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1 Graph Theory

1.1 Definition & Notation

• 𝐺 = (𝑉 , 𝐸)

• Directed Edge 𝑒 = (𝑣, 𝑤); 𝑣 → 𝑤

• Undirected Edge 𝑒 = {𝑣, 𝑤} =
{𝑤, 𝑣} = 𝑣𝑤

• 𝑑(𝑣)… degree

‣ 𝑑+(𝑣)… out-degree

‣ 𝑑−(𝑣)… in-degree

• Γ(𝑣)… set of neighbours

‣ Γ+(𝑣)… successors

‣ Γ−(𝑣)… predecessors

Walk, Trail Circuit

• Walk: sequence of edges (no jumps)

‣ ∃ walk 𝑣 to 𝑤 : 𝑣 ∼ 𝑤

• Trail: sequence of edges (no jumps, 

no repeating edges)

‣ Circuit/Closed Trail: same start 

and end vertex

• Path : no repeating edges, no 

repeating vertices

‣ Cycle/Closed Path: same start 

and end vertex

Handshaking Lemma

∑
𝑣∈𝑉

𝑑(𝑣) = 2 |𝐸| or ∑
𝑣∈𝑉

𝑑+(𝑣) = ∑
𝑣∈𝑉

𝑑−(𝑣) = |𝐸|

1.2 Trees & Forests

Isomorphism  

𝐺 ≅ 𝐻 ⟺ ∃𝜑 : 𝑉 (𝐺) ↦ 𝑉 (𝐻) and 𝑣𝑤 ∈ 𝐸(𝐺) ⟺ 𝜑(𝑣)𝜑(𝑤) ∈ 𝐸(𝐻) 
Spanning Subgraphs & Spanning Forests  

Spanning Forest ⟺

1. 𝑉 (𝐹) = 𝑉 (𝐺) and 𝐸(𝐹) ⊆ 𝐸(𝐺)

2. 𝐹  is a forest

3. 𝐹  has the same connected components as 𝐺

If 𝐺 connected ⇒ 𝐹  spanning tree 

Minimum or Maximum Spanning Trees

• 𝐺 = (𝑉 , 𝐸) and weight function 𝑤 : 𝐸 → ℝ, 𝑒 ↦ 𝑤(𝑒)
Then 𝑇 = (𝑉 , 𝐹) ⊆ 𝐺 minimum spanning tree if w(F) minimal

• GREEDY(V, E, w) constructs the minimum spanning tree (MST):

‣ Sorts the edges of 𝐺 by weight ascending

‣ Adds the next smallest edge to 𝑇  (such that 𝑇  remains a tree) until 𝐺 is 

spanned

Matrix-Tree-Theorem (Kirchhoff)  

𝐺 = (𝑉 = {𝑣1, …𝑣𝑛}, 𝐸) simple, undirected, connected, with adjacency matrix 𝐴
𝐷 = diag(𝑑(𝑣1), …, 𝑑(𝑣𝑛)); (𝐷 − 𝐴)′ ≔ (𝐷 − 𝐴) without 1 row and 1 column

⇒ det((𝐷 − 𝐴)′) = number of spanning trees of 𝐺 

Independence Systems  

Independence System (𝐸, 𝑆) : 𝑆 ⊆ 2𝐸 and 𝑆 is closed under inclusion.

𝐴 ∈ 𝑆 ∧ 𝐵 ⊆ 𝐴 ⇒ 𝐵 ∈ 𝑆 

Matroids & GREEDY  

An independence system 𝑀 = (𝐸, 𝑆) is called a matroid if ∀𝐴, 𝐵 ∈ 𝑆 such that 

|𝐵| = |𝐴| + 1 : ∃𝑣 ∈ 𝐵 ∖ 𝐴 with 𝐴 ∪ {𝑣} ∈ 𝑆
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph and 𝑆 = {𝐹 ⊆ 𝐸 | 𝐹 is a forest}; then 

(𝐸, 𝑆) is a matroid.

If 𝑀 = (𝐸, 𝑆) is a matroid with a weight function 𝑤 : 𝐸 ↦ ℝ then GREEDY 

computes a 𝐴 maximal/minimal weight with respect to the inclusion.

1.3 Special Graphs

Planar Graphs  

Definition: A graph 𝐺 is planar if there is an isomorphic graph 𝐻 embedded in 

the plane (vertices are points in the plane ℝ2) such that no edges intersect. A 

graph is planar ⟺ there is no subgraph which is a subdivision of 𝐾5 or of 𝐾3,3.

Euler’s Polyhedron Formula: if 𝐺 is connected and planar graph, then

𝛼0 − 𝛼1 + 𝛼2 = 2. 𝛼0… Vertices, 𝛼1… Edges, 𝛼2… Faces

Dual Graphs: Let 𝐺 = (𝑉 , 𝐸) be a planar graph and let 𝐹  be the set of its faces. 

Then 𝐺∗ = (𝑉 ∗, 𝐸∗) is defined such that 𝑉 ∗ = 𝐹  and for every edge 𝑒 ∈ 𝐸, set 

𝑒∗ = (𝑓1, 𝑓2) if 𝑓1 and 𝑓2 are the faces left and right of 𝑒.
𝐺∗ is called the dual of 𝐺. 

