VU Einfuhrung in Artificial Intelligence

SS 2024

Hans Tompits

Institut fiir Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs)

» Standard search problem:
e From the point of view of a search algorithm, a state is a
“black box” with no discernible internal structure.

e |t is represented by a suitable data structure that can be
accessed only by the problem specific routines:
— the successor function,
— the heuristic function,
— and the goal test.

» Constraint satisfaction problem (CSP):

e The states and the goal test conform to a standard, structured,
and simple representation.

e Search algorithms can be defined that take advantage of the
structure of states and use general-purpose rather than
problem-specific heuristics.

1/59

Constraint Satisfaction Problems (ctd.)

» In a constraint satisfaction problem

e a state is defined by variables with values from an associated
domain, and

e the goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

= Example of a simple formal representation language

e allows useful general-purpose algorithms with more power than
standard search algorithms.

2/59

CSP: Formal Definition

A constraint satisfaction problem (CSP) consists of the following
components:

» afinite set V = {V4, Vo, ..., V,,} of variables;

» each variable V; € V has an associated non-empty domain D; of
possible values;

» afiniteset C = {Cy, Gy, ..., Cpy} of constraints.

e A constraint C € C between variables Vj;,..., V] is a subset of
the Cartesian product

DllxXDIJ:{(d:h)dj)|d/EDI/71§/§./}

3/59

CSP: Formal Definition (ctd.)

» Each constraint limits the values that variables can take, e.g.,
Vi # Vs

» There are constraints of different arities:

e n-ary constraints restrict the possible assignment of n variables,
i.e., n-ary constraints are n-ary relations.
e In particular:
— Unary constraints restrict the domain D; of one variable V;.
Eg., C(Vi)={1,3,5,7,8}.
— Binary constraints restrict the domains D; x D; of a pair of
variables V;, V;.
Eg., C(')'_ {(1 2) (375)7(773)7(872)}'

— Ternary constralnts,. ..

4/59

CSP: Further notions

A state of a CSP is defined by an assignment of values to some or
all of the variables.

An assignment that does not violate any constraints is consistent or
legal.

An assignment is complete iff it mentions every variable.

A solution to a CSP is a complete consistent assignment, i.e., a
function which assigns

1. each variable a value of its associated domain and
2. such that all constraints are satisfied.

Some CSPs also require a solution that maximises an objective
function

= these are called constrained optimisation problems.

5/59

Example: Map-colouring

Consider the task of colouring a map of Australia with the colours red,
green, and blue such that no neighbouring region have the same colour.

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

Tasmania

6/59

Example: Map-colouring (ctd.)

We can formulate this problem as the following CSP:

» Variables: V = {WA,NT, Q, NSW,V SA T}
» Domains: D; = {red, green, blue}, i € V
» Constraints: adjacent regions must have different colors

e e.g., the allowable combinations of WA and NT are

C(WA,NT) = {(red, green), (red, blue), (green, red),

)

(green, blue), (blue, red), (blue, green)},

e or simply written as WA # NT (if the language allows this).

7/59

Example: Map-colouring (ctd.)

There are many possible solutions, e.g.,
{WA=red, NT = green, Q = red, NSW = green, V' = red,
SA=blue, T = green}

8/59

Constraint graph

» For a binary CSP (in which all constraints are binary), it is helpful to
visualise the problem as a constraint graph:

e the nodes are the variables,

e the edges correspond to the constraints, i.e., there is an edge
between two variables if there is a constraint involving them.

» E.g., our map-colouring problem has the following constraint graph:

o P

o by (=
O

@ Tasmania

e General-purpose CSP algorithms use the graph structure to
speed up the search.

Northern
Territory

Queensland

South
Australia

New South Wales

e E.g., Tasmania is an independent subproblem! o/59

Constraint graph (ctd.)

» Higher-order constraints can be represented by a constraint
hypergraph.
e Reminder: a hypergraph is a pair (X, E), where X is a set of
nodes and E is a set of non-empty subsets of X, the
hyperedges.

» Cryptarithmetic puzzles are examples of involving higher-order
constraints.

e Usually, one assumes that each letter in a cryptarithmetic
puzzle represents a different digit.

