N N
execl("/bin/1s", "ls",

Related)

Processes // or:

Process // execlp("ls", "ls", "

Properties

Interface

o fprintf(stderr, "Cannot
Creation exit (EXIT FAILURE);

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

“-1", NULL);
-1", NULL);

exec!\n");

34 /66

Exercise 1:

Fles, Program Execution

processes,
pipes Example: execl(), execlp()

#include <unistd.h>

Files
Unix File I/O
Stream 1/O)
execl("/bin/ls", "ls", "-1", NULL);
Related
Processes // or:
Process // execlp("ls", "ls", "-1", NULL);
Properties
'F:“erface fprintf(stderr, "Cannot exec!\n");
Crestion exit(EXIT FAILURE);
Program
Execution
Tomination Attention - this is not working:
Waiting on a
Chilcliocess execl("/bin/ls", "1ls -1", NULL);
Pitfalls
Debugging int a = 1;
e execl("myprog", "myprog", "-a", a, NULL);

Pipes

// e.g., use a char-buffer and snprintf(3)

Redirection of
stdin /stdout

Pitfalls

34 /66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Process Termination

exit

P Terminates a process (normally)

P Termination status can be read
by parents
» Actions performed by exit ()
» Flush and close stdio stream
buffers
» Close all open files
» Delete temporary files (created
by tmpfile(3))
» Call exit handlers
(atexit (3))

parent

fork

wait

child

exec

exit

35/ 66

il Process Termination
e T

Files
Unix File I/O
Stream 1/O

P Terminate a process normally

Related #include <stdlib.h>

Processes

Process o 5 .
Properties void exit(int status);

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

36/ 66

http://tldp.org/LDP/abs/html/exitcodes.html

il Process Termination
e T

Files

lsj::a:lifgo » Terminate a process normally

E:(I:::t:s:es #include <stdlib.h>

Process

Properties void eXit(int Status);

Interface

Creston > Status: 8 bit (0-255)

T » By convention

= > exit (EXIT SUCCESS) - process completed successfully
v » exit(EXIT_FAILURE) - error occurred

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin/stdout

Pitfalls 36 / 66

http://tldp.org/LDP/abs/html/exitcodes.html

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Process Termination

exit

P Terminate a process normally

#include <stdlib.h>

void exit(int status);

p Status: 8 bit (0-255)
» By convention

> exit (EXIT SUCCESS) - process completed successfully

» exit (EXIT FAILURE) - error occurred
» More return values

> BSD: sysexits.h
» http://tldp.org/LDP/abs/html/exitcodes.html

36/ 66

http://tldp.org/LDP/abs/html/exitcodes.html

Exercise 1:

el \\Vaiting on a Child Process

processes, .
pipes walt

Files l
Unix File I/O

Stream 1/O

fork

Related .
Processes parent child

Process
Properties

Interface P Wait until a child process

Process

. exec
Creation terminates
Program

Execution p Returns the PID and status of
Riccess the terminated child Y

Termination

Waiting on a wait exit
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

37 /66

Exercise 1:

el \\Vaiting on a Child Process

processes, .
pipes walt

Files

= EBIE P Wait for a child to terminate

Stream 1/O

oroted #include <sys/wait.h>
elate

Processes

Process pld_t Wait(int *Status);

Properties
Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

3+ busy waiting 38 /66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Waiting on a Child Process

wait

» Wait for a child to terminate

#include <sys/wait.h>

pid t wait(int *status);

» wait () blocks? until a child terminates or on error

3+ busy waiting

38/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Waiting on a Child Process

wait

» Wait for a child to terminate

#include <sys/wait.h>

pid t wait(int *status);

» wait () blocks? until a child terminates or on error
P Return value

» PID of the terminated child
» -1 on error (— errno, e.g., ECHILD)

3+ busy waiting

38/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Waiting on a Child Process

wait

» Wait for a child to terminate

#include <sys/wait.h>

pid t wait(int *status);

» wait () blocks? until a child terminates or on error
P Return value

» PID of the terminated child

» -1 on error (— errno, e.g., ECHILD)
P Status includes exit value and signal information

» WIFEXITED(status), WEXITSTATUS (status)

» WIFSIGNALED(status), WTERMSIG(status)
» See wait(2)

3+ busy waiting

38/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Waiting on a Child Process

Zombies and Orphans

P UNIX: Terminated processes remain in the process table

» No more space in process table — no new process can be

started!

