
VU Einführung in Artificial Intelligence

SS 2024

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs)

ä Standard search problem:

• From the point of view of a search algorithm, a state is a
“black box” with no discernible internal structure.

• It is represented by a suitable data structure that can be
accessed only by the problem specific routines:

– the successor function,

– the heuristic function,

– and the goal test.

ä Constraint satisfaction problem (CSP):

• The states and the goal test conform to a standard, structured,
and simple representation.

• Search algorithms can be defined that take advantage of the
structure of states and use general-purpose rather than
problem-specific heuristics.

1/59

Constraint Satisfaction Problems (ctd.)

ä In a constraint satisfaction problem

• a state is defined by variables with values from an associated
domain, and

• the goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

å Example of a simple formal representation language

• allows useful general-purpose algorithms with more power than
standard search algorithms.

2/59

CSP: Formal Definition

A constraint satisfaction problem (CSP) consists of the following
components:

ä a finite set V = {V1,V2, . . . ,Vn} of variables;

ä each variable Vi ∈ V has an associated non-empty domain Di of
possible values;

ä a finite set C = {C1,C2, . . . ,Cm} of constraints.

• A constraint C ∈ C between variables Vi1 , . . . ,Vij is a subset of
the Cartesian product

Di1 × · · · × Dij = {(d1, . . . , dj) | dl ∈ Dil , 1 ≤ l ≤ j}.

3/59

CSP: Formal Definition (ctd.)

ä Each constraint limits the values that variables can take, e.g.,
V1 6= V2.

ä There are constraints of different arities:

• n-ary constraints restrict the possible assignment of n variables,
i.e., n-ary constraints are n-ary relations.

• In particular:

– Unary constraints restrict the domain Di of one variable Vi .
E.g., C (Vi) = {1, 3, 5, 7, 8}.

– Binary constraints restrict the domains Di ×Dj of a pair of
variables Vi ,Vj .
E.g., C (Vi ,Vj) = {(1, 2), (3, 5), (7, 3), (8, 2)}.

– Ternary constraints,. . .

4/59

CSP: Further notions

ä A state of a CSP is defined by an assignment of values to some or
all of the variables.

ä An assignment that does not violate any constraints is consistent or
legal.

ä An assignment is complete iff it mentions every variable.

ä A solution to a CSP is a complete consistent assignment, i.e., a
function which assigns

1. each variable a value of its associated domain and

2. such that all constraints are satisfied.

ä Some CSPs also require a solution that maximises an objective
function

å these are called constrained optimisation problems.

5/59

Example: Map-colouring

Consider the task of colouring a map of Australia with the colours red,
green, and blue such that no neighbouring region have the same colour.

6/59

Example: Map-colouring (ctd.)

We can formulate this problem as the following CSP:

ä Variables: V = {WA,NT ,Q,NSW ,V , SA,T}
ä Domains: Di = {red , green, blue}, i ∈ V
ä Constraints: adjacent regions must have different colors

• e.g., the allowable combinations of WA and NT are

C (WA,NT) = {(red , green), (red , blue), (green, red),
(green, blue), (blue, red), (blue, green)},

• or simply written as WA 6= NT (if the language allows this).

7/59

Example: Map-colouring (ctd.)

There are many possible solutions, e.g.,
{WA = red ,NT = green,Q = red ,NSW = green,V = red ,

SA = blue,T = green}

8/59

Constraint graph

ä For a binary CSP (in which all constraints are binary), it is helpful to
visualise the problem as a constraint graph:

• the nodes are the variables,

• the edges correspond to the constraints, i.e., there is an edge
between two variables if there is a constraint involving them.

ä E.g., our map-colouring problem has the following constraint graph:

• General-purpose CSP algorithms use the graph structure to
speed up the search.

• E.g., Tasmania is an independent subproblem! 9/59

Constraint graph (ctd.)

ä Higher-order constraints can be represented by a constraint
hypergraph.

• Reminder: a hypergraph is a pair (X ,E), where X is a set of
nodes and E is a set of non-empty subsets of X , the
hyperedges.

ä Cryptarithmetic puzzles are examples of involving higher-order
constraints.

• Usually, one assumes that each letter in a cryptarithmetic
puzzle represents a different digit.

10/59

Constraint graph (ctd.)

