

Discrete Mathematics

Kellerkinder

January 24, 2026

1 Graph Theory

1.1 Definition & Notation

- $G = (V, E)$
- Directed Edge $e = (v, w): v \rightarrow w$
- Undirected Edge $e = \{v, w\} = \{w, v\} = vw$
- $d(v)$: degree
- $d^+(v)$: out-degree
- $d^-(v)$: in-degree
- $\Gamma(v)$: set of neighbours
- $\Gamma^+(v)$: successors
- $\Gamma^-(v)$: predecessors

Walk, Trail Circuit

- Walk: sequence of edges (no jumps)
- 3 walk $v: v \sim w$
- Trail: sequence of edges (no jumps, no repeating edges)
- Circuit/Closed Trail: same start and end vertex
- Path: no repeating edges, no repeating vertices (colors c_1, \dots, c_r) have a c_j -colored K_{n_j} for some j
- Cycle/Closed Path: same start and end vertex

Handshaking Lemma

$$\sum_{v \in V} d(v) = 2|E| \quad \sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |E|$$

1.2 Trees & Forests

$G \cong H \iff \exists \varphi: V(G) \mapsto V(H) \text{ and } vw \in E(G) \iff \varphi(v)\varphi(w) \in E(H)$

Spanning Subgraphs & Spanning Forests

Spanning Forest \iff

1. $V(F) = V(G)$ and $E(F) \subseteq E(G)$

2. F is a forest

3. F has the same connected components as G

If G connected $\Rightarrow F$ spanning tree

Minimum or Maximum Spanning Trees

• $G = (V, E)$ and weight function $w: E \rightarrow \mathbb{R}, e \mapsto w(e)$

Then $T = (V, F) \subseteq G$ minimum spanning tree if $w(F)$ minimal

• GREEDY(V, E, w) constructs the minimum spanning tree (MST):

- Sorts the edges of G by weight ascending
- Adds the next smallest edge to T (such that T remains a tree) until G is spanned

Matrix-Tree-Theorem (Kirchhoff)

$G = (V = \{v_1, \dots, v_n\}, E)$ simple, undirected, connected, with adjacency matrix $A = \text{diag}(d(v_1), \dots, d(v_n))$; $(D - A)^{-1} = (D - A)$ without 1 row and 1 column $\Rightarrow \det((D - A)^{-1})$ = number of spanning trees of G

Independence System $(E, S) \subseteq 2^E$ and S is closed under inclusion.

$A \subseteq S \wedge B \subseteq A \Rightarrow B \in S$

Matroids & GREEDY

An independence system $M = (E, S)$ is called a matroid if $\forall A, B \in S$ such that $|B| = |A| + 1 \Rightarrow \exists e \in B, A \cup \{e\} \in S$

Let $G = (V, E)$ an undirected graph and $S = \{F \subseteq E \mid F \text{ is a forest}\}$; then (E, S) is a matroid.

If $M = (E, S)$ is a matroid with a weight function $w: E \rightarrow \mathbb{R}$ then GREEDY

computes a A maximal/minimal weight with respect to the inclusion.

1.3 Special Graphs

Planar Graphs

Definition: A graph G is planar if there is an isomorphic graph H embedded in the plane (vertices are points in the plane \mathbb{R}^2) such that no edges intersect. A graph is planar \iff there is no subgraph which is a subdivision of K_5 or of $K_3,3$. Euler's Polyhedron Formula: if G is connected and planar graph, then $\alpha_0 - \alpha_1 + \alpha_2 = 2 - \alpha_0$. Vertices, α_0 : Edges, α_2 : Faces

Dual Graph: Let $G = (V, E)$ be a planar graph and let F be the set of its faces. Then $G^* = (V^*, E^*)$ is defined such that $V^* = F$ and for every edge $e \in E$, set $e^* = (f_1, f_2)$ if f_1 and f_2 are the faces left and right of e .

G^* is called the dual of G .

