1. RISC-V (RV32I) Cheatsheet
1.1. Registers

1.1.1. General-Purpose Registers (x0-x31)

ABI Name | Register Description
x0 Zero Hard-wired zero
x1 ra Return address
X2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporary registers (caller-saved)
x8-x9 s0/fp Saved register/Frame pointer (callee-saved)
x10-x11 a0-al Function arguments/Return values
x12-x17 a2—a7 Function arguments
x18-x27 s2—s11 Saved registers (callee-saved)
x28-x31 t3-t6 Temporary registers (caller-saved)

1.1.2. Register Conventions

« Caller-saved (t0-t6, a0-a7, ra): Must be saved by the caller if needed after a function call.
 Callee-saved (s0-s11, sp, gp, tp): Must be preserved by the callee.

1.2. Instruction Types

Type 3113029 28|27 |126(25(24 |23 (2221|2019 |18|17 |16 (15|14 (13 |12 |11|[10] 9 8 7 3
R-Type funct7 rs2 rsl funct3 rd opcode
I-Type imm[11:0] rsl funct3 rd opcode
S-Type imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
B-Type [i[12] imm[10:5] rs2 rsl funct3 imm[4:1] i[11] opcode
U-Type imm[31:12] rd opcode
J-Type [i[20] imm[10:1] i[11] imm[19:12] rd opcode
Note: i[...] is the same as imm]...]
1.3. RV32I Base Instructions
1.3.1. Arithmetic/Logic

Type | Instruction Syntax Semantics Description

R-Type add add rd, rsl, rs2 rd = rsl + rs2 Add

R-Type sub sub rd, rsl, rs2 rd = rsl - rs2 Subtract

R-Type sll sll rd, rsl, rs2 rd = rsl << rs2 Shift left logical

R-Type slt slt rd, rsl, rs2 [rd = (rsl < rs2) ? 1 : 0 [Setlessthan (signed)

R-Type sltu sltu rd, rsl, rs2 | rd = (rsl < rs2) ? 1 : 0 | Setless than (unsigned)

R-Type Xor xor rd, rsl, rs2 rd = rsl *~ rs2 Bitwise XOR

R-Type srl srl rd, rsl, rs2 rd = rsl >> rs2 Shift right logical

R-Type sra sra rd, rsl, rs2 rd = rsl >>> rs2 Shift right arithmetic

R-Type or or rd, rsl, rs2 rd = rsl | rs2 Bitwise OR

R-Type and and rd, rsl, rs2 rd = rsl & rs2 Bitwise AND
1.3.2. Immediate Instructions

Type | Instruction Syntax Semantics Description

I-Type addi addi rd, rsl, imm rd = rsl + sign_ext(imm) Add immediate

I-Type slti slti rd, rsl, imm | rd = (rsl < sign_ext(imm)) ? 1 : 0 | Set less than immediate (signed)

I-Type sltiu sltiu rd, rsl, imm rd = (rsl < imm) ? 1 : 0 Set less than immediate (unsigned)

I-Type xori xori rd, rsl, imm rd = rs1 ~ sign_ext(imm) Bitwise XOR immediate

I-Type ori ori rd, rsl, imm rd = rsl | sign_ext(imm) Bitwise OR immediate

I-Type andi andi rd, rsl, imm rd = rsl & sign_ext(imm) Bitwise AND immediate

I-Type slli slli rd, rsl, shamt rd = rsl << shamt Shift left logical immediate

I-Type srli srli rd, rsl, shamt rd = rsl >> shamt Shift right logical immediate

I-Type srai srai rd, rsl, shamt rd = rsl >>> shamt Shift right arithmetic immediate
1.3.3. Load/Store

Type | Instruction Syntax Semantics Description

I-Type Ib 1b rd, offset(rsl) | rd = sign ext(M[rsl + offset][7:0]) Load byte (signed)

I-Type lh lh rd, offset(rsl) [rd = sign_ext(M[rsl + offset][15:0]) | Load halfword (signed)