Example:

ä This is formulated as the following CSP:

• Variables: F , T , U, W , R, O, C1, C2, C3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Constraints:

– Alldiff (F ,T ,U,W ,R,O);

– addition constraints:
O + O = R + 10 · C1,
C1 + W + W = U + 10 · C2,
C2 + T + T = O + 10 · C3,
C3 = F .

ä A solution for this CSP is, e.g., 938 + 938 = 1876. 11/59

Varieties of CSPs

ä The simplest kind of CSPs involves variables that are discrete and
have finite domains.

• E.g., map-colouring problems are of this kind.

ä If the maximum domain size of any variable in a CSP is d , and there
are n variables, then the number of possible complete assignments is
O(dn)

å exponential in the number of variables!

12/59

Varieties of CSPs (ctd.)

ä Finite domain CSPs whose variables can be either true or false are
called Boolean CSPs.

ä E.g., 3SAT can be expressed as a Boolean CSP

• a clause like X1 ∨ ¬X2 ∨ X3 corresponds to the constraint

C (X1,X2,X3) =

({true, false} × {true, false} × {true, false}) \ {(false, true, false)}.

ä Since 3SAT is an NP-complete problem we cannot expect to solve
finite-domain CSPs in less than exponential time (unless P = NP).

ä However, in most practical applications, CSP algorithms can solve
problems orders of magnitude larger than those solvable via general
search algorithms.

13/59

Varieties of CSPs (ctd.)

ä Discrete variables can also have infinite domains, e.g., the set of
integers or the set of strings.

• E.g., for construction job scheduling, variables are the start
dates and the possible values are integer numbers of days from
the current date.

ä Note:

• With infinite domains it is no longer possible to describe
constraints by enumerating all allowed combinations of values.

• Rather, a constraint language must be used.

– E.g., if Job1, which takes 5 days, must precede Job3, then
we need a language of algebraic inequalities like
StartJob1 + 5 ≤ StartJob3.

14/59

Varieties of CSPs (ctd.)

ä It is also no longer possible to solve constraints with infinite domains
by enumerating all possible assignments

å there are infinitely many of them!

ä Special solution algorithms exist for linear constraints on integer
values

• linear constraint = variables appear only in linear form

• e.g., StartJob1 + 5 ≤ StartJob3 is linear.

ä Non-linear constraints are undecidable—no algorithm exists for
solving such constraints!

15/59

Varieties of CSPs (ctd.)

ä Finally, there are CSPs with continuous domains

• very common in real-world applications and widely studied in
operations research

• e.g., scheduling the start/end times for the Hubble Space
Telescope

– require a very precise timing of observations,

– taking a variety of real-valued astronomical, precedence,
and power constraints into account.

ä Linear constraints can be solved with linear programming methods
in polynomial time.

16/59

Some real-world CSPs

ä Assignment problems

• e.g., who teaches what class

ä Timetabling problems

• e.g., which class is offered when and where?

ä Hardware configuration

ä Transportation scheduling

ä Factory scheduling

ä Floor planning

+ Notice that many real-world problems involve real-valued variables.

17/59

CSPs as standard search problems

ä It is straightforward to give an incremental formulation of a CSP as
a standard search problem.

• States are defined by the values assigned so far.

• Initial state: the empty assignment, ∅.
• Successor function: assign a value to an unassigned variable

providing it does not conflict with the current assignment.

• Goal test: the current assignment is complete.

ä This is the same for all CSPs!

å Any standard search algorithm can be used to solve CSPs.

18/59

CSPs as standard search problems (ctd.)

Caveat: Suppose we use breadth-first search.

ä If there are n variables and d values, the branching factor at the top
level is nd .

ä At the next level, the branching factor is (n − 1)d , and so on for n
levels.

å We generate a tree with n!dn leaves although there are only dn

possible complete assignments!

19/59

Backtracking search

ä The naive formulation ignored one crucial property of CSPs:

• Variable assignments are commutative, i.e., the order of an
assignment of variables does not matter and one reaches the
same partial assignment regardless of order.

• Therefore, CSP search algorithms need only to consider a single
variable at each node of the search tree!

– E.g., in the map-colouring problem, initially we may have a
choice between SA = red , SA = green, and SA = blue,

– but we would not choose between SA = red and
WA = blue.

å With this restriction, we generate only dn leaves as expected.

