January 24, 2026

Discrete Mathematics

Kellerkinder @ Repository

Discrete Mathematics

Kellerkinder
January 24, 2026

1 Graph Theory

p

« G=(V.E) ‘Walk, Trail Circuit
« Directed Edge e = (v,w);
« Undirected Edge e = {v,w} =
{w,v} = vw
« d(v)... degree
» d*(v)...
. d(v)... i
o T(v)... set of neighbours
> T*(v)...

» T~ (v)... predecessors

vow « Walk: sequence of edges (no jumps)
» Iwalk vtow:v~w
« Trail: sequence of edges (no jumps,
no repeating edges)
» Circuit/Closed Trail: same start
and end vertex

out-degree

n-degree
« Path : no repeating edges, no
repeating vertices
successors
» Cycle/Closed Path: same start
and end vertex
Handshaking Lemma
=2[E[or ¥ d*(v)= ¥ d"(v) =
e v

3 d(v) |E|
v

~

—.  [somorphism
G=H e 3p:V(G) b V(H) and vw € B(G) < p(v)p(w)

€ B(H)

s & Spanning Forests

Spanning Su
Spanning Forest <>

V(F) = V(G) and E(F) C E(G)
2. Fis a forest

grap

3. F has the same connected components as G/
1f G connected = F spanning tree
Minimum or Maximum Spanning Trees
« G=(V,E) and weight function w: E — R, e  w(e)
Then T = (V, F) C G minimum spanning tree if w(F) minimal
« GREEDY(V, E, w) constructs the minimum spanning tree (MST):
+ Sorts the edges of G by weight ascending
» Adds the next smallest edge to T (such that T remains a tree) until G is
spanned
Matrix-Tree-Theorem (Kirchhoff)
V={v,.
iag(d(v, ),
= det((D - 4)))

'}, E) simple, undirected, connected, with adjacency matrix A
d(v,)); (D — A)’ = (D — A) without 1 row and 1 column
number of spanning trees of G/

e [ndependence Systems
Independence System (E, S) : S C 2 and S is closed under inclusion.
AeSABCA=BeS
e Matroids & GREEDY

An independence system M = (E, S) is called a matroid if ¥A, B € S such that
|B|=|A|+1:3ve B\Awith AU{v} € §

Let G = (V, E) be an undirected graph and S = {F C E | F is a forest}; then
(E, S) is a matroid.

If M = (E,S) is a matroid with a weight function w : E ++ R then GREEDY
computes a A maximal/minimal weight with respect to the inclusion.

Planar Graphs — s——
Definition: A graph G is planar if there is an isomorphic graph H embedded in
the plane (vertices are points in the plane R?) such that no edges intersect. A
graph is planar <= there is no subgraph which is a subdivision of K; or of K 5.
Euler’s Polyhedron Formula: if G is connected and planar graph, then

Qg — ay + @y = 2. ag... Vertices, a,... Edges, ay... Faces

Dual Graphs: Let G = (V, E) be a planar graph and let F be the set of its faces.
Then G* = (V*, E*) is defined such that V* = F and for every edge e € E, set

f1 f2) if £, and f, are the faces left and right of e.

G* is called the dual of G.

Bipartite Graphs and Matching  —
Definition: Let G = (V, E) be a simple undirected graph. G is called bipartite if
and only if:

V=V UV Vnl=0

cweE=ve,wel,

Hall’s Marriage Theorem: Given a bipartite graph G = (V, E), such that V =
W U M where W and M are finite and nonempty. Define the friendship relation:
F CW x M with wm € E <> wFm. A feasible marriage is a matching of W K C
F (i.e Vo € W : 3ly € M such that zFy). Now the theorem states the following:
there is a feasible marriage, if and only i: VIV, € W : |{y € M | Iz € W :
2Fy}| > [Wy| or in different words: | [J T(w)| > |Wp|

wei,

Vertex Coloring:
cv) # c(w)
Edge Coloring: ©

1V = C where a C is a set of colors. feasible if vw € E =

tE—=C

everything that can be done with a vertex coloring can also be done with an
edge coloring