p After wait () the child process is removed from the
process table

39/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Waiting on a Child Process

Zombies and Orphans

P UNIX: Terminated processes remain in the process table

» No more space in process table — no new process can be

started!

p After wait () the child process is removed from the
process table

Zombie Child terminates, but parent didn't call wait yet

P State of the child is set to "zombie"

P Child remains in process table until parent

calls wait

39/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File 1/0
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Waiting on a Child Process

Zombies and Orphans

P UNIX: Terminated processes remain in the process table

» No more space in process table — no new process can be

started!

p After wait () the child process is removed from the
process table

Zombie Child terminates, but parent didn't call wait yet

P State of the child is set to "zombie"

P Child remains in process table until parent

calls wait

Orphan Parent terminates before child

P Child becomes an orphan and is inherited to

the init process

P When an orphan terminates, the init process

removes the entry in the process table

39/ 66

Exercise 1:

el \\Vaiting on a Child Process

processes,
pipes Example

Files #include <sys/wait.h>

Unix File I/O

Stream 1/0 int status;

Related pid_t child_pid, pid;

Process e

Properties while ((pld = Wait(&status)) 1= Chlldipld)
Interface {

Process. if (errno == EINTR) continue;

Program if (pld == -1) {

Execution fprintf(stderr, "Cannot wait!\n");
?;f:lc“eisnztion exit (EXIT FAILURE);

Waiting on a }

Child Process }

Pitfalls

Debugging if (WEXITSTATUS(status) == EXIT SUCCESS) {
IPC [

Pipes

Redirection of
stdin/stdout

Pitfalls

40 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Waiting on a Child Process

waitpid

P Wait on a specific child process

#include <sys/wait.h>

pid t waitpid(pid t pid, int *status, int options);

41/ 66

Exercise 1:

el \\Vaiting on a Child Process

processes, L
pipes Waltpld

Fl‘J'e_s o P Wait on a specific child process

Stream 1/0 #include <sys/wait.h>

Related

Processes . q q q q . . q
— pid t waitpid(pid_t pid, int *status, int options);
Properties

S > Examples

Creation

Program waitpid(cid, &status, 0);

Execution // waits on a child process with PID ’cid’
Process

Termination

Wamngna waitpid(-1, &status, 0);

Child Process // equivalent to wait

Pitfalls

Debugging waitpid(-1, &status, WNOHANG);

IPC // does not block

Pipes

Redirection of
stdin/stdout

Pitfalls

41/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Notification

on Termination of a Child

If parent should not block

» Synchronous

» waitpid(-1, &status, WNOHANG)
» Returns exit status when a child terminates
» Repeating calls - polling

42 /66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation
Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Notification

on Termination of a Child

If parent should not block

» Synchronous

» waitpid(-1, &status, WNOHANG)
» Returns exit status when a child terminates
» Repeating calls - polling

» Asynchronous

> Signal STGCHLD is sent to the parent process whenever

one of its child processes terminates
> Catch by installing a signal handler (sigaction)
> Call wait in the signal handler

42 /66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Pitfalls

int main(int argc, char **argv)
{
fprintf(stdout, "Hello");

(void) fork();
return 0;

Output: "HelloHello"

Why?

43/ 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Pitfalls

int main(int argc, char **argv)
{
fprintf(stdout, "Hello");
fflush(stdout);
(void) fork();
return 0;

Output: "Hello"

— for all opened streams

44 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/0O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

Debugging

gdb

p Before fork is executed:

set

Example

$ gdb
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

follow-fork-mode [child|parent]

-tui ./forktest

break main

set follow-fork-mode child
run

next

continue
quit

45 / 66

Exercise 1:

fles, Inter-Process Communication

processes,

pipes Recall

Files
Unix File I/O

Stream 1/O

So far:

C » Signals (e.g., to synchronise between parent and child)

[Piaess — see Development in C |

Properties
Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC
Pipes

Redirection of

stdin /stdout
Pitfalls

46 / 66

Exercise 1:

fles, Inter-Process Communication

processes,
pipes Recall

Files
Unix File I/O
Stream 1/O

So far:

C » Signals (e.g., to synchronise between parent and child)

[Piaess — see Development in C |

Properties

Interface
Process N ew:

Creation

Program > PlpeS

Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC
Pipes

Redirection of

stdin /stdout
Pitfalls

46 / 66

Exercise 1:

fles, Inter-Process Communication

processes,
pipes Recall

Files
Unix File I/O
Stream 1/O

So far:

C » Signals (e.g., to synchronise between parent and child)

Process — see Development in C |

Properties

Interface
Process N ew:

Creation

Program > PlpeS

Execution
Process

Termination NeXt |eCtu res:
Waiting on a
Child Process

— P Shared Memory

Debugging P Sockets
IPC

Pipes

Redirection of

stdin /stdout
Pitfalls

46 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Pipes
Overview

(Unnamed) Pipe

= unidirectional data channel
= enables communication between related processes

47 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Pipes

Overview

(Unnamed) Pipe

= unidirectional data channel
= enables communication between related processes

» Example
$ s | we -1
pipe
s stdout { unidirectional bytestreem (}., stdin wce
L
write end read end

47 / 66

el Pipes

processes,)
pipes Overwew

(Unnamed) Pipe

= unidirectional data channel

Files
Unix File I/O

Stream 1/0 = enables communication between related processes

Related
Processes

Process > Exam p|e

Properties

Interface $ -LS | WC -1

Process

Creation plp e
Program

Execution —)
Process Is stdout |-- unidirectional byte stregm -9 stdin we
Termination

Waiting on a write end read end
Child Process

Pitfalls

P Access to read and write end of the pipe via file descriptors
Debugging

C P Pipe is an unidirectional byte stream
Pipes » Buffered

Redirection of
stdin/stdout

P Implicit synchronisation

Pitfalls

47 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Pipes

Create

» Create a pipe

#include <unistd.h>

int pipe(int pipefd[2]);

48 / 66

Exercise 1: .

files, Pi pes
processes,

pipes Create

Files

Unix File 1/0 P Create a pipe

Stream 1/O

el #include <unistd.h>

Processes

Process int plpe(int plpefd [2]) ’

Properties
Interface
Process

Cresitter P File descriptors of read and write end are returned in
Program specified integer array pipefd

Execution

Process 4 plpefd [0] — read end
Termination » pipefd[1] — write end

Waiting on a
Child Process
Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

48 / 66

Exercise 1: .

files, Pi pes
processes,

pipes Create

Files

Unix File 1/0 P Create a pipe

Stream 1/O

el #include <unistd.h>

Processes

Process int plpe(int plpefd [2]) ’

Properties
Interface

Process

Cresitter P File descriptors of read and write end are returned in
Program specified integer array pipefd

Execution

Process 4 plpefd [0] — read end
Termination » pipefd[1] — write end

p Close unused ends

Waiting on a
Child Process

Pitfalls
Debugging » Use read/write end via stream-10 (fdopen, etc.)
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

48 / 66

Exercise 1: .

files, Pi pes
processes,

pipes Create

Files

Unix File 1/0 P Create a pipe

Stream 1/0O

el #include <unistd.h>

Processes

Process int plpe(int plpefd [2]) ’

Properties
Interface

Process

Cresitter P File descriptors of read and write end are returned in
Program specified integer array pipefd

Execution

Process 4 plpefd [0] — read end
Termination » pipefd[1] — write end

p Close unused ends

Waiting on a
Child Process

Pitfalls
Debugging » Use read/write end via stream-10 (fdopen, etc.)
IPC

Pipes

P A child process inherits the pipe — common access

Redirection of
stdin/stdout

Pitfalls

48 / 66

Exercise 1: .
fls, Unnamed Pipes
""L?.?Zes' Illustration

Files pl pe’
Unix File I/O
Stream 1/O

Parent process

Related
Processes

Process
Properties

pipefd[0] |&---.._
Interface h
Process pipefd[1] B S

Creation

Program N
Execution ’ N

N
Process ‘
Termination

Waiting on a R4 M
Child Process . N

Pitfalls s Pipe :
Debugging ' !

IPC Se- >

Pipes

Redirection of
stdin/stdout

Pitfalls

49 / 66

Exercise 1:

fls, Unnamed Pipes

processes, .
pipes Illustration

Files pipe; fork;
Unix File I/O
Stream 1/0O

Parent process Child process

Related
Processes

Process
Properties

Interface

pipefd[0] [--n._ pipefd[0] [<€-._

Process pipefd[1] |-, S pipefd[1] } S

Creation

Program N
o ’ .
Execution . M

N
Process ’ k'
P . fmmme
Termination . -

Waiting on a 4 L= .
Child Process . .-

. .
Pitfalls S Pipe ,

.
)
(]
[
)
[y
[y
~.el .-

'