10/59

Constraint graph (ctd.)
Example:

TWO
+ T WO
FOUR

» This is formulated as the following CSP:
e Variables: F, T, U, W, R, O, ¢4, G, G
e Domains: {0,1,2,3.4,5,6,7,8,9}
e Constraints:

- Alldiff(F, T,U, W,R, O);

— addition constraints:
O+0=R+10-(,
G+W+W=U+10-G,
G+T+T=0+10- G,

G =F.
» A solution for this CSP is, e.g., 938 + 938 = 1876.

11/59

Varieties of CSPs

» The simplest kind of CSPs involves variables that are discrete and
have finite domains.

e E.g., map-colouring problems are of this kind.

» If the maximum domain size of any variable in a CSP is d, and there

are n variables, then the number of possible complete assignments is
o(d")

W exponential in the number of variables!

12/59

Varieties of CSPs (ctd.)

Finite domain CSPs whose variables can be either true or false are
called Boolean CSPs.

E.g., 3SAT can be expressed as a Boolean CSP
e a clause like X7 vV =X, V X3 corresponds to the constraint

C(X1, Xo, X3) =
({true, false} x {true, false} x {true, false}) \ {(false, true, false)}.

Since 3SAT is an NP-complete problem we cannot expect to solve
finite-domain CSPs in less than exponential time (unless P = NP).

However, in most practical applications, CSP algorithms can solve
problems orders of magnitude larger than those solvable via general
search algorithms.

13/59

Varieties of CSPs (ctd.)

» Discrete variables can also have infinite domains, e.g., the set of
integers or the set of strings.

e E.g., for construction job scheduling, variables are the start
dates and the possible values are integer numbers of days from
the current date.

» Note:

e With infinite domains it is no longer possible to describe
constraints by enumerating all allowed combinations of values.
e Rather, a constraint language must be used.
— E.g., if Joby, which takes 5 days, must precede Jobs, then

we need a language of algebraic inequalities like
StartJoby + 5 < StartJobs.

14/59

Varieties of CSPs (ctd.)

» It is also no longer possible to solve constraints with infinite domains
by enumerating all possible assignments

= there are infinitely many of them!

» Special solution algorithms exist for linear constraints on integer
values

e linear constraint = variables appear only in /inear form
e e.g., StartJob; + 5 < StartJobs is linear.

» Non-linear constraints are undecidable—no algorithm exists for
solving such constraints!

15/59

Varieties of CSPs (ctd.)

» Finally, there are CSPs with continuous domains
e very common in real-world applications and widely studied in
operations research

e e.g., scheduling the start/end times for the Hubble Space
Telescope

— require a very precise timing of observations,

— taking a variety of real-valued astronomical, precedence,
and power constraints into account.

» Linear constraints can be solved with linear programming methods
in polynomial time.

16/59

\/

Yy YyYVvYYy

Some real-world CSPs

Assignment problems

e e.g., who teaches what class

Timetabling problems
e e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling

Floor planning

Notice that many real-world problems involve real-valued variables.

17/59

CSPs as standard search problems

» |t is straightforward to give an incremental formulation of a CSP as
a standard search problem.

e States are defined by the values assigned so far.

Initial state: the empty assignment, (.

Successor function: assign a value to an unassigned variable
providing it does not conflict with the current assignment.

Goal test: the current assignment is complete.

» This is the same for all CSPs!

= Any standard search algorithm can be used to solve CSPs.

18/59

CSPs as standard search problems (ctd.)

Caveat: Suppose we use breadth-first search.

» If there are n variables and d values, the branching factor at the top
level is nd.

» At the next level, the branching factor is (n — 1)d, and so on for n
levels.

= \\e generate a tree with n!d"” leaves although there are only d”
possible complete assignments!

19/59

Backtracking search

» The naive formulation ignored one crucial property of CSPs:

e Variable assignments are commutative, i.e., the order of an
assignment of variables does not matter and one reaches the
same partial assignment regardless of order.

e Therefore, CSP search algorithms need only to consider a single
variable at each node of the search tree!

— E.g., in the map-colouring problem, initially we may have a
choice between SA = red, SA = green, and SA = blue,

— but we would not choose between SA = red and
WA = blue.

= \Vith this restriction, we generate only d" leaves as expected.

» Depth-first search for CSPs with single-variable assignments is called
backtracking search.

e Backtracking search is the basic uninformed algorithm for CSPs.

20/59

Backtracking search (ctd.)

Below gives part of the search tree for the Australia problem, where the
variables are assigned in the order WA, NT, Q, ...

)
P

¢ ¢ ¢

A

0\% .
il o

21/59

Backtracking search (ctd.)