Bipartite Graphs and Matching

Definition: Let $G = (V, E)$ be a simple undirected graph. G is called bipartite if and only if

- $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$
- $vw \in E \Rightarrow v \in V_1, w \in V_2$

Hall's Marriage Theorem: Given a bipartite graph $G = (V, E)$, such that $V = W \cup M$ where W and M are finite and nonempty. Define the friendship relation: $F \subseteq W \times M$ with $vw \in F \iff \exists y \in M$ such that xFy . Now the theorem states the following: there is a feasible marriage, if and only if: $\forall W_0 \subseteq W: |\{y \in M \mid \exists x \in W_0: xFy\}| \geq |W_0|$ or in different words: $|\bigcup_{w \in W_0} \Gamma(w)| \geq |W_0|$

1.4 Graph Colorings

• Vertex Coloring: $c: V \rightarrow C$ where a C is a set of colors. feasible if $vw \in E \Rightarrow c(v) \neq c(w)$

• Edge Coloring: $\bar{c}: E \rightarrow C$

• everything that can be done with a vertex coloring can also be done with an edge coloring

- Chromatic Number: $\chi(G)$ is the minimal number of colors such that there is a feasible coloring.
 - $\chi(K_n) = n$
 - $\chi(K_{n,m}) = 2$
 - $\chi(T) = 2$ if T is a tree and $|V| > 1$
 - $\chi(G) = 1 \iff E(G) = \emptyset$
 - $\chi(G) = 2 \iff E(G) \neq \emptyset$ and G is bipartite
 - $\chi(G) = 2 \iff E(G) \neq \emptyset$ and all cycles have even length
 - $\chi(G) \leq 1 + \max_{v \in V} d(v)$
 - G is planar $\iff \chi(G) \leq 5$

- Ramsey Theory
- Definition: The Ramsey Number $R(r, s)$ is the minimum n such that every red-blue coloring of K_n contains either a red K_r or a blue K_s .
 - Coloring is edge coloring
 - $R(r, s) \leq R(r-1, s) + R(r, s-1)$
 - $R(n_1, n_2, \dots, n_p) = \min\{n \mid \text{all } r\text{-edge colorings of } K_n \text{ have a } c_j\text{-colored } K_{n_j} \text{ for some } j\}$

2 Advanced Combinatorics

Double Counting

Given two sets A and B and a relation $R \subseteq A \times B$, such that $aRb \iff (a, b) \in R$: Let $R_i = \{b \in B \mid aRb\}$ (all b related to a) and $S_j = \{a \in A \mid aRb_j\}$. Then: $|R| = \sum_i |R_i| = \sum_j |S_j|$

Pigeon Hole Principle

Let A_1, \dots, A_k be finite pairwise disjoint sets, $|A_1 \cup \dots \cup A_k| > k \cdot r$, for $r \in \mathbb{N}$; This implies: $|A_i| > r$, if $i = 1$, then it follows that: $f: A \mapsto B, A \mapsto B \Rightarrow \exists b \in B: |f^{-1}(b)| \geq r$

Principle of Inclusion & Exclusion

$$|A_1 \cup \dots \cup A_k| = \sum_{i=1}^k |A_i| - \sum_{1 \leq i < j \leq k} (-1)^{i+j} |\bigcap_{l=1}^k A_l|$$

For $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$ If the sets are not necessarily pairwise disjoint, then:

$$A_1, \dots, A_n \subseteq A \setminus \bigcap_{i=1}^n A_i = |A| + \sum_{1 \leq i < j \leq n} (-1)^{|i|+|j|} |\bigcap_{l=1}^n A_l|$$

2.1 Enumerative Combinatorics

Counting Sets

Useful theorems:

$$\begin{aligned} 1. \# \text{ of permutations: } n! \\ 2. \# \text{ of } k\text{-subsets of } \binom{[n]}{k} \\ 3. \# \text{ of ordered } k\text{-subsets: } k! \binom{n}{k} \\ 4. \# \text{ of } k\text{-multisets (elements can be used more than once): } \binom{n+k-1}{k} \\ 5. \# \text{ of arrangements of a multiset (element } b_i \text{ appears } k_i \text{ times): } \frac{n!}{k_1! k_2! \dots k_n!} \\ 6. \# \text{ of ordered } k\text{-multisets: } n^k \end{aligned}$$

Stars and bars: Number of assignments of n items into k boxes

$$\binom{n+k-1}{k-1}$$

Stirling Numbers

First kind: $s_{n,k} = \# \text{ of permutations of } \{1, \dots, n\} \text{ with } k \text{ cycles}$

$$\begin{aligned} \bullet s_{n,1} = (n-1)!, \quad s_{n,n-1} = \binom{n}{2}, \quad s_{n,n} = 1 \\ \bullet s_{n,0} = 0, \quad s_{0,0} = 0, \quad s_{0,1} = 1 \quad (!!) \end{aligned}$$

$$\sum_{k=1}^n s_{n,k} = n!$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + (n-2)$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$

$$\forall n, k > 0: s_{n,k} = s_{n-1,k-1} + k s_{n-1,k}$$