'
Debugging h ‘* .
IPC .- >

Pipes

Redirection of
stdin/stdout

Pitfalls

49 / 66

Exercise 1:

fls, Unnamed Pipes

processes, .
pipes Illustration

Files pipe; fork; close unused ends;
Unix File I/O
Stream 1/0O

Parent process Child process

Related
Processes

Process
Properties

pipefd[0] (—-..___ pipefd[0]

~

Interface

~

Process pipefd[1] Ses pipefd[1] L

Creation

~o \
Program
Execution

Process L.
Termination —m==="

Waiting on a __.-"'_- ‘~
Child Process .-

.) N
Pitfalls e Pipe K

'
Debugging ‘*

IPC >

Pipes

Redirection of
stdin/stdout

Pitfalls

49 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin /stdout

Pitfalls

Unnamed Pipes

Implicit Synchronisation

» read blocks on empty pipe
» write blocks on full pipe

50 / 66

Exercise 1:

fls, Unnamed Pipes

processes,
pipes Implicit Synchronisation

Files » read blocks on empty pipe
Unix File I/O

Stream 1/0 » erte bIOCkS on fU” plpe

Related
Processes

N » read indicates end-of-file if all write ends are closed
F (return value 0)

Interface

Process P write creates signal SIGPIPE if all read ends are closed

Creation

S (if signal ignored/handled: write fails with errno
Execution E P I P E)

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

50 / 66

el Unnamed Pipes

processes,
pipes Implicit Synchronisation

Files » read blocks on empty pipe
Unix File I/O

Stream 1/0 » erte blocks on fU” plpe

Related
Processes

s P read indicates end-of-file if all write ends are closed
Properties (return value 0)

Interface

Process P write creates signal SIGPIPE if all read ends are closed
reation

R (if signal ignored/handled: write fails with errno
Execution E P I P E)

Process
Therefore...

Termination
. close unused ends, to get this behaviour (end-of-file and

SIGPIPE/EPIPE).

Waiting on a
Child Process

Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin/stdout

Pitfalls

50 / 66

el Unnamed Pipes

processes,
pipes Implicit Synchronisation

Files » read blocks on empty pipe

Unix File 1/0 . .

Stream 1/0 » erte blocks on fU” pipe

Related

Processes . . .

Pl » read indicates end-of-file if all write ends are closed
IP'°":'“eS (return value 0)

nterface

Process P write creates signal SIGPIPE if all read ends are closed
Creation

e (if signal ignored/handled: write fails with errno
Execution EPIPE)

Process
Termination

Waiting on a
Child Process

Pitfalls

(Therefore

. close unused ends, to get this behaviour (end-of-file and

SIGPIPE/EPIPE).

Debugging

IPC
Pipes

Redirection of

: Besides, the kernel removes pipes with all ends closed.
stdin/stdout

Pitfalls

50 / 66

el Unnamed Pipes

processes,

pipes What about named pipes?

Files
Unix File I/O
Stream 1/O

Related .
Processes > Unnamed pipes

Process
Properties > |

Interface » plpe (2)
Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

51/ 66

el Unnamed Pipes

processes,

pipes What about named pipes?

Files
Unix File I/O
Stream 1/O

Related .
Processes » Unnamed pipes

Process
Properties > |

Interface » plpe (2)
Process

Creation » Named pipes
Program » mkfifo(1l), mknod(2)

Execution

Process » Usage similar to files.
Termination > (Will not be dealt with any further throughout this course.)

Waiting on a
Child Process
Pitfalls

Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

51/ 66

Exercise 1:

il Redirection of stdin/stdout

processes,

pipes Why?

Files
Unix File I/O
Stream 1/O

» Main application: pipes
Related » Example: shell redirection of stdin and stdout

Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC

Pipes

Redirection of
stdin/stdout

.

Exercise 1:

il Redirection of stdin/stdout

processes,

pipes Why?

Files
Unix File I/O
Stream 1/O

» Main application: pipes
Related » Example: shell redirection of stdin and stdout

Processes

Process .
Properties ScenarIO:

Interface

Process

process. P A process may be forked or not
Program —> uses Standard IO
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

2 /68

Exercise 1:

il Redirection of stdin/stdout

processes,

pipes Why?

Files
Unix File I/O
Stream 1/O

» Main application: pipes
Related » Example: shell redirection of stdin and stdout

Processes

Process .
Properties ScenarIO:

Interface

Process

process. P A process may be forked or not
Program —> uses Standard IO

Execution

Process P A parent process forks and executes another program

Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

2 /68

Exercise 1:

il Redirection of stdin/stdout

processes,

pipes Why?