Bipartite Graphs and Matching  

Definition: Let 𝐺 = (𝑉 , 𝐸) be a simple undirected graph. 𝐺 is called bipartite if 

and only if:

• 𝑉 = 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅

• 𝑣𝑤 ∈ 𝐸 ⇒ 𝑣 ∈ 𝑉1, 𝑤 ∈ 𝑉2

Hall’s Marriage Theorem: Given a bipartite graph 𝐺 = (𝑉 , 𝐸), such that 𝑉 =
𝑊 ∪ 𝑀  where 𝑊  and 𝑀  are finite and nonempty. Define the friendship relation: 

𝐹 ⊆ 𝑊 × 𝑀  with 𝑤𝑚 ∈ 𝐸 ⟺ 𝑤𝐹𝑚. A feasible marriage is a matching of 𝑊  𝐹1 ⊆
𝐹  (i.e ∀𝑥 ∈ 𝑊 : ∃!𝑦 ∈ 𝑀  such that 𝑥𝐹1𝑦). Now the theorem states the following: 

there is a feasible marriage, if and only if: ∀𝑊0 ⊆ 𝑊 : |{𝑦 ∈ 𝑀 | ∃𝑥 ∈ 𝑊0 :
𝑥𝐹𝑦}| ≥ |𝑊0| or in different words: | ⋃

𝑤∈𝑊0

Γ(𝑤)| ≥ |𝑊0|

1.4 Graph Colorings

• Vertex Coloring: 𝑐 : 𝑉 → 𝐶 where a 𝐶 is a set of colors. feasible if 𝑣𝑤 ∈ 𝐸 ⇒
𝑐(𝑣) ≠ 𝑐(𝑤)

• Edge Coloring: 𝑐 : 𝐸 → 𝐶

• everything that can be done with a vertex coloring can also be done with an 

edge coloring

• Chromatic Number: 𝜒(𝐺) is the minimal number of colors such that there is 

a feasible coloring.

‣ 𝜒(𝐾𝑛) = 𝑛

‣ 𝜒(𝐾𝑛,𝑚) = 2

‣ 𝜒(𝑇 ) = 2 if 𝑇  is a tree and |𝑉 | > 1

‣ 𝜒(𝐺) = 1 ⟺ 𝐸(𝐺) = ∅

‣ 𝜒(𝐺) = 2 ⟺ 𝐸(𝐺) ≠ ∅ and 𝐺 is bipartite

‣ 𝜒(𝐺) = 2 ⟺ 𝐸(𝐺) ≠ ∅ and all cycles have even length

‣ 𝜒(𝐺) ≤ 1 + max𝑣∈𝑉 𝑑(𝑣)

‣ 𝐺  is planar ⇒ 𝜒(𝐺) ≤ 5

Ramsey Theory

• Definition: The Ramsey Number 𝑅(𝑟, 𝑠) is the minimum 𝑛 such that every 

red-blue coloring of 𝐾𝑛 contains either a red 𝐾𝑟 or a blue 𝐾𝑠.

‣ Coloring is edge coloring

• 𝑅(𝑟, 𝑠) ≤ 𝑅(𝑟 − 1, 𝑠) + 𝑅(𝑟, 𝑠 − 1)

• 𝑅(𝑛1, 𝑛2, …, 𝑛𝑟) = min{𝑛 |  all r-edge colorings of 𝐾𝑛

(colors 𝑐1, …, 𝑐𝑟 ) have a 𝑐𝑗-colored 𝐾𝑛𝑗
for some 𝑗}

2 Advanced Combinatorics

Double Counting  

Given two sets 𝐴 and 𝐵 and a relation 𝑅 ⊆ 𝐴 × 𝐵, such that 𝑎𝑅𝑏 ⟺ (𝑎, 𝑏) ∈ 𝑅: 

Let 𝑅𝑖 = {𝑏 ∈ 𝐵 | 𝑎𝑖𝑅𝑏} (all 𝑏 related to 𝑎) and 𝑆𝑗 = {𝑎 ∈ 𝐴 | 𝑎𝑅𝑏𝑗}. Then: |𝑅| =
∑
𝑚

𝑖=0
|𝑅𝑖| = ∑

𝑛

𝑗=0
|𝑆𝑗| 

Pigeon Hole Principle  

Let 𝐴1, …𝐴𝑘 be finite pairwise disjoint sets, |𝐴1 ∪ … ∪ 𝐴𝑘| > 𝑘 ⋅ 𝑟, for 𝑟 ∈ ℕ; This 

implies: ∃𝑖 : |𝐴𝑖| > 𝑟. If 𝑟 = 1, then it follows that: 𝑓 : 𝐴 ↦ 𝐵, |𝐴| > |𝐵| ⇒ ∃𝑏 ∈
𝐵 : |𝑓−1(𝑏)| ≥ 2 

Principle of Inclusion & Exclusion  

|𝐴1 ∪ … ∪ 𝐴2| = ∑
∅≠𝐼⊆{1,…,𝑛}

(−1)|𝐼|+1 | ⋂
𝑖∈𝐼

𝐴𝑖|

For |𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶|
If the sets are not necessarily pairwise disjoint, then:

𝐴1, …𝐴𝑛 ⊆ | 𝐴 ∖ ⋂
𝑛

𝑖=1
𝐴𝑖 | = |𝐴| + ∑

∅≠𝐼⊆{1,…,𝑛}
(−1)|𝐼| | ⋂

𝑖∈𝐼
𝐴𝑖|

= ∑
𝐼⊆{1,…,𝑛}

(−1)|𝐼| | ⋂
𝑖∈𝐼

𝐴𝑖|

2.1 Enumerative Combinatorics

Counting Sets

6 Basic Problems:

1. # of permutations: 𝑛!

2. # of 𝑘-subsets of 𝐴: (𝑛
𝑘 )

3. # of ordered 𝑘-subsets: 𝑘!(𝑛
𝑘 )

4. # of 𝑘-multisets (elements can be 

used more than once): (𝑛+𝑘−1
𝑘 )

5. # of arrangements of a multiset

(element 𝑏𝑖 appears 𝑘𝑖 times): 
𝑛!