ä Depth-first search for CSPs with single-variable assignments is called
backtracking search.

• Backtracking search is the basic uninformed algorithm for CSPs.

20/59

Backtracking search (ctd.)

Below gives part of the search tree for the Australia problem, where the
variables are assigned in the order WA, NT , Q, . . .

21/59

Backtracking search (ctd.)

ä Since plain backtracking search is an uninformed algorithm, we do
not expect it to be very effective for large problems.

ä Different general-purpose methods help improving the performance,
addressing the following issues:

• Which variable should be assigned next, and in what order
should its values be tried?

• What are the implications of the current variable assignments
for the other unassigned variables?

• When a path fails, can the search avoid repeating this failure in
subsequent paths?

22/59

Minimum-remaining-values heuristic

ä The minimum-remaining-values (MRV) heuristic:

• choose the variable with the fewest legal values.

ä If there is a variable X with 0 legal values remaining, the MRV
heuristic will select X and failure will be detected immediately

• avoiding pointless searches through further unassigned variables.

ä E.g., in the Australia example, after the assignments for WA = red
and NT = green, there is only one possible value for SA.

• It makes sense to assign SA = blue next rather than
assigning Q.

• Actually, after SA is assigned, the choices for Q, NSW , and V
are all forced.

23/59

Degree heuristic

ä The MRV heuristic does not help at all in choosing the first region
to colour.

ä In this case, the degree heuristic comes in:

• it selects the variable that is involved in the largest number of
constraints on other unassigned variables.

ä In the Australia example, SA is the variable with highest degree, 5.

• The others have degree 0, 2, or 3.

• Actually, once SA is chosen, we can can assign the mainland
regions clockwise or counterclockwise with a colour different
from SA and the previous region.

24/59

Least-constraining-value heuristic

ä Once a variable has been selected, to decide on the order in which
to examine its values, the least-constraining-value heuristic can be
effective:

• it prefers a value that rules out the fewest choices for the
neighbouring variables in the constraint graph.

ä In the Australia example, suppose we have the partial assignment
WA = red and NT = green, and our next choice is for Q.

• Blue would be a bad choice, because it eliminates the last legal
value for Q’s neighbour SA.

å The least-constraining-value heuristic thus prefers red to blue.

25/59

Forward checking

ä The methods discussed so far consider the constraints on a variable
only at the time that the variable is chosen.

ä By looking at some of the constraints earlier in the search, or even
before the search, the search space can be drastically reduced.

ä One such method is forward checking:

• whenever a variable X is assigned, it looks at each unassigned
variable Y that is connected to X by a constraint

• and deletes from the domain of Y any value that is inconsistent
with the value chosen for X .

26/59

Forward checking (ctd.)

ä Consider colouring Australia using forward checking:

ä Note:
• After assigning WA = red and Q = green, the domains of NT

and SA are reduced to a single value.

å The MRV heuristic would select SA and NT next.

• After assigning V = blue, the domain of SA is empty, so we get
failure and the algorithm backtracks.

27/59

Forward checking (ctd.)

ä Forward checking does not provide early detection for all failures:

ä NT and SA cannot both be blue!

+ Constraint propagation is the general term for propagating the
implications of a constraint on one variable onto other variables.

28/59

Arc consistency

ä The simplest form of constraint propagation is arc consistency:

• “arc” refers to a directed arc in the constraint graph;

• X → Y is consistent iff for every value x of X there is some
allowed value y of Y .

ä For SA = blue in the Australia colouring, there is a consistent
assignment for NSW , namely red =⇒ the arc from SA to NSW is
consistent

• the reverse arc is not consistent, but can be made so by
deleting blue from the domain of NSW .

29/59

Further techniques

ä Intelligent backtracking:

• do not backtrack to the preceding variable if a failure occurs,
but go back to one in the set of variables that caused the failure

– this set is the conflict set

– e.g., backjumping goes to the most recent variable in this
conflict set.

ä Local search algorithms are very effective for solving CSPs

• the million-queens problem can be solved in an average of 50
steps.

ä The structure of the constraint graph can be taken into account.

• E.g., colouring Tasmania is an independent subproblem of
colouring Australia.

• Tree-structured problems can be solved in linear time.

30/59

Knowledge Representation

Knowledge-based Agents

What is knowledge representation?