Files
Unix File I/O
Stream 1/O

» Main application: pipes
Related » Example: shell redirection of stdin and stdout

Processes

Process .
Properties ScenarIO:
Interface
Process

process. P A process may be forked or not
Program —> uses Standard IO

Execution

Process P A parent process forks and executes another program

Termination

Waiting on a P Parent usually wants to use the child’s output
Child Process

ol — redirect stdin (file descriptor 0, STDIN_FILENO)
Debugging and/or stdout (file descriptor 1, STDOUT FILENO) in

IPC new process
Pipes

Redirection of
stdin/stdout

2 /66

Exercise 1:

il Redirection of stdin/stdout

processes,

pipes Approach

Files
Unix File I/O
Stream 1/O

Related » Close file descriptors for standard 1/0 (stdin, stdout)

Processes

Blrseess » Duplicate opened file descriptor (e.g., a pipe's end) to the
Properties Closed one

Interface

Process

et #include <unistd.h>
Program

Execution int dup(int Oldfd);
Process

oSS o int dup2(int oldfd, int newfd);

Waiting on a
Child Process

Pitfalls

P Close duplicated file descriptor
Debugging
IPC

Pipes

Redirection of
stdin/stdout

/68

Il Redirection of stdin/stdout
processes,

pipes dup / dup2

Files
Unix File I/O
Stream 1/O

» dup(oldfd) duplicates file descriptor oldfd

» New file descriptor uses smallest unused ID
Process . . .
Properties = entry in file descriptor table
Interface » Duplicated file descriptor points to the same open file
[FieEEs description (equal file offset, status flags) — see open(2)

Creation

Related
Processes

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

/68

Exercise 1:

il Redirection of stdin/stdout

processes,

pipes dup / dup2
Files
Unix File I/O
Stream 1/0O .
Related » dup(oldfd) duplicates file descriptor oldfd
PP"’“E“QS » New file descriptor uses smallest unused 1D
Properties = entry in file descriptor table
Interface » Duplicated file descriptor points to the same open file
process. description (equal file offset, status flags) — see open(2)
Program
Exccution » dup2(oldfd, newfd) duplicates oldfd
- » New file descriptor uses ID newfd
Waiting on a > (Implicitly) closes the file descriptor newfd (if necessary)
Child Process . . P .
oittall » newfd points to the same open file description like oldfd

Debugging

IPC

Pipes

Redirection of
stdin/stdout

/68

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Redirection of stdin/stdout

Example: redirect stdout to opened file

Process A
File descriptor table

fd
flags

file
ptr

(stdin) fd O

4 » o0

(stdout) fd 1

~

(stderr) fd2

~

Open file table
(system-wide)

file status | inode
offset flags ptr

55 / 66

Exercise 1:

il Redirection of stdin/stdout

processes, . .
pipes Example: redirect stdout to opened file

Files

Unix File I/O

Stream 1/0 open flle;
Related

Processes

Process Process A Open file table
Properties File descriptor table (system-wide)

Interface

fd file file status | inode
Process flags | ptr offset flags ptr
Creziien (stdin) fd 0 +—> 0
Program (stdout) fd 1 ~

E o
xecution (stderr) fd 2 \\‘
Process 23
Termination
30

Waiting on a
Child Process fd 20 +— 3
Pitfalls

Debugging

IPC

Pipes

Redirection of
stdin/stdout

56 /68

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Redirection of stdin/stdout

Example: redirect stdout to opened file

open file; close stdout;

(stdin)
(stdout)
(stderr)

fd 0
fd 1
fd 2

fd 20

Process A
File descriptor table

fd
flags

file
ptr

+—> 0

T

>332

Open file table
(system-wide)

file
offset

status
flags

inode
ptr

57 / 66

Exercise 1:

il Redirection of stdin/stdout

processes, . .
pipes Example: redirect stdout to opened file

Files
Unix File I/O
Shieem /@ open file; close stdout; dup;

Related

Processes

Process Process A Open file table
Properties File descriptor table (system-wide)

Interface

fd file file status | inode
Process flags | ptr offset flags ptr

Creation (stdin) fd O +—» 0
Erogra!ﬂ (stdout) fd 1 N
sEaEen (stderr) fd 2 ~

Process
Termination

Waiti 30
aiting on a
Child Process fd 20 - 32

Pitfalls

Debugging

IPC

Pipes

Redirection of
stdin/stdout

s /68

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Redirection of stdin/stdout

Example: redirect stdout to opened file

open file; close stdout; dup; close file;