» Since plain backtracking search is an uninformed algorithm, we do
not expect it to be very effective for large problems.

» Different general-purpose methods help improving the performance,
addressing the following issues:

e Which variable should be assigned next, and in what order
should its values be tried?

e What are the implications of the current variable assignments
for the other unassigned variables?

e When a path fails, can the search avoid repeating this failure in
subsequent paths?

22/59

Minimum-remaining-values heuristic

» The minimum-remaining-values (MRV) heuristic:
e choose the variable with the fewest legal values.

» If there is a variable X with 0 legal values remaining, the MRV
heuristic will select X and failure will be detected immediately

e avoiding pointless searches through further unassigned variables.

» E.g., in the Australia example, after the assignments for WA = red
and NT = green, there is only one possible value for SA.
e It makes sense to assign SA = blue next rather than
assigning Q.
e Actually, after SA is assigned, the choices for @, NSW, and V
are all forced.

SSa ST G

23/59

Degree heuristic

» The MRV heuristic does not help at all in choosing the first region
to colour.
» In this case, the degree heuristic comes in:

e it selects the variable that is involved in the largest number of
constraints on other unassigned variables.

» In the Australia example, SA is the variable with highest degree, 5.
e The others have degree 0, 2, or 3.

e Actually, once SA is chosen, we can can assign the mainland
regions clockwise or counterclockwise with a colour different
from SA and the previous region.

24/59

Least-constraining-value heuristic

» Once a variable has been selected, to decide on the order in which
to examine its values, the least-constraining-value heuristic can be
effective:

e it prefers a value that rules out the fewest choices for the
neighbouring variables in the constraint graph.
» In the Australia example, suppose we have the partial assignment
WA = red and NT = green, and our next choice is for Q.

e Blue would be a bad choice, because it eliminates the last legal
value for Q's neighbour SA.

= The least-constraining-value heuristic thus prefers red to blue.

SSES St <‘:’:~

Allows 1 value for SA

Allows 0 values for SA

25/59

Forward checking

» The methods discussed so far consider the constraints on a variable
only at the time that the variable is chosen.

» By looking at some of the constraints earlier in the search, or even
before the search, the search space can be drastically reduced.

» One such method is forward checking:

e whenever a variable X is assigned, it looks at each unassigned
variable Y that is connected to X by a constraint

e and deletes from the domain of Y any value that is inconsistent
with the value chosen for X.

26/59

Forward checking (ctd.)

» Consider colouring Australia using forward checking:

e S

WA NT Q NSW v SA T
(HEEEPEEPEENE(EPEEEE BN
— 1 HENEEPEEEN]| EENE|
[—] I B[R0 N]
[— C1E [| — T]
» Note:

o After assigning WA = red and @ = green, the domains of NT
and SA are reduced to a single value.

w The MRV heuristic would select SA and NT next.

e After assigning V' = blue, the domain of SA is empty, so we get
failure and the algorithm backtracks.

27/59

Forward checking (ctd.)

» Forward checking does not provide early detection for all failures:

SSEa S s S~

WA NT Q NSW v SA T
I I I e ireiren
(] PeeeE[EeE[EEE] E[ErE]
[— 1] [H E[EINE] 1

» NT and SA cannot both be blue!

1= Constraint propagation is the general term for propagating the
implications of a constraint on one variable onto other variables.

28/59

Arc consistency

» The simplest form of constraint propagation is arc consistency:
e “arc” refers to a directed arc in the constraint graph;

e X — Y is consistent iff for every value x of X there is some
allowed value y of Y.

» For SA = blue in the Australia colouring, there is a consistent
assignment for NSW, namely red = the arc from SA to NSW is
consistent

e the reverse arc is not consistent, but can be made so by
deleting blue from the domain of NSIV/.

\é/ 29/59

Further techniques

» Intelligent backtracking:

e do not backtrack to the preceding variable if a failure occurs,
but go back to one in the set of variables that caused the failure

— this set is the conflict set

— e.g., backjumping goes to the most recent variable in this
conflict set.

» Local search algorithms are very effective for solving CSPs

e the million-queens problem can be solved in an average of 50
steps.

» The structure of the constraint graph can be taken into account.

e E.g., colouring Tasmania is an independent subproblem of
colouring Australia.

e Tree-structured problems can be solved in linear time.

