
Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Exercise 3: Sockets
Operating SystemsVU

2023W

Florian Mihola, David Lung, Andreas Brandstätter,
Axel Brunnbauer, Peter Puschner

Technische Universität Wien
Computer Engineering

Cyber-Physical Systems

2023-12-05

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Overview
Inter-process communication

Considered so far. . .
Exchanging data between processes on the same system

I Explicit synchronization between unrelated processes
I Shared Memory
I Semaphores

I Implicit synchronization between related processes
I Blocking read- and write operations
I Non-related processes via sockets
I Related processes via unnamed pipes

Today. . .
Exchanging data via sockets - either on the same system or
over a network

I Implicit synchronization between unrelated processes
2 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Byte Order or Endianness
I Sequential ordering of bytes in memory

int i = 0x12345678; // 8 hex digits = 4 bytes

I Little endian: little end first = least significant byte first
Byte address &i &i + 1 &i + 2 &i + 3
Byte content 0x78 0x56 0x34 0x12

I Big endian: big end first = most significant byte first
Byte address &i &i + 1 &i + 2 &i + 3
Byte content 0x12 0x34 0x56 0x78

I Byte order in memory depends on processor architecture
(x86 is little endian)

I When writing multiple bytes, program must take care of
byte order

I Network byte order is big endian
3 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Byte Order or Endianness
Write bytes explicitely in little endian order:
int i = 0x12345678;
uint8_t buf[sizeof(int)];

int pos;
for (pos = 0; pos < sizeof(int); pos++)

buf[pos] = i >> 8 * pos;

fwrite(buf, sizeof(int), 1, out);

Read bytes explicitely in little endian order:
uint8_t buf[sizeof(int)];
fread(buf, sizeof(int), 1, in);

int i = 0;
int pos;
for (pos = 0; pos < sizeof(int); pos++)

i |= (int)buf[pos] << 8 * pos;

// i == 0x12345678

4 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Byte Order or Endianness

uint32_t htonl(uint32_t netlong)

I Convert a 32-bit from host byte order to network byte
order

uint32_t ntohl(uint32_t netlong)

I Convert a 32-bit integer from network byte order to host
byte order

5 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Sockets

I What is a socket?
I Method for interprocess communication (IPC)
I Either on a single host or between different hosts in a

network (or via internet)

I Common scenario: communication between a client
and a server

I Sockets are handled like files
I Each socket gets a file descriptor
I Reading and writing to the associated file descriptor

6 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Socket API

I Sockets are an interface to the transport layer of a
communication protocol

I Direct communication between client and server: no need
to know the network layout

I Sockets do not implement application protocols (HTTP,
FTP, . . .)

I Connection-oriented, bidirectional and reliable
communication channel

I The connection is established between two endpoints
I Endpoint on server side: Server IP + known port number
I Endpoint on client side: Client IP + unused port number

7 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Sockets
Address families and socket types

I Address family (network layer)
I Internet Protocol, version 4 (IPv4)

AF_INET → man 7 ip
I Internet Protocol, version 6 (IPv6)

AF_INET6 (IPv6) → man 7 ipv6
I Unix Domain Sockets (local IPC)

AF_UNIX → man 7 unix
I Socket type

I Connection-oriented sockets (stream based)
I SOCK_STREAM, default for IP is TCP
I Connection is identified by two endpoints

I Connection-less sockets (datagram/message based)
I SOCK_DGRAM, default for IP is UDP

8 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Client-Server Example

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

read()

write()

close()

connect()

Creates communication

endpoint

Assigns address

to socket

Marks socket as passive,

listening for incoming

connections

Blocks until the

connection is established

Passive Socket

(Server)

Active Socket

(Client)

(repeated) data transfers

in both directions

9 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

System Call: socket()

int socket(int family, int type, int protocol)

I Creates a communication endpoint (socket)
family address family
type socket type

protocol communication protocol to be used
I address family + type usually imply protocol
I 0 for default-protocol

I Return value: File descriptor of the newly created socket
or -1 on failure (→ errno)

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)
// error

10 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Client-Server Example

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

read()

write()

close()

connect()

Creates communication

endpoint

Assigns address

to socket

Marks socket as passive,

listening for incoming

connections

Blocks until the

connection is established

Passive Socket

(Server)

Active Socket

(Client)

(repeated) data transfers

in both directions

11 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

System Call: bind()

int bind(int socket, struct sockaddr *address,
socklen_t addr_len)

