
Exercise 10
Discrete Mathematics

December 17, 2020

Exercise 91
Task: Let (e, n) and (d, n) be Bob’s public and private RSA key, respectively. Suppose
that Bob sends an encrypted message c and Alice wants to find out the original message
m. She has the idea to send Bob a message and ask him to sign it. How can she find
out m? Hint: Pick a random integer r and consider the message rec mod n.

Exercise discussion: Tutor mentions it should probably be ”Somebody sends a message
with Bob’s public key to Bob that you should decrypt.

Solution: The encrypted message was calculated with c = me mod n.

Alice sends message x = rec mod n to Bob and asks him to sign it. Bob calculates
the signed message DB(x) = xd mod n and sends DB(x) to Alice.

Usually, Alice would now calculate EB(DB(x)) = x. We don’t do that. Instead, we
notice that as DB(EB(r)) = r we have

DB(x) = xd ≡ (rec)
d ≡ (re)dcd ≡ rcd mod n

So Alice has to calculate
DB(x)r

−1 ≡ cd mod n

to get the original message

m = DB(c) = cd mod n.

Notes:

• Encrypting for Bob is EB(x) = xe mod n and analog for Alice EA(x)

• Bob decrypts doing DB(x) = xd mod n and analog for Alice DA(x)

• It is required that the modular inverse r−1 ∈ Zn exists. We know from the
lecture that it exists if and only if gcd(r, n) = 1. This means we can just choose
r accordingly.
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• Bob should encrypt DB(x), that means calculate EA(DB(x)), when he sends the
message ot Alice. She can then directly decrypt it DA(EA(DB(x))) = DB(x),
so this part is non-essential for us.

• In asymmetric cryptagraphy encryption is done with the recipient key. So Bob
probably received the message c (instead of sending) because it was calculated
with his public key (or he sent it to himself).
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Exercise 92
Task: Let G be a finite group and a ∈ G an element for which ordG(a) is maximal.
Prove that for all b ∈ G, the order ordG(b) is a divisor of ordG(a).

Should be a commutative group according to exercise discussion.

Solution: There is no solution. The statement is false.

Consider the dihedral groupD3. It has order 6. It is (the smallest possible) non-abelian
group. It has the following multiplication table:

From that we can read off the order ordD3
(x) = min{k ≥ 1 : xk = 1} of each element:

• ordD3(1) = 1

• ordD3
(A) = 3

• ordD3
(B) = 3

• ordD3
(C) = 2

• ordD3(D) = 2

• ordD3
(E) = 2

ordD3
(A) is maximal, but ordD3

(C) = 2 - 3 = ordD3
(A).

Example: The permutation on three objects 123 is an example of D3. There are 3!
permutations/elements:

1. Identity RGB → RGB has order 1

2. Shifting right RGB → BRG → GBR → RGB has order 3

3. Shifting left RGB → GBR → BRG → RGB has order 3

4. Exchanging first two elements RGB → GRB → RGB has order 2
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5. Exchanging first and last elements RGB → BGR → RGB has order 2

6. Exchanging last two elements RGB → RBG → RGB has order 2

The group is not abelian

• Permutations 4. & 6. give RGB → GRB → GBR

• Permutations 6. & 4. give RGB → RBG → BRG

See also definition ofD3 on Mathworld and explanation as permutation of three objects
on Wikipedia.

Suppose the group is also abelian.
Then the following lemma holds:

Lemma: If the orders |x|, |y| for x, y ∈ G are coprime then the order of xy is |x||y|.
Proof: If (xy)m = 1 then

1 = (xy)m = ((xy)m)|y| = (xy)m|y| = xm|y| ym|y|︸ ︷︷ ︸
1

= xm|y|

because y|y| = 1 =⇒ ym|y| = 1. As a consequence |x| divides m|y|.

Since |x| and |y| are coprime, this implies |x| divides m. Similarly |y| divides m, so by
coprimality their product divides m. This concludes the proof of the lemma.