ä The representation of knowledge and reasoning from knowledge are
central for AI
. . . after all, humans know things and do reasoning.

ä Knowledge and reasoning play a crucial role in dealing with partially
observable environments.

• A knowledge-based agent can combine general knowledge with
current percepts to infer hidden aspects of the current state
prior to selecting actions.

– E.g., a physician diagnoses a patient prior to choosing a
treatment.

å For diagnosing, the physician uses knowledge from
education and experience, as well as association patterns
the physician cannot consciously describe.

31/59

What is knowledge representation? (ctd.)

ä Understanding natural language also involves inferring hidden
states—viz., the intention of the speaker.

• E.g., when we hear

“John threw the stone against the mirror and broke it”,

we know that “it” refers to “mirror” and not to “stone”.

ä In general, the goal of knowledge representation is the following:

• representing implicit knowledge about a certain area in such a
way that it can be processed by computers

• original knowledge is encoded in suitable data structures and
algorithms.

32/59

What is knowledge representation? (Ctd.)

ä Knowledge representation is a multidisciplinary field involving
methods and techniques from:

• logic:

– provides the formal structures and rules for performing
deductions;

• ontology:

– defines the kinds of objects in the considered application
area;

• computer science:

– supports the applications which distinguishes knowledge
representation from pure philosophy.

ä In short:

• knowledge representation = application of logic and ontology
for providing computational models.

33/59

Declarative vs. procedural approaches

ä Declarative knowledge representation techniques:

• knowledge is expressed as sentences in some suitable formal
language which are accessed by the procedures using this
knowledge

å separation between the explicit representation of
knowledge and the processing for answering queries.

• Advantages:
– increased versatility for performing complex tasks;

– changes can be easily incorporated (modularity).

ä Procedural techniques:

• knowledge is implicitly stored in a sequence of operations,
manifested in the actual execution of the operations (i.e.,
directly as program code).

• Advantages: minimising the role of explicit representation and
reasoning can yield more efficient systems.

34/59

Declarative vs. procedural approaches (ctd.)

ä In the 1970s and 1980s there were heated debates between
advocates of the two approaches.

ä Now it is understood that successful agents often combine both
declarative and procedural elements in their designs.

35/59

Knowledge-based agents

ä Central components of a knowledge-based agent:

• a knowledge base

– a set of sentences in a formal language;

• methods to add new sentences and methods to query what is
known.

– We use Tell and Ask as generic names for these tasks.

– Both tasks may involve inference—i.e., deriving new
sentences from old.
+ In logical agents, answers to the Ask procedure is by

means of logic!

ä Schematic architecture:

knowledge processing ←− domain-independent algorithms

l
knowledge base ←− domain-specific content

36/59

A simple knowledge-based agent

ä The agent must be able to:

• represent states, actions, etc.;

• incorporate new percepts;

• update internal representations of the world;

• deduce hidden properties of the world;

• deduce appropriate actions.

ä Each time the agent program is called, it does three things:

1. It Tells the knowledge base what it perceives;

2. it Asks the knowledge base what action it should perform;

3. it records its choice with Tell and executes the action.

37/59

A simple knowledge-based agent (ctd.)

function KB-Agent(percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence(percept, t))
action←Ask(KB,Make-Action-Query(t))
Tell(KB,Make-Action-Sentence(action, t))
t← t + 1
return action

ä Make-Percept-Sentence constructs a sentence asserting that
the agent perceived the given percept at the given time.

ä Make-Action-Query constructs a sentence that asks what
action should be done at the current time.

ä Make-Action-Sentence constructs a sentence asserting that the
chosen action was executed.

+ Details of the inference mechanisms are hidden inside Tell
and Ask! 38/59

Elements of Propositional and First-Order Logic

Logic in general

ä Logics are formal languages for representing information such that
conclusions can be drawn.

ä Syntax defines the sentences in the language.

ä Semantics defines the “meaning” of sentences; i.e., defines truth of
a sentence in a world.

ä For example, consider the language of arithmetic:

• x + 2 ≥ y is a sentence;

• x2 + y > is not a sentence;

• x + 2 ≥ y is true iff the number x + 2 is no less than the
number y ;

• x + 2 ≥ y is true in a world where x = 7, y = 1;

• x + 2 ≥ y is false in a world where x = 0, y = 6.