30/59

Knowledge Representation

Knowledge-based Agents

What is knowledge representation?

» The representation of knowledge and reasoning from knowledge are
central for Al
... after all, humans know things and do reasoning.

» Knowledge and reasoning play a crucial role in dealing with partially
observable environments.

e A knowledge-based agent can combine general knowledge with
current percepts to infer hidden aspects of the current state
prior to selecting actions.

— E.g., a physician diagnoses a patient prior to choosing a
treatment.

= For diagnosing, the physician uses knowledge from
education and experience, as well as association patterns
the physician cannot consciously describe.

31/59

What is knowledge representation? (ctd.)

» Understanding natural language also involves inferring hidden
states—viz., the intention of the speaker.

e E.g., when we hear
“John threw the stone against the mirror and broke it”,

we know that “it” refers to “mirror” and not to “stone”.

» In general, the goal of knowledge representation is the following:

e representing implicit knowledge about a certain area in such a
way that it can be processed by computers
e original knowledge is encoded in suitable data structures and

algorithms.

32/59

What is knowledge representation? (Ctd.)

» Knowledge representation is a multidisciplinary field involving
methods and techniques from:

e Jogic:
— provides the formal structures and rules for performing
deductions;
e ontology:

— defines the kinds of objects in the considered application
area;

e computer science:

— supports the applications which distinguishes knowledge
representation from pure philosophy.

» In short:

e knowledge representation = application of logic and ontology
for providing computational models.

33/59

Declarative vs. procedural approaches

» Declarative knowledge representation techniques:

e knowledge is expressed as sentences in some suitable formal
language which are accessed by the procedures using this
knowledge

= separation between the explicit representation of
knowledge and the processing for answering queries.

e Advantages:
— increased versatility for performing complex tasks;

— changes can be easily incorporated (modularity).

» Procedural techniques:

e knowledge is implicitly stored in a sequence of operations,
manifested in the actual execution of the operations (i.e.,
directly as program code).

e Advantages: minimising the role of explicit representation and

reasoning can yield more efficient systems.
34/59

Declarative vs. procedural approaches (ctd.)

» In the 1970s and 1980s there were heated debates between
advocates of the two approaches.

» Now it is understood that successful agents often combine both
declarative and procedural elements in their designs.

35/59

Knowledge-based agents

» Central components of a knowledge-based agent:
e a knowledge base
— a set of sentences in a formal language;

e methods to add new sentences and methods to query what is
known.
— We use TELL and ASK as generic names for these tasks.
— Both tasks may involve inference—i.e., deriving new
sentences from old.
= |n logical agents, answers to the ASK procedure is by
means of logic!

» Schematic architecture:

’knowledge processing‘ <— domain-independent algorithms

0

’knowledge base‘ +— domain-specific content

36/59

A simple knowledge-based agent

» The agent must be able to:
e represent states, actions, etc.;
e incorporate new percepts;
e update internal representations of the world;
e deduce hidden properties of the world;

e deduce appropriate actions.

» Each time the agent program is called, it does three things:
1. It TELLs the knowledge base what it perceives;
2. it AsKs the knowledge base what action it should perform;
3. it records its choice with TELL and executes the action.

37/59

A simple knowledge-based agent (ctd.)

function KB-ACGENT(percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action < ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE- ACTION-SENTENCE(action, t))
t—t+1

return action

» MAKE-PERCEPT-SENTENCE constructs a sentence asserting that
the agent perceived the given percept at the given time.

» MAKE-ACTION-QUERY constructs a sentence that asks what
action should be done at the current time.

» MAKE-ACTION-SENTENCE constructs a sentence asserting that the
chosen action was executed.

1= Details of the inference mechanisms are hidden inside TELL
and Ask! 38/50

Elements of Propositional and First-Order Logic

Logic in general

» [ogics are formal languages for representing information such that
conclusions can be drawn.

» Syntax defines the sentences in the language.

» Semantics defines the “meaning” of sentences; i.e., defines truth of
a sentence in a world.

» For example, consider the language of arithmetic:

e x + 2 > y is a sentence;

e x2 + y > is not a sentence;

e x + 2 > yis true iff the number x + 2 is no less than the
number y;

e x+ 2> yistrue in a world where x=7, y=1;

e x+2 > yis false in a world where x=0, y=6.