« Chromatic Number: x(G) is the minimal number of colors such that there is
a feasible coloring.
> XK,
» x(Km) =2
X(T) =2 T is a tree and |V] > 1
X(G) =1 B(G) =0
+ X(G) =2+ B(G) # 0 and G is bipartite
X(G) =2 ¢ B(G) # 0 and all cycles have even length
X(G)
s

)=n

<1+ max,ey d(v)
> G is planar = x(G) <5
Ramsey Theory
« Definition: The Ramsey Number R(r, s) is the minimum n such that every
red-blue coloring of K,, contains either a red K, or a blue K,.
» Coloring is edge coloring
R(r,s) < R(r—1,5)+ R(r,s — 1)
« R(ny,ny,.m,) =

min{n | all r-edge colorings of K,

(colors c,...,c, ) have a c;-colored K, for some j}

Given two sets A and B and a relation R C A x B, such that aRb <= (a,b) € R:
Let R, = {b € B| a;Rb} (all b related to ) and S, = {a € A | aRb;}. Then: |R| =
IR = 3185

=4 =

Let Ay, ... Ay, be finite pairwise disjoint sets, [4; U... U A| > k- r, for r € N; This
implies: i : |4, > r. 1f r = 1, then it follows that: f : A+ B,|A| > |B| = 3b €
B:[f(0) 22
[A U UAy| = Z (1)l \ﬂA\

#IC{L,...n}
For [AUBUC| = \A\+\B|+\C| \AnB\ |[ANC|—|BNC|+|ANBNC|

If the sets are not necessarily pairwise disjoint, then:

A A Sl AN A =14+ Y DT NAl
i i) el
= ¥ corinal

Ic{1,..,n} i€l

6 Basic Problems: Useful theorems:

1. # of permutations: n! CEmer
2. # of k-subsets of A: (1) =
s 2 (m=0G0)
3. # of ordered k-subsets: k(%) o
4. # of k-multisets (elements can be Vandermonde: ¥n € N, Va,y €
used more than once): ("4~ Cand kEN:
)= Z( )
5. # of arrangements of a multiset (2
(clement b, appears k times): Binomials:
o (1+o)f =3 (5
=

6. # of ordered k-multisets: n* -
in general: () = 95 =
Stars and bars: Number of ala-a-2).la—(k-1) _ 1 T
sletetpletil) _ 4 [ n

assignments of n items into k boxes

o
(5 nan = (1:2)-(2:2) - (n-2)
Zrl_1.3...-@2n-1)

First kind: s, , = # of permutations  Second kind: S, , = # of k partitions

of {L..n} with k cycles of A={l.n}
SOl = () s = SVAFDIEIS AN =
UA A
. vaﬂzov S0 =0, s90=1(1) © S =1 8, 1=(3), S, =1
2R © S.0=0, 80, =0, S0=1()

e Sup=211

Vnk>0:8,, =

k> 0ts, =58, 4+ (0~
Dsu1i

Let (a,), @ € C be a sequence; Then A(z) = 3~ a,2" is the generating
nz0

function of a,.

« A+ BE) = Do+ )" - ADBE) = 5 S
(linearity) (Cauchy-Schwars Product)
+ A(2)/B(z) = C(2), when by # 0
+ (au, +B,),_, ¢ ad(z) + S
BB(2),0,8 € C - ) )
o (@ ),y  2A(2) (index shift

o (17a,),. & Alv2)

N < 2A'(2) (derivative)
c 1= oo >

HE ===
o ® = 0 !

et $a

=

(transform back)

Combinatorial structure: (4,]-), A#0; |- | is weight function; Yo € A :

|z| €N

Counting sequence of A: (a,), .., = [{z € 4
of weight n?”

The counting sequence has a generating function A(z), also called generating
function of A.

=n}| < oo; “How many &

|2| 5 if EA T = i=1

1.C=AUBANB=0; (4|14 (B ]a)i iteen The soluition s given byz 2 = 3> 2 b, -0, (m). Where b, = () modm,.