Example cyclic group Z6 = {e, x, x2, x3, x4, x5} using multiplicative notation. Then
|x2| = 3, |x3| = 2 and m = 1.

e = (x2 · x3)1 = ((x2 · x3)1)2 = (x2 · x3)1·2 = (x2)1·2 · (x3)1·2︸ ︷︷ ︸
1

= (x2)1·2

Wee see that in our previous example D3 which is not abelian, we have |A| = 3 coprime
to |C| = 2 but |AC| = |D| = 2 6= 3 · 2. For such groups

Now let a ∈ G be an element of maximal order and b ∈ G arbitrary. Suppose p is
a prime dividing |b| to a higher power than |a|. We denote this as |a| = pim and
|b| = pjn where j > i and p divides neither m nor n. Then ap

i and bn have coprime
orders, so ap

i

bn has order pjm > |a|. Contradiction.

Example Z6 with addition: |1| = 6, |2| = 3, |3| = 2. We see that taking a to the
power of the first factor gives as order the second factor a = 1, pi = 21,m = 3, so
|1| = 6 = 21 · 3 and |121 | = |2| = 3 = m.
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Exercise 93
Task: List all irreducible polynomials up to degree 3 in Z3 .

Should be 3 linear, 3 squared and 8 for 3? This is just what I had with always 1 as
leading coefficient?

Solution: We defined reducible for polynomials over fields. As 3 is prime, Z3 is a field.
p(x) is irreducible if p(x) 6= a(x)·b(x) with deg a(x) < deg p(x) and deg b(x) < deg p(x).

A factorization of polynomials of degree 1 would have a factor of degree smaller than
0. Polynomials of degree 0 are just non-zero constants. Hence, polynomials of degree
1 are irreducible.

A polynomial p = ax2 + bx + c of degree 2 cannot have any factors of degree 2 in its
factorization. Hence, there must be a linear factor. That factor shows a root. There
is a root if p(0) ≡ 0 mod 3 ∨ p(1) ≡ 0 mod 3 ∨ p(2) ≡ 0 mod 3 because we’re in Z3.
If c = 0 then 0 is certainly a root and then p is reducible.

A degree 3 polynomial p = ax3 + bx2 + cx + d cannot have 2 degree 2 factors in its
factorization. Hence, there must a one linear factor. We can then apply the same
reasoning as for polynomials of degree 2. For example:

• p(x) = x3 + 1 = (x + 1)(x2 − x + 1) has as root x = −1 ∈ Z3 because −1 ≡ 2
mod 3. Equivalently, p(2) ≡ 23 + 1 ≡ (−1)3 + 1 ≡ 0 mod 3. Hence, it is
reducible.

• p(x) = x3 + x2 + x+ 1 = (x+ 1)(x2 + 1) has as root x = −1 ∈ Z3. Hence, it is
reducible.

• p(x) = x3+2x2+1 = (x+2)x2+1 has as root x ≈ −2.2056 /∈ Z3. Equivalently,
p(1) ≡ 1 mod 3, p(2) ≡ 2 mod 3. Hence, it is irreducible.

• p(x) = x3 + 2x2 + x+ 1 = x(x+ 1)2 + 1 has as root x ≈ −1.7549 /∈ Z3. Hence,
it is irreducible.

In the lecture we had something similar: x2 + 1 = (x + 1)(x + 1) over Z2. We see -1
is a root and (−1)2 + 1 ≡ 0 mod 2.
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Exercise 94
Task: Decompose x4 + x3 + 1 into irreducible factors over Z2.

Seems to be really irreducible already

Solution: Say p(x) = x4 + x3 + 1. We see that p doesn’t have a linear factor by
calculating p(0) ≡ p(1) ≡ 1 mod 2 (no root). It could still have quadratic factors.
The only quadratic irreducible polynomial over Z2 is x2 + x+ 1.

But p(x)
x2+x+1 = (x2 − 1) + x+ 2, that means p(x) is not divisible by x2 + x+ 1.

So there is nothing to decompose for x4 + x3 + 1 is already irreducible.
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Exercise 95
An integral domain R is a factorial ring if ∀a ∈ R \ ({0} ∪ R∗) it holds there is a
unit ∃ε ∈ R∗ and irreducible elements ∃q1, . . . , ql such that a = εq1q2 . . . ql and this is
unique in the following sense: If a = ε1q1q2 . . . ql = ε2q1q2 . . . qk then k = l and there
is a permutation ∃π ∈ Sl : qj ∼ pπ(j) with j = 1, . . . , l (unique up to order and units).

p(x) is irreducible if p(x) 6= a(x)·b(x) with deg a(x) < deg p(x) and deg b(x) < deg p(x).