𝑘1!𝑘2!…𝑘𝑚!

6. # of ordered 𝑘-multisets: 𝑛𝑘

Stars and bars: Number of 

assignments of 𝑛 items into 𝑘 boxes

(𝑛+𝑘−1
𝑘−1 )

Useful theorems:

• ∑
𝑛

𝑘=0
(𝑛

𝑘 ) = 2𝑛

• ∑
𝑛

𝑚=0
(𝑚

𝑘 ) = (𝑛+1
𝑘+1)

Vandermonde: ∀𝑛 ∈ ℕ, ∀𝑥, 𝑦 ∈
ℂ and 𝑘 ∈ ℕ:

(𝑥+𝑦
𝑛 ) = ∑

𝑛

𝑘=0
(𝑥

𝑘)( 𝑦
𝑛−𝑘)

Binomials:

(1 + 𝑏)𝑘 = ∑
𝑖≥0

(𝑘
𝑖 )𝑏

𝑖

in general: (𝛼
𝑘 ) = 𝛼𝑘

𝑘! =
𝛼(𝛼−1)(𝛼−2)…(𝛼−(𝑘−1))

𝑘! = 1
𝑘! ⋅ ∏

𝑘−1

𝑖=0
𝑛 − 𝑖

𝑛! ⋅ 2𝑛 = (1 ⋅ 2) ⋅ (2 ⋅ 2) ⋅ … ⋅ (𝑛 ⋅ 2)
(2𝑛)!
𝑛!⋅2𝑛 = 1 ⋅ 3 ⋅ … ⋅ (2𝑛 − 1)

Stirling Numbers

First kind: 𝑠𝑛,𝑘 = # of permutations 

of {1…𝑛} with 𝑘 cycles

• 𝑠𝑛,1 = (𝑛 − 1)!,  𝑠𝑛,𝑛−1 = (𝑛
2 ),  𝑠𝑛,𝑛 =

1

• 𝑠𝑛,0 = 0,  𝑠0,𝑛 = 0,  𝑠0,0 = 1 (!!)

• ∑
𝑛

𝑘=1
𝑠𝑛,𝑘 = 𝑛!

∀𝑛, 𝑘 > 0 : 𝑠𝑛,𝑘 = 𝑠𝑛−1,𝑘−1 + (𝑛 −
1)𝑠𝑛−1,𝑘

Second kind: 𝑆𝑛,𝑘 = # of 𝑘 partitions 

of 𝐴 = {1…𝑛}
⇔ ∀𝑖 : 𝐴𝑖 ≠ ∅,  𝑖 ≠ 𝑗 ⇒ 𝐴𝑖 ∩ 𝐴𝑗 =
∅,  ⋃

𝑘

𝑖=1
𝐴𝑖 = 𝐴

• 𝑆𝑛,1 = 1,  𝑆𝑛,𝑛−1 = (𝑛
2 ),  𝑆𝑛,𝑛 = 1

• 𝑆𝑛,0 = 0,  𝑆0,𝑛 = 0,  𝑆0,0 = 1 (!!)

• 𝑆𝑛,2 = 2𝑛−1 − 1

∀𝑛, 𝑘 > 0 : 𝑆𝑛,𝑘 = 𝑆𝑛−1,𝑘−1 + 𝑘𝑆𝑛−1,𝑘

2.2 Generating Functions

Definition & Properties  

Let (𝑎𝑛)𝑛≥0, 𝑎 ∈ ℂ be a sequence; Then 𝐴(𝑧) = ∑
𝑛≥0

𝑎𝑛𝑧𝑛 is the generating 

function of 𝑎𝑛.

• 𝐴(𝑧) + 𝐵(𝑧) = ∑
𝑛≥0

(𝑎𝑛 + 𝑏𝑛)𝑧𝑛 

(linearity)

• 𝐴(𝑧)/𝐵(𝑧) = 𝐶(𝑧), when 𝑏0 ≠ 0

• 𝐴(𝑧)𝐵(𝑧) = ∑
𝑛≥0

∑
𝑘≥0

𝑎𝑘𝑏𝑛−𝑘𝑧𝑛 

(Cauchy-Schwarz Product)

Operations on Generating Functions

• (𝛼𝑎𝑛 + 𝛽𝑏𝑛)𝑛≥0 ⇔ 𝛼𝐴(𝑧) +
𝛽𝐵(𝑧), 𝛼, 𝛽 ∈ ℂ

• (𝛾𝑛𝑎𝑛)𝑛≥0 ⇔ 𝐴(𝛾𝑧)

• 1 =̂ (1)𝑛≥0 ⇔ 1
1−𝑧 = ∑

𝑛≥0
𝑧𝑛

• (𝑎𝑛)𝑛≥0 ⇔ 1
1−𝑎𝑧 = ∑

𝑛≥0
𝑎𝑛𝑧𝑛

• 1−𝑧𝑛+1

1−𝑧 = ∑
𝑛

𝑘=0
𝑧𝑘

• ∑
𝑛≥0

𝑧𝑛

𝑛! = 𝑒𝑧

• (𝑎𝑛−1)𝑛≥1 ⇔ 𝑧𝐴(𝑧) (index shift)

• (𝑛𝑎𝑛)𝑛≥0 ⇔ 𝑧𝐴′(𝑧) (derivative)

•
1

(1−𝑧)𝑘 = (1 − 𝑧)−𝑘 =

= ∑
𝑛≥0

(𝑛+𝑘−1
𝑘−1 )𝑧𝑛 = ∑

𝑛≥0
(𝑛+𝑘−1

𝑛 )𝑧𝑛

 

(transform back)

Unlabelled Combinatorial Structures  

Combinatorial structure: (𝐴, | ⋅ |), 𝐴 ≠ ∅; | ⋅ | is weight function; ∀𝑥 ∈ 𝐴 :

|𝑥| ∈ ℕ
Counting sequence of A: (𝑎𝑛)𝑛≥0, 𝑎𝑛 = |{𝑥 ∈ 𝐴 : |𝑥| = 𝑛}| < ∞; “How many 𝑥 

of weight 𝑛?”