40/59

Entailment

ä Entailment means that one thing follows from another:

• A knowledge base KB entails a sentence α, symbolically
KB |= α, iff α is true in all worlds where KB is true.

• Here, KB is the premiss and α is the conclusion of the
entailment.

• Recall that knowledge bases are sets of sentences and they are
also referred to as theories.

ä Examples:

• A knowledge base KB containing “Batman laughs” and
“Commodore Schmidlapp laughs” entails “Either Batman
laughs or Commodore Schmidlapp laughs”.

• In the language of arithmetic, x + y = 4 entails 4 = x + y .

+ Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics.

41/59

Models

ä Semantics is defined in terms of interpretations, which are formally
structured worlds with respect to which truth can be evaluated.

ä We say that interpretation m is a model of a sentence α if α is true
in m, and m is a model of a knowledge base if it is a model of all its
elements.
• We denote by M(α) the set of all models of α.

ä Then, KB |= α if and only if M(KB) ⊆ M(α).

• E.g., KB |= α holds for KB = Batman laughs and Commodore
Schmidlapp laughs and α = Commodore Schmidlapp laughs.

42/59

Important semantical notions

ä Two sentences are logically equivalent iff true in the same models:

α ≡ β if and only if α |= β and β |= α.

ä A sentence is valid if all interpretations are models of it.

ä A sentence is satisfiable if it has some model.

ä A sentence is unsatisfiable if it has no model.

ä Writing ¬α for the negation of α (with the meaning that ¬α is true
precisely when α is not true), we can state:

• α is valid if and only if ¬α is unsatisfiable;

• KB |= α if and only if KB ∪ {¬α} is unsatisfiable, i.e., to prove
α from KB by reductio ad absurdum.

43/59

Inference

ä KB `i α :⇐⇒ sentence α can be derived from KB in proof system i .

• A proof system (also called calculus or axiom system), consists
of axioms and inference rules (however, some proof systems do
not require axioms).

• A derivation from KB is a sequence of formulas s.t.

(i) each formula is either an axiom,
(ii) an element of KB, or
(iii) results from inference rule applications using earlier

elements in the sequence.

• A derivation is also said to be a derivation of its last element.

ä Intuitively:

• Consequences of KB are a haystack; α is a needle.
=⇒ Entailment = needle in haystack; inference = finding it

44/59

Inference (ctd.)

ä Important properties:
• Soundness:

– i is sound if KB `i α implies KB |= α.

• Completeness:
– i is complete if KB |= α implies KB `i α.

ä Many different sound and complete proof systems for various logics
have been defined in the literature, like

• Hilbert-type systems,

• sequent-type calculi,

• tableau calculi,

• resolution calculi,

• natural deduction systems, etc.

+ Important in computer science are sequent-type calculi, tableau
calculi, and resolution calculi.

45/59

Two fundamental logics

ä Among the many different logics existing, designed for different
purposes, two logics are pre-eminent:

• propositional logic; and

• first-order logic (FOL) (also called predicate logic).

ä Propositional logic is simple, assuming that the world consists of
facts which can be composed from atomic formulas using
connectives:

• ¬S (negation), S1 ∧ S2 (conjunction), S1 ∨ S2 (disjunction),
S1 ⇒ S2 (implication), S1 ⇔ S2 (biconditional).

ä E.g., ¬A⇒ (B ∨ C) states that if A is not the case, then one of B
or C holds.

• This formula may represent, e.g., the following sentence:

If the car is not proceeding, then it is broken or out of gas.

46/59

Truth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

47/59

Some logical equivalences in propositional logic

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

48/59

Restricted Expressibility

ä Unlike natural language, propositional logic has, however, only very
limited expressive power.

• E.g., the following argument (valid in natural
language) cannot be adequately dealt with in propositional logic:

All superheroes are brave.
Superman is a superhero.
Therefore: Superman is brave.

• In propositional logic, the three sentences would be formalised
using atomic sentences A,B,C —but A,B |= C does not hold!

å This is where FOL comes in!

49/59

First-order logic (FOL)

FOL assumes that the world contains

ä Objects: people, houses, numbers, theories, Superman, Commodore
Schmidlapp, colours, centuries, . . .

ä Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after,
owns, comes between, . . .

ä Functions: father of, best friend, addition, one more than, end of . . .

