
1. RISC-V (RV32I) Cheatsheet

1.1. Registers

1.1.1. General-Purpose Registers (x0–x31)

ABI Name Register Description

x0 zero Hard-wired zero

x1 ra Return address

x2 sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer

x5–x7 t0–t2 Temporary registers (caller-saved)

x8–x9 s0/fp Saved register/Frame pointer (callee-saved)

x10–x11 a0–a1 Function arguments/Return values

x12–x17 a2–a7 Function arguments

x18–x27 s2–s11 Saved registers (callee-saved)

x28–x31 t3–t6 Temporary registers (caller-saved)

1.1.2. Register Conventions

• Caller-saved (t0–t6, a0–a7, ra): Must be saved by the caller if needed after a function call.

• Callee-saved (s0–s11, sp, gp, tp): Must be preserved by the callee.

1.2. Instruction Types

Type 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R-Type funct7 rs2 rs1 funct3 rd opcode

I-Type imm[11:0] rs1 funct3 rd opcode

S-Type imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

B-Type i[12] imm[10:5] rs2 rs1 funct3 imm[4:1] i[11] opcode

U-Type imm[31:12] rd opcode

J-Type i[20] imm[10:1] i[11] imm[19:12] rd opcode

Note: i[…] is the same as imm[…]

1.3. RV32I Base Instructions

1.3.1. Arithmetic/Logic

Type Instruction Syntax Semantics Description

R-Type add add rd, rs1, rs2 rd = rs1 + rs2 Add

R-Type sub sub rd, rs1, rs2 rd = rs1 - rs2 Subtract

R-Type sll sll rd, rs1, rs2 rd = rs1 << rs2 Shift left logical

R-Type slt slt rd, rs1, rs2 rd = (rs1 < rs2) ? 1 : 0 Set less than (signed)

R-Type sltu sltu rd, rs1, rs2 rd = (rs1 < rs2) ? 1 : 0 Set less than (unsigned)

R-Type xor xor rd, rs1, rs2 rd = rs1 ^ rs2 Bitwise XOR

R-Type srl srl rd, rs1, rs2 rd = rs1 >> rs2 Shift right logical

R-Type sra sra rd, rs1, rs2 rd = rs1 >>> rs2 Shift right arithmetic

R-Type or or rd, rs1, rs2 rd = rs1 | rs2 Bitwise OR

R-Type and and rd, rs1, rs2 rd = rs1 & rs2 Bitwise AND

1.3.2. Immediate Instructions

Type Instruction Syntax Semantics Description

I-Type addi addi rd, rs1, imm rd = rs1 + sign_ext(imm) Add immediate

I-Type slti slti rd, rs1, imm rd = (rs1 < sign_ext(imm)) ? 1 : 0 Set less than immediate (signed)

I-Type sltiu sltiu rd, rs1, imm rd = (rs1 < imm) ? 1 : 0 Set less than immediate (unsigned)

I-Type xori xori rd, rs1, imm rd = rs1 ^ sign_ext(imm) Bitwise XOR immediate

I-Type ori ori rd, rs1, imm rd = rs1 | sign_ext(imm) Bitwise OR immediate

I-Type andi andi rd, rs1, imm rd = rs1 & sign_ext(imm) Bitwise AND immediate

I-Type slli slli rd, rs1, shamt rd = rs1 << shamt Shift left logical immediate

I-Type srli srli rd, rs1, shamt rd = rs1 >> shamt Shift right logical immediate

I-Type srai srai rd, rs1, shamt rd = rs1 >>> shamt Shift right arithmetic immediate

1.3.3. Load/Store

Type Instruction Syntax Semantics Description

I-Type lb lb rd, offset(rs1) rd = sign_ext(M[rs1 + offset][7:0]) Load byte (signed)

I-Type lh lh rd, offset(rs1) rd = sign_ext(M[rs1 + offset][15:0]) Load halfword (signed)

I-Type lw lw rd, offset(rs1) rd = sign_ext(M[rs1 + offset][31:0]) Load word



Type Instruction Syntax Semantics Description

I-Type lbu lbu rd, offset(rs1) rd = zero_ext(M[rs1 + offset][7:0]) Load byte (unsigned)