The counting sequence has a generating function 𝐴(𝑧), also called generating 

function of 𝐴.

1. 𝐶 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅;  (𝐴, | ⋅ |𝐴), (𝐵, | ⋅ |𝐵);  |𝑥|𝑐 = {|𝑥|𝐴 if 𝑥∈𝐴
|𝑥|𝐵 if 𝑥∈𝐵

𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 ⇒  𝐶(𝑧) = 𝐴(𝑧) + 𝐵(𝑧)

2. 𝐶 = 𝐴 × 𝐵,  (𝑥, 𝑦) ∈ 𝐶,  𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵;  |(𝑥, 𝑦)| = |𝑥|𝐴 + |𝑦|𝐵
𝑐𝑛 = ∑

𝑛

𝑘=0
𝑎𝑘𝑏𝑛−𝑘 ⇒  𝐶(𝑧) = 𝐴(𝑧) ⋅ 𝐵(𝑧)

3. 𝐶 = seq(𝐴) = {𝜀} ∪ (𝑥1, 𝑥2, …𝑥𝑘)𝑘≥0 = {𝜀} ∪ 𝐴 ∪ 𝐴2 ∪ 𝐴3 ∪ …;  |𝑥|𝐶 = ∑
𝑘

𝑖=1
|𝑥𝑖|𝐴

𝐶(𝑧) = 1
1−𝐴(𝑧) , only if we define 𝑎0 = 0

4. 𝐶 = seq𝑘≤𝑦(𝐴) = {𝜀} ∪ (𝑥1, 𝑥2, …𝑥𝑘)𝑘≤𝑦, 𝐶(𝑧) = 1−𝐴(𝑧)𝑦+1

1−𝐴(𝑧)  (finite sequence)

5. 𝐶 = set(𝐴) = 2𝐴 (power set)

𝐶(𝑧) = exp(∑
𝑘≥1

(−1)𝑘−1

𝑘 𝐴(𝑧𝑘))

Labelled Combinatorial Structures  

Labelled combinatorial structure: Elements are numbered ⟹ switching of 

two equal elements does make a difference! Â(𝑧) = ∑
𝑛≥0

𝑎𝑛
𝑧𝑛

𝑛!

1. Ĉ = Â ∪ B̂, Â ∩ B̂ = ∅;  (Â, | ⋅ |Â), (B̂, | ⋅ |B̂);  |𝑥|𝑐 = {|𝑥|Â if 𝑥∈Â
|𝑥|B̂ if 𝑥∈B̂

𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 ⇒  Ĉ(𝑧) = Â(𝑧) + B̂(𝑧)

2. Ĉ = Â ∗ B̂,  Ĉ = {(𝑥, 𝑦) | 𝑥 ∈ Â, 𝑦 ∈ B̂; 𝑥, 𝑦 labelled in order preserving way};
|(𝑥, 𝑦)| = |𝑥|Â + |𝑦|B̂;  Ĉ(𝑧) = Â(𝑧) ⋅ B̂(𝑧)

3. Ĉ = seq(Â) = {𝜀} ∪ (𝑥1, 𝑥2, …𝑥𝑘)𝑘≥0 = {𝜀} ∪ Â ∪ Â2 ∪ Â3 ∪ …
Ĉ(𝑧) = 1

1−Â(𝑧)

4. Ĉ = set(Â) = 2Â (labelled power set)

Ĉ(𝑧) = ∑
𝑘≥0

Â(𝑧)𝑘

𝑘! = exp(Â(𝑧))

5. Ĉ = cyc(Â);  Ĉ(𝑧) = ∑
𝑘≥0

Â(𝑧)𝑘

𝑘 = log( 1
1−Â(𝑧)

)

6. Ĉ = set(cyc(Â)) = 1
1−Â(𝑧)

3 Number Theory

3.1 Divisibility & Factorization

GCD  

Let 𝑎, 𝑏 ∈ ℤ; then 𝑑 = gcd(𝑎, 𝑏) ⟺

• 𝑑|𝑎 and 𝑑|𝑏 (makes it divisor)

• 𝑡|𝑎 and 𝑡|𝑏 ⇒ 𝑡|𝑑 (makes it greatest)

Euclidean Algorithm  

𝑎, 𝑏 ∈ ℤ ∖ {0}, 𝑑 = gcd(𝑎, 𝑏) ⟺ ∃𝑒, 𝑓 ∈ ℤ such that 𝑑 = 𝑎𝑒 + 𝑏𝑓 (Bézout’s Identity) 

Commutative Ring (with 1)

• (𝑅, +) is an Abelian group (0-element, ∀𝑎 : ∃−𝑎)

• (𝑅, ⋅) is a semigroup (additionally: ∃ neutral element, distributive law holds)

• 𝑅 is an integral domain ⟺ ∄𝑎, 𝑏 ∈ 𝑅 ∖ {0} : 𝑎 ⋅ 𝑏 = 0

Euclidean Ring  

𝑅 is a Euclidean ring if 𝑅 is an 

integral domain and there is a 

euclidan function 𝑛 : 𝑅 → ℕ such that 

∀𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0 there exists 𝑞, 𝑟 ∈
𝑅 :