¢y =a,+b, = C(z)= ()+B(z) = g
2 C=AxB, (zy)€C, se AyeB: |yl =lela+luls The chinese remainder theorem can be applicd to all euclidean rings

=3 arby = C(2) = A(2) - B(2) /

=3
K
30 =seq(4) = {} U @y, 25, 1), = (}UAU AT U AP U le = Xleila y
' . = 3.4 Euler-Fermat Theorem

C(z) = 1=k, only if we define ap =

4. O = seae, (A) = (£} U (23,0, O2) = FA222 (finite sequence Buler's Totient Function s—————
ey (A) = {} U (21,25, ) o C2) = S50 ( quence) ) = (e |02 < m 1, ged(z,m) = 1}] = 20

5. C = set(4) = 24 (power set) Two cases:

c) = exp(z —f",g*"A(zk)) . Suppose m € P, then p(m) = m — 1

k=t 2. m=p forpePand e > 1 Nowa e Z,, = ged(ap) = {1, " 50,

Labelled combinatorial structure: Elements are mimbered = switching of Let m = pi*py?..pf7, then: o(m) = m(1 - &) (1 S
two equal elements does make a difference!  A(z) = 2 a2 Fermat's Little Theorem

o . . s ok 1f ged(a,m) = 1 then a#™ = 1(m). In particular: p € P,p t a = a#~* = 1(p)
Lé AUBAAF\B’ZB; (M"A)’A(B""ﬁ); {M:mﬁ Theorem: Let p,q € P\ {2} such that p # ¢. Let m = p- g and

by = O() = A(2) + B(2) v =lem(p—1,q— 1); then Va,k € Z : @***! = a(m)
)

2.

3.3 Systems of Congruences

inder Theorem
= a;(m,) where 1 i < r(x) and if i # j
m;) =1, then the system has a unique solution, modulo m=[]m

Chinese Rem
Given a system of congruence equations
then ged(m,

B, C={(z,y) | = € A,y € Biz,y labelled in order pr
o3 + vlg; C(z) = A(2) - B(2)
e (A‘) ={IU (@1, 2, mp) =
TAG)

rving way };

3. {eyUAUA2UASU

t(A) = 2% (labelled power set)

3 Number Theory

3.1 Divisibility & Factorization

GCD

Let a,b € Z; then d = ged(a,b) <
« dja and djb
« tja and t}h = t|d

(makes it divisor)
(makes it greatest)

Buclid

Algorithm
a,b€ 2\ {0},d = ged(a, b) < 3e, f € Z such that d = ae + bf (Bézout’s Identity)
ive Ring (with 1)

« (R,+) is an Abelian group (0-clement, Va : 3—a)
« (R,") is a semigroup (additionally: 3 neutral element, distributive law holds)
« Ris an integral domain <> Za,b€ R\ {0}:a-b=0

Field
A field is a commutative group with
two operations: addition and
multiplication such that

Euclidean Ring

R is a Euclidean ring if R is an

integral domain and there is a

euclidan function n : R — N such that

Va,b € R with b # 0 there exists g,r €

R:

La=b-g+rwithr=0 or n(r) <
n(b)

2. Ya,b € R\{0} : n(a) < na-b)

« Units: R* = {a € R:3a"1}

« (K,+) is an Abelian group
. (K\{0})
« the distribute laws hold

is an Abelian group

Prime Numbers

« peP <> %1 and 4 p are the only divisors of p

5 RSA

Algorithm

. (m,e)...

o (m,d)... private key

public key

« Encryption: E(a;) = af modm
a; = bf modm

« # number of fixpoints: ged(e — 1,p — 1) - ged(e — 1,¢ — 1)

« Dencryption: D(b;) =

Groups and Cyclic Groups
« Group: Let G be a group and z € G, then ordg(z) = min{i € N* | z' = e}. If
e is the neutral element, then ordg(e) = 1 since ' = e. If a # e, then
ordg(a) > 1
« Cyclic Group: Let (z) denote the group generated by z. Examples
» {e) = {e} is the trivial group
v (2) = {e,z, 22,05, .}
> Z;, is cyclic
~ <= 3 primitive root mod m
= me{2,4u{p°|peP\{2},e>1}U{2p° [pe P\ {2}, e>1)
Z, = Ly, = {a.@,@

Primitive Root mod m: @ € Z;, then (@) =
(Hint: @™ = 1)

aelm}

The Order of Elements
ordg(x) = |(z)]: Obviously ordg(x) divides |G|, since () < G
+ Let ord(a) = r; then ord(a*) =

« 3a,be G :ordgla) =rordg(b) = s = 3 € G ordglc) =

lem(r, 5)

« From the above follows: ordg (a) maximal = Vb € G : ordg (b) | ordg(a)

o In general: a is generator of finite field K \ {0} <@ € K\ {0} A K\ {0} =
{a,a,a, .., a1}

o Let ay, with ord(a,

) = k;. Then 3a € G such that ord(a) = lem(ky, ., k,).