50/59

Syntax of FOL: Basic elements

Constants: Superman,KingJohn, 2, . . .;
Predicates: Friend , >, . . .;
Functions: Sqrt, LeftLegOf , . . .;
Variables: x , y , a, b, . . .;
Connectives: ∧, ∨, ¬, ⇒, ⇔ ;
Equality: =;
Quantifiers: ∀ (universal quantifier), ∃ (existential quantifier)

51/59

Atomic sentences

Atomic sentence := predicate(term1, . . . , termn)
or term1 = term2

Term := function(term1, . . . , termn)
or constant or variable

Examples:

1. Friend(Superman,Batman);

2. > (Length(LeftLegOf (Superman)), Length(LeftLegOf (Batman)))

52/59

Complex sentences

ä Complex sentences are made from atomic sentences using
connectives and the quantifiers

• ∀xS (universal quantifier, “for all x, S”),

• ∃xS (existential quantifier, “for some x, S”).

ä Examples:

1. ∀x(Archfiend(x , Superman)⇒ Fights(x ,Superman));

2. >(1, 2) ∨ ≤(1, 2);

3. >(1, 2) ∧ ¬>(1, 2);

4. ∀x(Country(x)⇒ ∃yCapitol(y , x)).

53/59

Truth in first-order logic

ä Sentences are true with respect to a domain and an interpretation.

• The domain contains ≥ 1 objects (domain elements) for
specifying relations among them.

• The interpretation specifies referents over the domain for

– constant symbols → objects;

– predicate symbols → relations;

– function symbols → functional relations.

ä An atomic sentence predicate(term1, . . . , termn) is true iff the
objects referred to by term1, . . . , termn are in the relation referred to
by predicate.

54/59

Truth example

ä Consider the formula Brother(Richard , John) and the following
interpretation:

• Richard → Richard the Lionheart;

• John → the evil King John;

• Brother → the brotherhood relation.

ä Under this interpretation, Brother(Richard , John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation.

55/59

Common mistakes to avoid

ä Typically, ⇒ is the main connective with ∀ as in:

• all S are P: ∀x(S(x)⇒ P(x)).

• Common mistake: using ∧ as the main connective with ∀:

∀x(At(x ,Berkeley) ∧ Smart(x))

means “everyone is at Berkeley and everyone is smart”.

ä Typically, ∧ is the main connective with ∃ as in:

• some S are P: ∃x(S(x) ∧ P(x)).

• Common mistake: using ⇒ as the main connective with ∃:

∃x(At(x ,Stanford)⇒ Smart(x))

is true if there is anyone who is not at Stanford!

56/59

Some ambiguities

ä In natural language, “all S are P” would normally not be asserted if
it is already known that S does not hold.

ä Indeed, people would not consider “all S are P” true if S is false.
=⇒ “all S are P” would in this sense be translated as

∃xS(x) ∧ ∀x(S(x) → P(x))

rather than as ∀x(S(x) → P(x)).

57/59

Some ambiguities (ctd.)

ä Sometimes “all S are not-P” is understood as “not all S are P”.
Example:

• “All that glisters is not gold” (Shakespeare, Merchant of
Venice).

å Translation would be of the form ¬∀x(S(x) → P(x)) but not
of the form ∀x(A(x) → ¬P(x)).

ä The indefinite article “a” or “an” has sometimes different meaning:

• “A child needs affection.” =⇒ ∀x(C (x) → A(x)).

• “A man climbed the Mount Everest.” =⇒ ∃x(M(x) ∧ E (x)).

58/59

Some ambiguities (ctd.)

ä Also, the meaning of the expression “any” depends on the context:

• When an any-expression stands by itself, it has the same force
as “all”.

• But when an any-expression D is put into contexts ¬D or
D → E , the meaning of “any” normally changes from “all” to
“some”.

ä Examples:

• “I would do that for anyone.” =⇒ ∀xA(x).

• “I wouldn’t do that for anyone.” =⇒ ¬∃xA(x).

• “Anyone who is godfearing is just.” =⇒ ∀x(G (x) → J(x)).

• “If any man is just, Aristides is just.” =⇒ (∃xJ(x)) → J(a).

• “If Superman is a villain, then any man is a villain.”
=⇒ V (s) → ∀xV (x).

59/59