I-Type Iw lw rd, offset(rsl) rd = sign ext(M[rsl + offset][31:0]) Load word

Type | Instruction Syntax Semantics Description
I-Type lbu lbu rd, offset(rsl) | rd = zero_ext(M[rsl + offset][7:0]) Load byte (unsigned)
I-Type lhu lhu rd, offset(rsl) | rd = zero_ext(M[rsl + offset][15:0]) | Load halfword (unsigned)
S-Type sb sb rs2, offset(rsl) M[rsl + offset][7:0] = rs2[7:0] Store byte
S-Type sh sh rs2, offset(rsl) M[rsl + offset][15:0] = rs2[15:0] Store halfword
S-Type swW sw rs2, offset(rsl) M[rsl + offset][31:0] = rs2[31:0] Store word

1.3.4. Control Flow

Type | Instruction Syntax Semantics Description

B-Type beq beq rsl, rs2, offset if (rsl == rs2) PC += offset Branch if equal

B-Type bne bne rsl, rs2, offset if (rsl != rs2) PC += offset Branch if not equal
B-Type blt blt rsl, rs2, offset if (rsl < rs2) PC += offset Branch if less than (signed)
B-Type bge bge rsl, rs2, offset if (rsl >= rs2) PC += offset Branch if greater or equal (signed)
B-Type bltu bltu rsl, rs2, offset if (rsl < rs2) PC += offset Branch if less than (unsigned)
B-Type bgeu bgeu rsl, rs2, offset [if (rsl >= rs2) PC += offset | Branch if greater or equal (unsigned)
J-Type jal jal rd, offset rd = PC + 4; PC += offset Jump and link

I-Type jalr jalr rd, rsl, offset [rd = PC + 4; PC = rsl + offset Jump and link register
1.3.5. System

Type | Instruction | Syntax Semantics Description

I-Type ecall ecall Transfer control to OS Environment call

I-Type ebreak ebreak Trigger breakpoint Environment break

I-Type fence fence Memory ordering fence Memory fence

I-Type fence.i fence.i | Instruction ordering fence | Instruction fence

1.4. Pseudoinstructions

Type | Instruction Syntax Equivalent Base Instructions Description

I-Type li 1i rd, imm addi rd, x0, imm Load immediate (pseudo)
R-Type mv mv rd, rs addi rd, rs, 0 Move (pseudo)

R-Type not not rd, rs xori rd, rs, -1 Bitwise NOT (pseudo)
R-Type neg neg rd, rs sub rd, x0, rs Negate (pseudo)

I-Type seqz seqz rd, rs sltiu rd, rs, 1 Set if equal to zero (pseudo)
I-Type snez snez rd, rs sltu rd, x0, rs Set if not equal to zero (pseudo)
R-Type sltz sltz rd, rs slt rd, rs, x0 Set if less than zero (pseudo)
R-Type sgtz sgtz rd, rs slt rd, x0, rs Set if greater than zero (pseudo)
B-Type beqz beqz rs, offset beq rs, x0, offset Branch if equal to zero (pseudo)
B-Type bnez bnez rs, offset bne rs, x0, offset Branch if not equal to zero (pseudo)
B-Type blez blez rs, offset bge x0, rs, offset Branch if less or equal to zero (pseudo)
B-Type bgez bgez rs, offset bge rs, x0, offset Branch if greater or equal to zero (pseudo)
B-Type bltz bltz rs, offset blt rs, x0, offset Branch if less than zero (pseudo)
B-Type bgtz bgtz rs, offset blt x0, rs, offset Branch if greater than zero (pseudo)
J-Type j j offset jal x0, offset Jump (pseudo)

I-Type ret ret jalr x0, ra, 0 Return (pseudo)

J-Type call call offset jal ra, offset Call subroutine (pseudo)
1.5. Notes

« Pseudoinstructions are translated into one or more base instructions by the assembler.
« RV32lis the base integer instruction set for 32-bit RISC-V.

	1. RISC-V (RV32I) Cheatsheet
	1.1. Registers
	1.1.1. General-Purpose Registers (x0–x31)
	1.1.2. Register Conventions

	1.2. Instruction Types
	1.3. RV32I Base Instructions
	1.3.1. Arithmetic/Logic
	1.3.2. Immediate Instructions
	1.3.3. Load/Store
	1.3.4. Control Flow
	1.3.5. System

	1.4. Pseudoinstructions
	1.5. Notes