1. 𝑎 = 𝑏 ⋅ 𝑞 + 𝑟 with 𝑟 = 0  or 𝑛(𝑟) <
𝑛(𝑏)

2. ∀𝑎, 𝑏 ∈ 𝑅 ∖ {0} : 𝑛(𝑎) ≤ 𝑛(𝑎 ⋅ 𝑏)

Field  

A field is a commutative group with 

two operations: addition and 

multiplication such that

• (𝐾, +) is an Abelian group

• (𝐾 ∖ {0}, ⋅) is an Abelian group

• the distribute laws hold

• Units: 𝑅∗ = {𝑎 ∈ 𝑅 : ∃𝑎−1}

Prime Numbers

• 𝑝 ∈ ℙ ⟺ ±1  and ± 𝑝 are the only divisors of 𝑝

• let 𝑛 ∈ ℕ+, then ∃𝑝1, 𝑝2, …𝑝𝑟 ∈ ℙ such that 𝑝𝑒1
1 ⋅ 𝑝𝑒2

2 ⋅ … ⋅ 𝑝𝑒𝑟𝑟 = 𝑛, for 𝑟 ≥ 0

• 𝜈𝑝(𝑛)… multiplicity of 𝑝 in the factorization of 𝑛 (Factorization is unique up to 

the order of the factors)

‣ gcd(𝑎, 𝑏) = ∏
𝑝∈ℙ

𝑝min(𝜈𝑝(𝑎),𝜈𝑝(𝑏))

‣ lcm(𝑎, 𝑏) = ∏
𝑝∈ℙ

𝑝max(𝜈𝑝(𝑎),𝜈𝑝(𝑏))

‣ 𝑎|𝑏 ⟺ ∀𝑝 ∈ ℙ : 𝜈𝑝(𝑎) ≤ 𝜈𝑝(𝑏)

‣ 𝑛 = ∏
𝑝∈ℙ

𝑝𝜈𝑝(𝑛)

• |ℙ| = ∞

3.2 Congruence Relations and Residue Classes

A residue class is defined as: 𝑎 + 𝑚 ⋅ ℤ = 𝑎, where 𝑎 + 𝑚 ⋅ ℤ = {𝑎 + 𝑘 ⋅ 𝑚 | 𝑘 ∈ ℤ} 

(notice 𝑎 ⊆ ℤ and 𝑎 = 𝑎 + 𝑚). Definition: 𝑎 + 𝑏 ≔ 𝑎 + 𝑏 and 𝑎 ⋅ 𝑏 ≔ 𝑎 ⋅ 𝑏

• Let 𝑎 ∈ ℤ𝑚, then the inverse element is defined as follows: 𝑥 ∈ ℤ𝑚 such that: 

𝑥 ⋅ 𝑎 = 1 then 𝑥 = 𝑎−1.

• ∃𝑎−1 ∈ ℤ𝑚 ⟺ gcd(𝑎, 𝑚) = 1

Prime Residue Classes  

ℤ∗
𝑚 = {𝑎 ∈ ℤ𝑚 | gcd(𝑎, 𝑚) = 1} contains all invertible elements, can further be 

defined as ℤ∗
𝑚 = {𝑥 ∈ ℤ𝑚 | ∃𝑥−1 : 𝑥 ⋅ 𝑥−1 = 1} (also called Group of Units)

• Some rules:

‣ 𝑎𝑏 ≡ 𝑎𝑐(𝑎𝑚) ⇒ 𝑏 ≡ 𝑐(𝑚)

‣ 𝑎𝑏 ≡ 𝑎𝑐(𝑚) ⇒ 𝑏 ≡ 𝑐(𝑚)  if 𝑎𝑥 ≡ 1(𝑚)  has a solution ⟺ gcd(𝑎, 𝑚) = 1

3.3 Systems of Congruences

Chinese Remainder Theorem  

Given a system of congruence equations 𝑥 ≡ 𝑎𝑖(𝑚𝑖) where 1 ≤ 𝑖 ≤ 𝑟(∗) and if 𝑖 ≠ 𝑗 
then gcd(𝑚𝑖, 𝑚𝑗) = 1, then the system has a unique solution, modulo 𝑚 = ∏

𝑟

𝑖=1
𝑚𝑖. 

The soluition is given by: 𝑥 ≡ ∑
𝑟

𝑗=1

𝑚
𝑚𝑗

⋅ 𝑏𝑗 ⋅ 𝑎𝑗(𝑚). Where 𝑏𝑗 = ( 𝑚
𝑚𝑗

)
−1

mod 𝑚𝑗.

The chinese remainder theorem can be applied to all euclidean rings

3.4 Euler-Fermat Theorem

Euler's Totient Function  

𝜑(𝑚) = |{𝑥 | 0 ≤ 𝑥 ≤ 𝑚 − 1, gcd(𝑥, 𝑚) = 1}| = |ℤ∗
𝑚|

Two cases:

1. Suppose 𝑚 ∈ ℙ, then 𝜑(𝑚) = 𝑚 − 1

2. 𝑚 = 𝑝𝑒, for 𝑝 ∈ ℙ and 𝑒 ≥ 1: Now 𝑎 ∈ ℤ𝑚 ⇒ gcd(𝑎, 𝑝𝑒) = {1  if 𝑎∈ℤ∗
𝑚

𝑝𝑓  with 1≤𝑓<𝑒

Let 𝑚 = 𝑝𝑒1
1 𝑝𝑒2

2 …𝑝𝑒𝑟𝑟 , then: 𝜑(𝑚) = 𝑚(1 − 1
𝑝1

)(1 − 1
𝑝2

)…(1 − 1
𝑝𝑟

) 