As (K[x],+, ·) is an Euclidean ring, it is an integral domain and there is division with
remainder. As (K[x],+, ·) is an integral domain, it is a ring and it holds that there
are no zero divisors a 6= 0, b 6= 0 =⇒ ab 6= 0. As (K[x],+, ·) is Euclidean, it is also
factorial.

As 2 · 4 = 0 in Z8, Z8 is not an integral domain. x2 − 1 has degree 2 and 4 roots
{1, 3, 5, 7} in Z8. The ”no zero divisors” property does not hold for Z8.

Task: Let K be a field and p(x) ∈ K[x] a polynomial of degree m. Prove that p(x)
cannot have more than m zeros (counted with multiplicities). Hint: Use the fact that
K[x] is a factorial ring.

Explanation of exercise presentations something like: With the factorial ring property,
we get that all constant polynomials of a field are units. If you have an element of a
factorial field then there is the unique prime decomposition. Since all elements of the
field are units, all other factors have to be polynomials of degree at least one. So the
prime decomposition has irreducible polynomials, so a can be at most linear. So you
would have at most m of the factors so at most m zeros.

Solution:

• Stackexchange

• The Gallian book Contemporary Abstract Algebra can be found online

• Stackexchange about deg(fg)

Proof by induction on n. A polynomial of degree 0 over the field K has no zeros.
Suppose that p(x) is a polynomial of degree m over K and a is a zero of p(x) of
multiplicity k. Note that (x − a) is irreducible and by the factorial ring property
there is a unique factorization with irreducible factors. Then p(x) = (x− a)kq(x) and
q(a) 6= 0. It holds deg(f(x)g(x)) = deg f(x) · deg f(x) because of the factorial ring
property and no zero divisors and

deg
((
cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0

) (
dmxm + dm−1x

m−1 + · · ·+ d1x+ c0
))

=deg
(
cndmxn+m + . . .

)
=n+m

Since

m = deg p(x) = deg(x− a)kq(x) = k + deg q(x)
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we have k ≤ m. If p(x) has a as only zero then we are done. If on the other hand b
is also a zero of p(x) and b 6= a then 0 = p(b) = (b − a)kq(b). Then (b − a)k is not 0.
Then b is a zero of q(x) with the same multiplicity as it has for p(x).

Note that as (K[x],+, ·) is an Euclidan ring the no zero divisors property does hold.
This means we can do cancellation, so for a root a we get p(x) = (x− a)q(x) and we
can cancel off (x− a) on both sides and are left with q(x) which is of lower degree.

By strong induction 1, we know that q(x) has at most deg q(x) = m−k zeros, counting
multiplicity. Thus, p(x) has at most k +m− k = m zeros, counting multiplicity.

Example with m = 3, k = 1, a = 1:

(x− 1)3(x− 2)4(x− 3)5︸ ︷︷ ︸
p(x)

= (x− 1)3 (x− 2)4(x− 3)5︸ ︷︷ ︸
q(x)

See also

• link

• Stackexchange

1If 1. P (1) and 2. ∀1 ≤ i ≤ k : P (i) =⇒ P (k + 1) then ∀n ∈ N : P (n)
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Exercise 96
• link

• link

Task: Prove that if G is a finite group and a ∈ G is an element with ordG(a) = r,
then for every k ∈ N, ordG

(
ak

)
= r/ gcd(r, k)

Solution: The order of a is the smallest r > 0 such that ar = 1. The order of ak is
the smallest x > 0 such that akx = 1. Then kx is a multiple of the order r of a. This
means kx is the least common multiple of k and r. By definition lcm(k, r) = kr

gcd(k,r) .
It follows

lcm(k, r) = kx =
kr

gcd(k, r)
=⇒ x = ordG

(
ak

)
=

r

gcd(k, r)

More detailed approach: By definition ar = 1 (where 1 denotes the identity), it
follows that any power of ar is also the identity. That includes the power k

gcd(r,k) . It
follows

1 = (ar)
k

gcd(r,k) = ar·
k

gcd(r,k) = ak·
r

gcd(r,k) = (ak)
r

gcd(r,k)

We now show that r
gcd(r,k) is the smallest positive power x of ak such that

(
ak

)x
= 1.