I-Type lhu lhu rd, offset(rs1) rd = zero_ext(M[rs1 + offset][15:0]) Load halfword (unsigned)

S-Type sb sb rs2, offset(rs1) M[rs1 + offset][7:0] = rs2[7:0] Store byte

S-Type sh sh rs2, offset(rs1) M[rs1 + offset][15:0] = rs2[15:0] Store halfword

S-Type sw sw rs2, offset(rs1) M[rs1 + offset][31:0] = rs2[31:0] Store word

1.3.4. Control Flow

Type Instruction Syntax Semantics Description

B-Type beq beq rs1, rs2, offset if (rs1 == rs2) PC += offset Branch if equal

B-Type bne bne rs1, rs2, offset if (rs1 != rs2) PC += offset Branch if not equal

B-Type blt blt rs1, rs2, offset if (rs1 < rs2) PC += offset Branch if less than (signed)

B-Type bge bge rs1, rs2, offset if (rs1 >= rs2) PC += offset Branch if greater or equal (signed)

B-Type bltu bltu rs1, rs2, offset if (rs1 < rs2) PC += offset Branch if less than (unsigned)

B-Type bgeu bgeu rs1, rs2, offset if (rs1 >= rs2) PC += offset Branch if greater or equal (unsigned)

J-Type jal jal rd, offset rd = PC + 4; PC += offset Jump and link

I-Type jalr jalr rd, rs1, offset rd = PC + 4; PC = rs1 + offset Jump and link register

1.3.5. System

Type Instruction Syntax Semantics Description

I-Type ecall ecall Transfer control to OS Environment call

I-Type ebreak ebreak Trigger breakpoint Environment break

I-Type fence fence Memory ordering fence Memory fence

I-Type fence.i fence.i Instruction ordering fence Instruction fence

1.4. Pseudoinstructions

Type Instruction Syntax Equivalent Base Instructions Description

I-Type li li rd, imm addi rd, x0, imm Load immediate (pseudo)

R-Type mv mv rd, rs addi rd, rs, 0 Move (pseudo)

R-Type not not rd, rs xori rd, rs, -1 Bitwise NOT (pseudo)

R-Type neg neg rd, rs sub rd, x0, rs Negate (pseudo)

I-Type seqz seqz rd, rs sltiu rd, rs, 1 Set if equal to zero (pseudo)

I-Type snez snez rd, rs sltu rd, x0, rs Set if not equal to zero (pseudo)

R-Type sltz sltz rd, rs slt rd, rs, x0 Set if less than zero (pseudo)

R-Type sgtz sgtz rd, rs slt rd, x0, rs Set if greater than zero (pseudo)

B-Type beqz beqz rs, offset beq rs, x0, offset Branch if equal to zero (pseudo)

B-Type bnez bnez rs, offset bne rs, x0, offset Branch if not equal to zero (pseudo)

B-Type blez blez rs, offset bge x0, rs, offset Branch if less or equal to zero (pseudo)

B-Type bgez bgez rs, offset bge rs, x0, offset Branch if greater or equal to zero (pseudo)

B-Type bltz bltz rs, offset blt rs, x0, offset Branch if less than zero (pseudo)

B-Type bgtz bgtz rs, offset blt x0, rs, offset Branch if greater than zero (pseudo)

J-Type j j offset jal x0, offset Jump (pseudo)

I-Type ret ret jalr x0, ra, 0 Return (pseudo)

J-Type call call offset jal ra, offset Call subroutine (pseudo)

1.5. Notes
• Pseudoinstructions are translated into one or more base instructions by the assembler.

• RV32I is the base integer instruction set for 32-bit RISC-V.


	1. RISC-V (RV32I) Cheatsheet
	1.1. Registers
	1.1.1. General-Purpose Registers (x0–x31)
	1.1.2. Register Conventions

	1.2. Instruction Types
	1.3. RV32I Base Instructions
	1.3.1. Arithmetic/Logic
	1.3.2. Immediate Instructions
	1.3.3. Load/Store
	1.3.4. Control Flow
	1.3.5. System

	1.4. Pseudoinstructions
	1.5. Notes