Fermat's Little Theorem  

If gcd(𝑎, 𝑚) = 1 then 𝑎𝜑(𝑚) ≡ 1(𝑚). In particular: 𝑝 ∈ ℙ, 𝑝 ∤ 𝑎 ⇒ 𝑎𝑝−1 ≡ 1(𝑝)
Theorem: Let 𝑝, 𝑞 ∈ ℙ ∖ {2} such that 𝑝 ≠ 𝑞. Let 𝑚 = 𝑝 ⋅ 𝑞 and

𝑣 = lcm(𝑝 − 1, 𝑞 − 1); then ∀𝑎, 𝑘 ∈ ℤ : 𝑎𝑘𝑣+1 ≡ 𝑎(𝑚)

3.5 RSA-Algorithm

• (𝑚, 𝑒)… public key

• (𝑚, 𝑑)… private key

• Encryption: 𝐸(𝑎𝑗) = 𝑏𝑗 ≔ 𝑎𝑒
𝑗 mod 𝑚

• Dencryption: 𝐷(𝑏𝑗) = 𝑎𝑗 ≔ 𝑏𝑑
𝑗 mod 𝑚

• # number of fixpoints: gcd(𝑒 − 1, 𝑝 − 1) ⋅ gcd(𝑒 − 1, 𝑞 − 1)

Groups and Cyclic Groups

• Group: Let 𝐺 be a group and 𝑥 ∈ 𝐺, then ord𝐺(𝑥) = min{𝑖 ∈ ℕ+ | 𝑥𝑖 = 𝑒}. If 

𝑒 is the neutral element, then ord𝐺(𝑒) = 1 since 𝑒1 = 𝑒. If 𝑎 ≠ 𝑒, then 

ord𝐺(𝑎) > 1

• Cyclic Group: Let ⟨𝑥⟩ denote the group generated by 𝑥. Examples

‣ ⟨𝑒⟩ = {𝑒} is the trivial group

‣ ⟨𝑥⟩ = {𝑒, 𝑥, 𝑥2, 𝑥3, …}

‣ 𝑍∗
𝑚 is cyclic

– ⟺ ∃ primitive root mod m

– ⟺ 𝑚 ∈ {2, 4} ∪ {𝑝𝑒 | 𝑝 ∈ ℙ ∖ {2}, 𝑒 ≥ 1} ∪ {2𝑝𝑒 | 𝑝 ∈ ℙ ∖ {2}, 𝑒 ≥ 1}

• Primitive Root mod 𝑚: 𝑎 ∈ ℤ∗
𝑚 then ⟨𝑎⟩ = ℤ∗

𝑚 ⇒ ℤ∗
𝑚 = {𝑎, 𝑎2, 𝑎3, …, 𝑎𝜑(𝑚)} 

(Hint: 𝑎𝜑(𝑚) = 1)

The Order of Elements  

ord𝐺(𝑥) = |⟨𝑥⟩|; Obviously ord𝐺(𝑥) divides |𝐺|, since ⟨𝑥⟩ ≤ 𝐺

• Let ord(𝑎) = 𝑟; then ord(𝑎𝑘) = 𝑟
gcd(𝑟,𝑘)

• ∃𝑎, 𝑏 ∈ 𝐺 : ord𝐺(𝑎) = 𝑟, ord𝐺(𝑏) = 𝑠 ⟹ ∃𝑐 ∈ 𝐺 : ord𝐺(𝑐) = lcm(𝑟, 𝑠)

• From the above follows: ord𝐺(𝑎) maximal ⟹ ∀𝑏 ∈ 𝐺 : ord𝐺(𝑏) ∣ ord𝐺(𝑎)

• In general: a is generator of finite field 𝐾 ∖ {0} ⇔ 𝑎 ∈ 𝐾 ∖ {0} ∧ 𝐾 ∖ {0} =
{𝑎, 𝑎2, 𝑎3, …, 𝑎ord(𝐾)−1}

• Let 𝑎1, …, 𝑎𝑟 with ord(𝑎𝑖) = 𝑘𝑖. Then ∃𝑎 ∈ 𝐺 such that ord(𝑎) = lcm(𝑘1, …, 𝑘𝑟).

Carmichel Function  

Is defined as 𝜆(𝑚) = max{ordℤ∗
𝑚

(𝑎) | 𝑎 ∈ ℤ∗
𝑚}, the maximal order of a unit.

• 𝜆(𝑚) ∣ 𝜑(𝑚)

• 𝑝 ∈ ℙ ∖ {2} ⇒ 𝜆(𝑝𝑒) = 𝜑(𝑝𝑒) =
𝑝𝑒−1(𝑝 − 1)

• 𝜆(1) ≔ 𝜑(1) = 1

• 𝜆(2) ≔ 𝜑(2) = 1

• 𝜆(4) ≔ 𝜑(4) = 2

• 𝜆(2𝑒) = 2𝑒−2 for 𝑒 ≥ 3

• 𝜆(∏
𝑟

𝑖=1
𝑝𝑒𝑖

𝑖 ) =

lcm(𝜆(𝑝𝑒1
1 ), …, 𝜆(𝑝𝑒𝑟𝑟 )) = 𝐿

4 Polynomial over Finate Fields

4.1 Rings

Ring:

• (𝑅, +) is a Abelian group, with 

neutral element 0

• (𝑅, ⋅) is a semigroup where only 

associativity holds

• the distributive laws hold: ∀𝑎, 𝑏, 𝑐 ∈
𝑅:

‣ 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐

‣ (𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐

Euclidean Ring:

• is an integral domain with 𝑛 : 𝑅 ∖
{0} → ℕ a euclidian function 𝑛 such 

that ∀𝑎, 𝑏 ∈ 𝑅, 𝑏 ≠ 0 : ∃𝑞, 𝑟 ∈ 𝑅:

‣ 𝑎 = 𝑏 ⋅ 𝑞 + 𝑟

‣ 𝑛(𝑟) < 𝑛(𝑏) or 𝑟 = 0

‣ 𝑛(𝑎) ≤ 𝑛(𝑎𝑏)

• 𝑎|𝑏 ⇒ 𝑛(𝑎) ≤ 𝑛(𝑏)

Integral Domain:

• commutative ring with 1-element

• no zero divisors (𝑎 ⋅ 𝑏 = 0 ⇒ 𝑎 = 0 ∨ 𝑏 = 0)

Generalization of prime numbers  

Let 𝑅 be an integral domain, and let 𝑎 ∈ 𝑅 ∖ ({0} ∪ 𝑅∗), i.e. ∄𝑎−1; then 𝑎 is 

irreducible ⇔ 𝑎 = 𝑏 ⋅ 𝑐 always implies that either 𝑏 ∈ 𝑅∗ or 𝑐 ∈ 𝑅∗. The element 

is called a prime element ⟺ 𝑎|𝑏 ⋅ 𝑐 ⇒ 𝑎|𝑏 ∨ 𝑎|𝑐. In general these are two 

different concepts.

1. Every prime element is irreducible.

2. In Euclidean rings, the converse is also true.

(Unique) Factorial Rings (UFD)  

Let 𝑅 be an integral domain, such that ∀𝑎 ∈ 𝑅 ∖ ({0} ∪ 𝑅∗) there exists an 

unique representation (up to order) 𝑎 = 𝜀𝑝1𝑝2…𝑝𝑘, where 𝜀 ∈ 𝑅∗ and 𝑝1, …, 𝑝𝑘 

are prime elements.

• 𝑅 is called a factorial ring or unique factorization domain (UFD)

• Every Euclidean ring is a factorial ring.

Recap: Cosets & Subgroups  

(𝐺, ∗) is a group, let 𝑈  be a subgroup: 𝑈 ≤ 𝐺 : 𝑎 ∗ 𝑈 = {𝑎 ∗ 𝑥|𝑥 ∈ 𝑈}. These sets 

form a partition of the group. If 𝑎 ≠ 𝑎′, then either 𝑎 ∗ 𝑈 = 𝑎′ ∗ 𝑈  or (𝑎 ∗ 𝑈) ∩
(𝑎′ ∗ 𝑈) = ∅. Define the left coset to be the elements 𝑎 ∗ 𝑈  with 𝑎 ∈ 𝐺 and the 

right coset to be the elements 𝑈 ∗ 𝑎 with 𝑎 ∈ 𝐺.

If 𝑈 ≤ 𝐺, such that ∀𝑎 ∈ 𝐺 : 𝑎 ∗ 𝑈 = 𝑈 ∗ 𝑎, then 𝑈  is called a normal subgroup, 

denoted by 𝑈 ⊴ 𝐺. If this holds, then:

• (𝑎 ∗ 𝑈) ∗ (𝑏 ∗ 𝑈) = (𝑎 ∗ 𝑏) ∗ 𝑈

The group (𝐺/𝑈, ∗) is called the quotient group. Where 𝐺/𝑈  read as “G 

modulo U”, is defined as: 𝐺/𝑈 = {𝑎 ∗ 𝑈|𝑎 ∈ 𝐺} Example: ℤ4 = ℤ/(4 ∗ ℤ) with + 

Ideals in Rings  

Definition: Let 𝑅 and 𝑆 be rings, with mapping 𝜑 : 𝑅 → 𝑆. The mapping 𝜑 is 

called a (ring) homomorphism if 𝜑 is compatible with the ring operations:

• 𝜑(𝑎 + 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) • 𝜑(𝑎 ⋅ 𝑏) = 𝜑(𝑎) ⋅ 𝜑(𝑏)

The kernel of 𝜑 is defined as: kern(𝜑) = {𝑥 ∈ 𝑅 | 𝜑(𝑥) = 0}
Definition: Let 𝑅 be a ring, 𝐼 ⊆ 𝑅 is an ideal if:

1. (𝐼, +) is a (normal) subgroup of (𝑅, +), then it’s also an Abelian group

2. ∀𝑎 ∈ 𝑅 : 𝑎 ⋅ 𝐼 ⊆ 𝐼 , 𝐼 ⋅ 𝑎 ⊆ 𝐼

Let 𝜑 : 𝑅 → 𝑆 be a homomorphism, then kern(𝜑) is an ideal of 𝑅.

Furthermore, 𝐼 ⊆ 𝑅 is an ideal of 𝑅 if and only if 𝜑(𝐼) ⊆ 𝑆 is an ideal of 𝑆
Theorem: Let 𝑅 be a ring and 𝐼 ⊆ 𝑅 an ideal. Define + and ⋅ on 𝑅/𝐼 =
(𝑅, +)/(𝐼, +), called 𝑅 modulo 𝐼 , as follows:

• (𝑎 + 𝐼) + (𝑏 + 𝐼) ≔ (𝑎 + 𝑏) + 𝐼 with 𝑎, 𝑏 ∈ 𝑅

• (𝑎 + 𝐼) ⋅ (𝑏 + 𝐼) ≔ (𝑎 ⋅ 𝑏) + 𝐼 with 𝑎, 𝑏 ∈ 𝑅

This definiton (𝑅/𝐼, +, ⋅) is called the quotient ring 𝑅 modulo 𝐼 .

Corollary: A field 𝐾 has only the trivial ideals {0} and 𝐾.