(stdin) fd 0
(stdout) fd 1
(stderr) fd2

Process A
File descriptor table

fd
flags

file
ptr

N

~

30
32

Open file table
(system-wide)

file
offset

status
flags

inode
ptr

59 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Redirection of stdin/stdout

Example: redirect stdout to log.txt

#include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

int fd;

// TODO error handling!

fd = open("log.txt", O WRONLY | O CREAT);

dup2(fd, // old descriptor
STDOUT _FILENO); // new descriptor

close(fd);

execlp("ls", "ls", NULL);

60 / 66

Exercise 1:

il Redirection of stdin/stdout

processes, . . .
pipes Example: redirect stdin to pipe

// TODO error handling!

Files
Unix File 1/0 int pipefd[2];
Stream 1/0 pipe(pipefd); // create pipe

Related
Processes

b pid t pid = fork();
Properties switch(pid) {

Interface

Process case 0: // child counting lines from parent
Creation close(pipefd[1]); // close unused write end

Program
Execution

Process dup2(pipefd[0O], // old descriptor - read end
Termination STDIN FILENO); // new descriptor

Waiting on a
Child Process

Pitfalls close(pipefd[0]);

Debugging

IpC execlp("wc", "wc", "-1", NULL);
Pipes // should not reach this line

Redirection of
stdin/stdout

1 /68

e Pitfalls
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related P Pipes are unidirectional

Processes

Process P Bidirectional: two pipes, but ...

Properties

it > Erroneous synchronisation (deadlock, e.g., both processes
Process read from empty pipe)

Creation

S P Synchronisation & Buffer
Sxeeution > Use fflush()

TR » Configure buffer (setbuf(3), setvbuf(3))
Waiting on a
Child Process

Pitfalls
Debugging
IPC

Pipes
Redirection of
stdin/stdout

Pitfalls 62 / 66
)

Exercise 1:
files,
processes,
pipes

Files
Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Tips for the Exercise

P Try to parallel the functionality of your program (as much
as possible)

Example

DO NOT: The parent first reads all input from a file to an
array. It then sends the data within one burst to the child. The
child processes the data and outputs the result.

INSTEAD DO: The parent reads line-by-line from a file. Each
line is sent to the client immediately. Reading and processing
of the lines happens in parallel.

63 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File 1/0
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Tips for the Exercise

» Communicate over pipes (do not exploit inherited memory
areas)

Example

DO NOT: The parent reads a file and saves its content into an
array and forks a child. The child processes the data from the
array.

INSTEAD DO: The parent communicates the data from the
file over a pipe.

» However, you may pass options/flags/settings to the child
(process). For example, use inherited variable argv to set
arguments when using exec.

64 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls
Debugging

IPC
Pipes

Redirection of
stdin /stdout

Pitfalls

Exercise 1

P 1A: Implement a simple Unix tool
» Become acquainted with the C language
» Argument handling
» Learn to use Makefiles

65 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Exercise 1

P 1A: Implement a simple Unix tool
» Become acquainted with the C language
» Argument handling
» Learn to use Makefiles
P 1B: Multiple communicating processes
> fork/exec/wait
» Start further programs
» Unnamed Pipes

» Communication between related processes
» Redirection of stdin/stdout

65 / 66

Exercise 1:
files,
processes,
pipes

Files
Unix File I/O
Stream 1/O

Related
Processes

Process
Properties

Interface

Process
Creation

Program
Execution

Process
Termination

Waiting on a
Child Process

Pitfalls

Debugging
IPC

Pipes

Redirection of
stdin/stdout

Pitfalls

Material

P Michael Kerrisk: A Linux and UNIX System Programming

Handbook, No Starch Press, 2010.

P man pages: fork(2), exec(3), execve(2), exit(3), wait(3),

pipe(2), dup(2)
» gdb - Debugging Forks:
https://sourceware.org/gdb/onlinedocs/gdb/Forks.html

66 / 66

https://sourceware.org/gdb/onlinedocs/gdb/Forks.html

	Files
	Unix File I/O
	Stream I/O

	Related Processes
	Process Properties
	Interface
	Process Creation
	Program Execution
	Process Termination
	Waiting on a Child Process
	Pitfalls
	Debugging

	IPC
	Pipes
	Redirection of stdin/stdout
	Pitfalls