I Assigns the specified address to a socket
socket file descriptor of the socket
address data structure with the desired address

addr_len size of the address data structure

I Return value: 0 on success, -1 on failure (→ errno)

struct sockaddr_in *sa;
...

if (bind(sockfd, sa, sizeof(struct sockaddr_in)) < 0)
// error

12 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Client-Server Beispiel

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

read()

write()

close()

connect()

Creates communication

endpoint

Assigns address

to socket

Marks socket as passive,

listening for incoming

connections

Blocks until the

connection is established

Passive Socket

(Server)

Active Socket

(Client)

(repeated) data transfers

in both directions

13 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

System Call: listen()

int listen(int socket, int backlog)

I Listen for connections on a socket (= mark it as passive)
I For connection-oriented protocols only

socket socket file descriptor
backlog number of connection requests, which are

managed in a queue by the OS, until the
server accepts them

I Return value: 0 on success, -1 on failure (→ errno)

if (listen(sockfd, 1) < 0)
// error

14 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Client-Server Example

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

read()

write()

close()

connect()

Creates communication

endpoint

Assigns address

to socket

Marks socket as passive,

listening for incoming

connections

Blocks until the

connection is established

Passive Socket

(Server)

Active Socket

(Client)

(repeated) data transfers

in both directions

15 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

System Call: accept()
int accept(int socket, struct sockaddr *address,

socklen_t *addr_len)

I Accept a new connection on a socket (passive, server)
socket socket file descriptor
address pointer to a sockaddr structure where the

address of the connecting socket is returned
(actual type depends on protocol, e.g.
sockaddr_in), NULL possible

addr_len pointer to the size of the structure in address
I Blocks if there is no pending request
I Returns a new socket (file descriptor) for the first pending

connection or -1 on error (→ errno)

int connfd = accept(sockfd, NULL, NULL);

if (connfd < 0)
// error

16 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

System Call: connect()

int connect(int socket, const struct sockaddr *address,
socklen_t addr_len)

I Initiate a connection (active, client)
socket socket file descriptor
address address of the server (destination)

addr_len size of the address structure
I Returns after the connection has been established
I The operating system of the client selects an arbitrary,

unused port

struct sockaddr_in server_addr;
...

if (connect(sockfd, &server_addr, sizeof(server_addr)) < 0)
// error

17 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

getaddrinfo(3)
int getaddrinfo(const char *node, const char *service,

const struct addrinfo *hints, struct addrinfo **res)
I Create a suitable socket address with getaddrinfo(3)

node Hostname (e.g. “localhost”, “173.194.44.232”,
“google.com”) or NULL (for usage with bind())

service port no. or name of service (e.g. “80”, “http”)
hints Selection criteria
res Destination address for the resulting addrinfo

structure (filled by getaddrinfo)
I Returns 0 on success or an error code (no use of errno!)
I See also gai_strerror(3) and freeaddrinfo(3)

struct addrinfo hints, *ai;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;

int res = getaddrinfo("localhost", "1280", &hints, &ai);
if (res != 0)

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(res));
18 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Example: getaddrinfo()
Client

struct addrinfo hints, *ai;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;

int res = getaddrinfo("localhost", "1280", &hints, &ai);
if (res != 0) {

// error
}

int sockfd = socket(ai->ai_family, ai->ai_socktype,
ai->ai_protocol);

if (sockfd < 0) {
// error

}

if (connect(sockfd, ai->ai_addr, ai->ai_addrlen) < 0) {
// error

}

freeaddrinfo(ai);

19 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Example: getaddrinfo()
Server

struct addrinfo hints, *ai;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;

int res = getaddrinfo(NULL , "1280", &hints, &ai);
if (res != 0) {

// error
}

int sockfd = socket(ai->ai_family, ai->ai_socktype,
ai->ai_protocol);

if (sockfd < 0) {
// error

}

if (bind(sockfd, ai->ai_addr, ai->ai_addrlen) < 0) {
// error

}

freeaddrinfo(ai);

20 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

gethostbyname(3)

getaddrinfo replaces the obsolete function gethostbyname

I gethostbyname does not support IP version 6 and is
obsolete

I Most of the C socket examples that can be found online
still use the old gethostbyname

I You must not use gethostbyname and related
functions (i.e. gethostbyaddr, gethostbyname2,
gethostent_r, gethostbyaddr_r, gethostbyname_r,
gethostbyname2_r, . . .) during the exercises or the
exams!