Definition: An ideal generated by only one element 𝑎 (or −𝑎) is called a 

principal ideal, written as (𝑎).
Theorem: Let 𝑅 be an Euclidean ring. Then every ideal is a principal ideal, i.e. 

𝑅 is a principal ideal domain.

Ring hierachy  

Field ⊊ Euclidian ring ⊊ Principal ideal domain ⊊ Factorial ring (=Unique 

Factorization Domain) ⊊ Integral domain ⊊ Commutative ring ⊊ Ring

4.2 Fields

Prime Field & Characteristic  

Definition: ⋂
𝐾′ subfield of 𝐾

𝐾′ is called the prime field (smallest field) of 𝐾, 

denoted by 𝑃(𝐾). Every field must include at least 0 and 1.

Definition: ord(𝐾,+)(1) is called the characteristic of 𝐾, denoted by char(𝐾), 
where ord𝐺(𝑎) = min{𝑖 > 0|𝑎𝑖 = 𝑒}. If the order is ∞, then the char(𝐾) = 0. 

Examples:

• (ℝ, +, ⋅): char(ℝ) = 0, same for ℚ, ℂ

• (ℤ, +, ⋅): char(ℤ2) = 2, char(ℤ𝑝) = 𝑝 if 𝑝 ∈ ℙ

Corollary: Let 𝐾 be a finite field, the characteristic cannot be 0. Then ∃𝑝 ∈ ℙ 

such that for 𝑛 ∈ ℕ+ : |𝐾| = 𝑝𝑛. 𝐾 is called the Galois field GF(𝑝𝑛).

• Let 𝐾 and 𝐾′ be fields with |𝐾| = |𝐾′| = 𝑝𝑛, then 𝐾 ≅ 𝐾′

Theorem: Let 𝐾 be a field and 𝑃(𝑥) ∈ 𝐾[𝑥]. Then 𝐾[𝑥]/𝑃(𝑥) is a field ⟺ 𝑃(𝑥) 
is irreducible. 

Algebraic Extensions of a Field  

Theorem: Let 𝐾 and 𝐿 be fields, such that 𝐾 ⊆ 𝐿 and let 𝑎 ∈ 𝐿 be a zero (root) 

of some polynomial in 𝐾[𝑥]. Now if 𝑎 ∉ 𝐾 then ∃! monic and irreducible 

polynomial in 𝐾[𝑥] having 𝑎 as a zero.

Definition: Let 𝑃(𝑥) be monic and irreducible over 𝐾, with degree deg(𝑃 ) = 𝑛 

and 𝑃(𝑎) = 0. Define 𝐿 = { ∑
𝑛−1

𝑖=0
𝑐𝑖𝑎𝑖 | 𝑐𝑖 ∈ 𝐾}. Then 𝑎 is algebraic over 𝐾, 𝑃(𝑥) 

is a minimal polynomial of 𝑎 over 𝐾 and 𝐿 is an algebraic extension of 

𝐾. Now 𝐿 = 𝐾(𝑎), which means “K adjoint a”. Example: ℝ[𝑥] adjoint 
√

−1 = ℂ 

Finite Fields (Galois Fields)  

Theorem: Let 𝐾 be a finite field, then (𝐾 ∖ {0}, ⋅) is a cyclic group. This means 

it has a generator.

Definition: A generator 𝑎 of 𝐾 ∖ {0} is called a primitive element of K, its 

minimal polynomial over 𝑃(𝐾) ≅ ℤ𝑝 is called a primitive polynomial with root 

𝑎.

Theorem: Let 𝑞(𝑥) ∈ ℤ𝑝[𝑥] be a monic, irreducible polynomial of degree 𝑛. Then 

𝑞(𝑥) is a primitive polynomial of 𝐾 = GF(𝑝𝑛) if and only if 𝑞(𝑥) ∣ 𝑥𝑝𝑛−1 − 1 and 

∀𝑘 : 1 ≤ 𝑘 ≤ 𝑝𝑛 − 2 : 𝑞(𝑥) ∤ 𝑥𝑘 − 1.

• This can be checked by: 𝑞(𝑎) = 0 ⟺ 𝑎𝑘 ≠ 1  for 𝑘 = 1, …𝑝𝑛 − 2 and 𝑎𝑝𝑛−1 = 1

• Let 𝑎, 𝑏 ∈ 𝐾, 𝑝 = char(𝐾), then (𝑎𝑏)𝑝 = 𝑎𝑝𝑏𝑝 and (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝

Properties of homomorphism: Let 𝜑 : 𝐾 → 𝐾, where 𝑥 ↦ 𝑥𝑝. Then kern(𝜑) is 
an ideal of 𝐾, but 𝐾 is a field, which means that {0} and 𝐾 are the only ideals. 

𝜑(1) = 1𝑝 ≠ 0 ⇒ 1 ∉ kern(𝜑) ⇒ kern(𝜑) ≠ 𝐾 ⇒ kern(𝜑) = {0}. From this follows 

that 𝜑 is bijective and is called automorphism.

Theorem: Let 𝐾 = GF(𝑝𝑛) then 𝜑 : 𝐾 → 𝐾 and 𝑥 ↦ 𝑥𝑝 is an automorphism

Definition: ({𝜓 : 𝐾 → 𝐾 | 𝜓 automorphism}, ∘) = ⟨𝜓⟩ is a cyclic group and it is 

the automorphsim group of 𝐾: Aut(𝐾). The following properties hold for such 

a group:

• ∀𝑥, 𝑦 ∈ 𝐾 : 𝜓(𝑥 + 𝑦) = 𝜓(𝑥) + 𝜓(𝑦)

• 𝜓(𝑥𝑦) = 𝜓(𝑥)𝜓(𝑦)
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