Carmichel Function

~
unique representation (up to order) a = £p,p,...py., where & € R* and py, ..., py
are prime clements.

+ Ris called a factorial ring or unique factorization domain (UFD)

« Every Euclidean ring is a factorial ring.

e Recap: Cosets & SUDEroUps  me—
(G, #) is a group, let U be a subgroup: U < G : a* U = {a*z|r € U}. These sets
form a partition of the group. If a # a’, then cither ax U = a’ = U or (a* U) N
(a’ * U) = 0. Define the left coset to be the elements a+ U with a € G and the
right coset to be the clements U » a with a € G.
I U < G, such that Va € G :axU = U xa, then U is called a normal subgroup,
denoted by U < G. If this holds, then:
o (axU)x(b*U) = (axb)+U
The group (G/U,#) is called the quotient group. Where G/U read as “G
modulo U, is defined as: G/U = {a* Ula € G} Example: Z, = Z/(4 + Z) with +
— [deals in Rings  —
Definition: Let R and S be rings, with mapping ¢ : R — §. The mapping ¢ is
called a (ring) homomorphism if ¢ is compatible with the ring operations:
o platb)=pla)+ob) o pla-b)=ypla) b
The kernel of ¢ is defined as: kern(p) = {z € R | ¢(z) = 0}
Definition: Let R be a ring, I C R is an ideal if:
1. (I,+) is a (normal) subgroup of (R, +), then it’s also an Abelian group
2.Va€R:a-ICII-aCI
Let ¢ : R — S be a homomorphism, then kern(yp) is an ideal of R.
Furthermore, I C R is an ideal of R if and only if ¢(I) C § is an ideal of §
Theorem: Let R be a ring and I C R an ideal. Define + and - on R/I =
(R, +)/(I,+), called R modulo I, as follows:
e (a+I)+(b+1):=(a+b)+IwithabeR

e (@+1) (b+1):=(a-b)+Iwithabe R
This definiton (R/I,+,-) is called the quotient ring R modulo I.
Corollary: A field K has only the trivial ideals {0} and K.
Definition: An ideal generated by only one element a (or —a) is called a
principal ideal, written as (a).
Theorem: Let R be an Euclidean ring. Then every ideal is a principal ideal, i.e.
R is a principal ideal domain.

Ring hierachy
Field ¢ Euclidian ring C Principal ideal domain  Factorial ring (=Unique
Factorization Domain) ¢ Integral domain ¢ Commutative ring ¢ Ring

Prime Field & Characteristic

Definition: K is called the prime field (smallest field) of K,

K’ subfield of K
denoted by P(K). Every field must include at least 0 and 1.
Definition: ord ;) (1) is called the characteristic of K, denoted by char(K),
where ordg(a) = min{i > 0la‘ = e}. If the order is oo, then the char(K) = 0.
Examples:
o (R,+,): char(R) = 0, same for Q,C
o (Z.+,): char(Z,) = 2, char(Z,) =p if p € P
Corollary: Let K be a finite field, the characteristic cannot be 0. Then 3p € P
such that for n € N* : [K| = pm. K is called the Galois field GF(p").
« Let K and K be fields with |K| = |K’| = p", then K = K’

Theorem: Let K be a field and P(x) € K[e]. Then Kla]/P(x) is a field < P(z)

Is defined as A(m

max{ordy, (@) | @ € Z;, }, the maximal order of a unit.

* A(m) | ¢(m) p)=2
e pEP\{2} =A%) = p(p°) = =2 for ¢ > 3
-1 LI
A ITwt
A==t (A3 ) NE)) =

A residue class is defined as: a +m - Z =1, where a+m-Z={a+k-m | k€ Z}
(notice @ C Z and @ = a + m). Definition: @ + b Fbanda-b=a-b

« Let @€ Z,, then the inverse element is defined as follows: T € Z,, such that:
Fa=Tthnz=al.