40/59

Entailment

» Entailment means that one thing follows from another:
e A knowledge base KB entails a sentence «, symbolically
KB |= «, iff o is true in all worlds where KB is true.
e Here, KB is the premiss and « is the conclusion of the
entailment.

e Recall that knowledge bases are sets of sentences and they are
also referred to as theories.

» Examples:
e A knowledge base KB containing “Batman laughs” and
“Commodore Schmidlapp laughs” entails “Either Batman
laughs or Commodore Schmidlapp laughs”.

e In the language of arithmetic, x + y =4 entails 4 = x + y.

v= Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics.

41/59

Models

» Semantics is defined in terms of interpretations, which are formally
structured worlds with respect to which truth can be evaluated.

» We say that interpretation m is a model of a sentence « if « is true
in m, and m is a model of a knowledge base if it is a model of all its
elements.

e We denote by M(«) the set of all models of .

» Then, KB = o if and only if M(KB) C M(«).

e E.g., KB = a holds for KB = Batman laughs and Commodore
Schmidlapp laughs and & = Commodore Schmidlapp laughs.

42/59

Important semantical notions

» Two sentences are logically equivalent iff true in the same models:
a = [ifand only if & = 3 and [|= «.

» A sentence is valid if all interpretations are models of it.

» A sentence is satisfiable if it has some model.

» A sentence is unsatisfiable if it has no model.

» Writing —« for the negation of o (with the meaning that —« is true
precisely when « is not true), we can state:

e « is valid if and only if =« is unsatisfiable;

e KB =« if and only if KB U {—«a} is unsatisfiable, i.e., to prove
« from KB by reductio ad absurdum.

43/59

Inference

» KB F; « :<=> sentence « can be derived from KB in proof system i.

e A proof system (also called calculus or axiom system), consists
of axioms and inference rules (however, some proof systems do
not require axioms).

e A derivation from KB is a sequence of formulas s.t.

(i) each formula is either an axiom,
(ii) an element of KB, or
(iii) results from inference rule applications using earlier
elements in the sequence.

e A derivation is also said to be a derivation of its last element.
» Intuitively:

e Consequences of KB are a haystack; « is a needle.
— Entailment = needle in haystack; inference = finding it

44/59

Inference (ctd.)

» Important properties:
e Soundness:
— 7 is sound if KB I-; o implies KB = «.

e Completeness:
— I is complete if KB |= « implies KB I «.
» Many different sound and complete proof systems for various logics
have been defined in the literature, like
e Hilbert-type systems,

e sequent-type calculi,

tableau calculi,

resolution calculi,

natural deduction systems, etc.

1= |mportant in computer science are sequent-type calculi, tableau

calculi, and resolution calculi.
45/59

Two fundamental logics

» Among the many different logics existing, designed for different
purposes, two logics are pre-eminent:
e propositional logic; and

e first-order logic (FOL) (also called predicate logic).

» Propositional logic is simple, assuming that the world consists of
facts which can be composed from atomic formulas using
connectives:

e —S5 (negation), S; N\ Sy (conjunction), S1 V' Sy (disjunction),
S1 = Sy (implication), S1 < Sy (biconditional).

» E.g.,, 7A = (BV C) states that if A is not the case, then one of B
or C holds.

e This formula may represent, e.g., the following sentence:
If the car is not proceeding, then it is broken or out of gas.

46/59

Truth tables for connectives

P Q -P PAQ PV Q P=Q | P&Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

47/59

Some logical equivalences in propositional logic

(aApB) =(BANa) commutativity of A
(aVvpB)=(BVa) commutativity of V
((anNB)ANY) = (aAN(BA7)) associativity of A
((aVvpB)Vy)=(aV (V7)) associativity of V
—(—a) = a double-negation elimination
(e = B) = (-8 = —a) contraposition
(e = B) = (—aV B) implication elimination
(o & B)=((a=B)N (8= «)) biconditional elimination
—(aAB)=(-aV-B) DeMorgan
—(aV B) = (-aA-p) De Morgan
(aAN(BVY)=({(anB)V(eA7y)) distributivity of A over V
(aV(BAY)=({(aVB)A(aVy)) distributivity of V over A

48/59

Restricted Expressibility

» Unlike natural language, propositional logic has, however, only very
limited expressive power.

e E.g., the following argument (valid in natural
language) cannot be adequately dealt with in propositional logic:

All superheroes are brave.
Superman is a superhero.
Therefore: Superman is brave.

e In propositional logic, the three sentences would be formalised
using atomic sentences A, B, C—but A, B |= C does not hold!