21 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Client-Server Example

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

read()

write()

close()

connect()

Creates communication

endpoint

Assigns address

to socket

Marks socket as passive,

listening for incoming

connections

Blocks until the

connection is established

Passive Socket

(Server)

Active Socket

(Client)

(repeated) data transfers

in both directions

REQUEST

REPLY

22 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Send and Receive
write(2) and read(2)

I After the connection has been established, the file
descriptor of the socket is used to read and write data

I Use read and write the same way as with files
char buf[80];
int pos, cnt;

for (pos = 0; pos < sizeof(buf);) {
cnt = read(sockfd, buf + pos, sizeof(buf) - pos);

if (cnt < 0) {
if (errno != EINTR)

// other error than EINTR
} else

pos += cnt;
}

I You can also use the Stream I/O with fdopen() (take care
with buffering, use fflush() to send the data!)

23 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Send and Receive
Stream I/O - Example without error handling

struct addrinfo hints, *ai;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;

getaddrinfo("neverssl.com", "http", &hints, &ai);

int sockfd = socket(ai->ai_family, ai->ai_socktype,
ai->ai_protocol);

connect(sockfd, ai->ai_addr, ai->ai_addrlen);

FILE *sockfile = fdopen(sockfd, "r+");

fputs("GET / HTTP/1.1\r\nHost: neverssl.com\r\n\r\n",
sockfile);

fflush(sockfile); // send all buffered data

char buf[1024];
while (fgets(buf, sizeof(buf), sockfile) != NULL)

fputs(buf, stdout);

Add error handling to this code!
24 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Send and Receive
send(2) and recv(2)

int send(int socket, const void *msg, size_t msg_len, int flags)

int recv(int socket, void* buf, size_t buf_len, int flags)

I Spezializations of write und read for sockets
I Return value and first three arguments same as for write

und read
I Additional argument: flags

I MSG_DONTWAIT – Non-blocking send/receive
I MSG_WAITALL – Block until all data was received

(exceptions: error, signal received)

25 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Client-Server Example

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

read()

write()

close()

connect()

Creates communication

endpoint

Assigns address

to socket

Marks socket as passive,

listening for incoming

connections

Blocks until the

connection is established

Passive Socket

(Server)

Active Socket

(Client)

(repeated) data transfers

in both directions

26 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Socket Options

int setsockopt(int socket, int level, int option_name,
const void *option_value, socklen_t option_len)

I Set options on a socket (see man page for full list:
setsockopt(2), socket(7), ip(7))

I Useful to avoid the error “Address already in use”
(EADDRINUSE) with bind upon restarting your server
program (otherwise the port remains unusable for
approximately 1 min after the server was terminated)

int optval = 1;
setsockopt(serverfd, SOL_SOCKET, SO_REUSEADDR, &optval,

sizeof optval);

27 / 29

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Exercise 3

Client and server for HTTP

I 3A: Client
I 3B: Server
I IPC via stream-oriented sockets
I Implement a subset of the HTTP (HyperText Transfer

Procotol), used for requesting websites
I Your server can serve files to a web browser (e.g. Firefox)
I Your client can request files from webservers

(unfortunately most webservers require HTTPS)
I http://pan.vmars.tuwien.ac.at/osue/
I http://neverssl.com/
I http://www.nonhttps.com/

28 / 29

http://pan.vmars.tuwien.ac.at/osue/
http://neverssl.com/
http://www.nonhttps.com/

Exercise 3:
Sockets

Overview

Preliminaries
Byte Order

Sockets
Socket API
Establishing a
connection
Send and
Receive

Exercise 3

Material

Material

I OSUE-Wiki: Sockets
http://wiki.vmars.tuwien.ac.at/sockets

I The GNU C Library Reference Manual,
Ch. 12 (Stream I/O), Ch. 16 (Sockets)
http:
//www.gnu.org/software/libc/manual/html_node/

I Beej’s Guide to Network Programming
http://beej.us/guide/bgnet/

29 / 29

http://wiki.vmars.tuwien.ac.at/sockets
http://www.gnu.org/software/libc/manual/html_node/
http://www.gnu.org/software/libc/manual/html_node/
http://beej.us/guide/bgnet/

	Overview
	Preliminaries
	Byte Order

	Sockets
	Socket API
	Establishing a connection
	Send and Receive

	Exercise 3
	Material