. Jalel, < gedla,m) =
Prime Residue Classes

Zy, = {a € Z,, | ged(a, m) = 1} contains all invertible elements, can further be
defined as Z;, = {z € Z,, | 3r~" 1z - 27" = 1} (also called Group of Units)

+ Some rules:

» ab=aclam) = b=

e(m)

+ ab=ac(m) = b=c(m) if az=1(m) has asolution <> ged(a,m) =1

« lot n € N*, then 3py, py, ..p, € P such that pf* - pi? - .- pr = n, forr >0
o o e |
the order of the factors) 4 Polynomial over Finate Fields
» ged(a,b) = [] prinls(@v®) ( \
per
*tem(a) = [Lple )
»ep X : K
> alb <> Vp € Py, (a) < v, (b) Ring: Euclidean Ring:
o « (R,+) is a Abelian group, with « is an integral domain with n: R\
S neutral element 0 {0} = N a euclidian function n such
. IPI= + (") is o semigroup where only that Va,b€ R,b#0:3g,r € R:
ivity holds sa=bogtr
, N the ive laws hold: Va, b,c € + n(r) <n(b) orr =0
R:

+ n(a) < n(ab)
a-(b+c)=a-b+a-c alb = n(a) < n(s)

»(a+b)-c=a-c+b-c

Integral Domain:
« commutative ring with 1-clement
« 10 zero divisors (a-b=0=a=0Vb=0)

Generalization of prime numbers
Let R be an integral domain, and let a € R\ ({0} U R*), i.e. 3a~'; then a is
irreducible < a = b - ¢ always implies that either b € R* or ¢ € R*. The element
is called a prime element <= alb- ¢ = alb V alc. In general these are two
different concepts.

1. Every prime element is irreducible.
2. In Euclidean rings, the converse is also true.

(Unique) Factorial Rings (UFD)
Let R be an integral domain, such that Va € R\ ({0} U R*) there exists an

is i
————————————  Algcbraic Extensions of a Field  m——
Theorem: Let K and L be fields, such that K C L and let a € L be a zero (roof)
of some polynomial in Klz]. Now if a ¢ K then 3! monic and irreducible
polynomial in K[z] having a as a zero.

Definition: Let P(z) be monic and irreducible over K. with degree deg(P) = n
and P(a) =0. Define L =4S eja* | ¢ € K . Then a i algebraie over K, P(z)

is a minimal polynomial ofa over K and L is an algebraic extension of
K. Now L = K(a), which means “K adjoint a”. Example: R[z] adjoint v—1 = C
= F'iniitee Fields (Galois Fields) —m—
Theorem: Let K be a finite field, then (K \ {0},-) is a cyclic group. This means
it has a generator.

Definition: A generator a of K \ {0} is called a primitive element of K, its
minimal polynomial over P(K) = Z, is called a primitive polynomial with root
a.

Theorem: Let g(z) € Z,[z] be a monic, irreducible polynomial of degree n. Then
g(x) is a primitive polynomial of K = GF(p") if and only if g(z) | 27"~ — 1 and
Vk:1<k<p'—2:q(x)}faf—1.
« This can be checked by: g(a) =
« Let a,b € K,p = char(K),

O¢=ab#1 for k=1,.p"—2anda”" ' =1
), then (ab)? = a”b? and (a + b)? = a? + b?
Properties of homomorphism: Let ¢ : K — K, where z - 27, Then kern(i) is
an ideal of K, but K is a field, which means that {0} and K are the only ideals.
@(1) =17 4 0 = 1 ¢ kern(yp) = kern(p) # K = kern(p) = {0}. From this follows
that ¢ is bijective and is called automorphism.

Theorem: Let K = GF(p") then ¢ : K — K and z + 27 is an automorphism
Definition: ({1 : K — K | ¢ automorphism}, o) = () is a cyclic group and it is
the automorphsim group of K: Aut(K). The following properties hold for such
a group:

o Voye Kz +y) =
* Yl(ay) = Y()Ply)

(@) + $(y)
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