@ This is where FOL comes in!

49/59

First-order logic (FOL)

FOL assumes that the world contains
» Objects: people, houses, numbers, theories, Superman, Commodore
Schmidlapp, colours, centuries, ...

» Relations: red, round, bogus, prime, multistoried ...,
brother of, bigger than, inside, part of, has color, occurred after,

owns, comes between, ...
» fFunctions: father of, best friend, addition, one more than, end of ...

50/59

Constants:
Predicates:
Functions:
Variables:
Connectives:
Equality:
Quantifiers:

Syntax of FOL: Basic elements

Superman, KingJohn, 2, ...
Friend, >, ...;

Sqrt, LeftLegOf,.. .

X, y, a, b,...;

AV, 1, =, S,

V' (universal quantifier), 3 (existential quantifier)

51/59

Atomic sentences

Atomic sentence := predicate(termy, ..., term,)
or termy = termsp

Term := function(termy, term,)
or constant or variable

Examples:

1. Friend(Superman, Batman);
2. > (Length(LeftLegOf (Superman)), Length(LeftLegOf (Batman)))

52/59

Complex sentences

» Complex sentences are made from atomic sentences using
connectives and the quantifiers

o VxS (universal quantifier, “for all x, S"),

e xS (existential quantifier, “for some x, S”).

» Examples:
1. Vx(Archfiend(x, Superman) = Fights(x, Superman));
>(1,2) v <(1,2);
>(1,2) A —=>(1,2);
Vx(Country(x) = Jy Capitol(y, x)).

Bwn

53/59

Truth in first-order logic

» Sentences are true with respect to a domain and an interpretation.
e The domain contains > 1 objects (domain elements) for
specifying relations among them.
e The interpretation specifies referents over the domain for
— constant symbols — objects;
— predicate symbols — relations;
— function symbols — functional relations.

» An atomic sentence predicate(termy, ..., term,) is true iff the

objects referred to by termy, ..., term, are in the relation referred to
by predicate.

54/59

Truth example

» Consider the formula Brother(Richard, John) and the following
interpretation:
e Richard — Richard the Lionheart;
e John — the evil King John;
e Brother — the brotherhood relation.

» Under this interpretation, Brother(Richard, John) is true

just in case Richard the Lionheart and the evil King John
are in the brotherhood relation.

55/59

Common mistakes to avoid

» Typically, = is the main connective with V as in:
e all S are P: Vx(5(x) = P(x)).
e Common mistake: using A as the main connective with V:
Vx(At(x, Berkeley) A Smart(x))
means ‘“everyone is at Berkeley and everyone is smart”.

» Typically, A is the main connective with 3 as in:
e some S are P: Ix(S(x) A P(x)).
e Common mistake: using = as the main connective with =
Ix(At(x, Stanford) = Smart(x))
is true if there is anyone who is not at Stanford!

56/59

Some ambiguities

» In natural language, “all S are P" would normally not be asserted if
it is already known that S does not hold.

» Indeed, people would not consider “all S are P true if S is false.
= "all S are P" would in this sense be translated as

IxS(x) A Vx(S(x) = P(x))

rather than as Vx(S5(x) — P(x)).

57/59

Some ambiguities (ctd.)

» Sometimes “all S are not-P" is understood as “not all S are P".
Example:

e "All that glisters is not gold” (Shakespeare, Merchant of
Venice).
w Translation would be of the form —Vx(S(x) — P(x)) but not
of the form Vx(A(x) — —P(x)).

» The indefinite article “a” or “an” has sometimes different meaning:

e “A child needs affection.” = Vx(C(x) — A(x)).
e "“A man climbed the Mount Everest.” = Ix(M(x) A E(x)).

58/59

Some ambiguities (ctd.)

» Also, the meaning of the expression “any” depends on the context:
e When an any-expression stands by itself, it has the same force
as “all”.

e But when an any-expression D is put into contexts —D or
D — E, the meaning of “any” normally changes from “all” to
“some”.

» Examples:

e "l would do that for anyone.” = VxA(x).
e "l wouldn't do that for anyone.” = —3xA(x).
e "Anyone who is godfearing is just.” = Vx(G(x) — J(x)).
e "If any man is just, Aristides is just." = (3xJ(x)) — J(a).
e “If Superman is a villain, then any man is a villain.”

= V(s) — VxV(x).

59/59