This means

∀m > 0 : (
(
ak

)m
= 1 =⇒ r

gcd(r, k)
≤ m

Let m ∈ N be such that
(
ak

)m
= akm = 1. Since the order of a is r, it follows that

r | km. Therefore we have

r

gcd(r, k)
| k

gcd(r, k)
m

It is known that

gcd

(
r

gcd(r, k)
,

k

gcd(r, k)

)
= 1

and from this it follows from Euclid’s lemma

If n | ab and n is relatively prime to a, then n | b.

that
r

gcd(r, k)
| m
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In particular holds

r

gcd(r, k)
≤ m

Example:As example, consider the dihedral group D3. It has the following multipli-
cation table:

From that we can read off the order ordD3(x) = min{k ≥ 1 : xk = 1} of some elements:

• ordD3
(1) = 1

• ordD3
(A) = 3

• ordD3(B) = 3

• ordD3(C) = 2

For C with r = 2 we choose k = 3 and get

ordD3(C
3) = ordD3(C) = 2 =

2

1
=

2

gcd(2, 3)

For A with r = 3 we choose k = 6 and get

ordD3
(A6) = ordD3

(1) = 1 =
3

3
=

3

gcd(3, 6)

So about the first solution, we see that A3 = 1 and r = 3 and that for k = 2 and x = 3
we get A2 = B and (A2)3 = B3 = 1 where 6 is the lcm of 2 and 3.
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Exercise 97
Task: Let R be a ring and (Ij)j∈J be a family of ideals of R. Prove that

⋂
j∈J Ij is

also an ideal of R.

Solution: Let S =
⋂

j∈J Ij . We have to show:

1. Subgroup (S,+) ≤ (R,+). We know

∀j ∈ J : (Ij ,+) ≤ (R,+) (1)

It is widely known that the intersection of two subgroups of a group is itself a
subgroup of that group:

∀H1,H2 ≤ (G, ◦) : H1 ∩H2 ≤ G

2. Stackexchange Stackexchange Show a ∈ R =⇒ a · S ⊆ S. This is equivalent to
∀s ∈ S : a ∈ R =⇒ as ∈ S Suppose s ∈ S and a ∈ R. By definition of S holds
∀j ∈ J : s ∈ Ij . Then as all Ij are ideals of R holds ∀j ∈ J : as ∈ Ij . Therefore
as ∈

⋂
j∈J Ij = S.
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Exercise 98
Task: Let R be a ring and I an ideal of R. Then (R/I,+) is the factor group of
(R,+) over (I,+). Define a multiplication on R/I by

(a+ I) · (b+ I) := (ab) + I.

Prove that this operation is well defined, i.e. that

a+ I = c+ I and b+ I = d+ I =⇒ (ab) + I = (cd) + I.

Furthermore, show that (R/I,+, ·) is a ring

Ring
Exercise presentations: Proving in such a way is OK. You may asssume that addition
is well-defined and multiplication as well.

(R/I,+, ·) is a ring if and only if

1. (R/I,+) is a commutative group.

2. (R/I, ·) is a semi-group (associative law holds).

3. Multiplication is distributive wrt addition: (a+b)·c = a·c+b·c, c·(a+b) = c·a+c·b

We define the addition to be

(a+ I) + (b+ I) := (a+ b) + I

Proof:

Exercise presentations: I seem to have forgotten additive closure

1. • As a, b, c ∈ R and (R,+) is associative

((a+ I) + (b+ I)) + (c+ I)

=((a+ b) + I) + (c+ I)

=((a+ b) + c) + I

=(a+ (b+ c)) + I

=(a+ I) + ((b+ c) + I)

=(a+ I) + ((b+ I) + (c+ I))

(R/I,+) is associative.

• a ∈ R and 0 is the neutral element of (R,+)

(0 + I) + (a+ I) = (0 + a) + I = a+ I = (a+ 0) + I = (a+ I) + (0 + I)

so (0 + I) is the zero-element of (R/I,+).
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• As a ∈ R and −a ∈ R is the inverse element of (R,+)

(a+ I) + (−(a+ I)) = (a+ I) + ((−a) + I) = (a+ (−a)) + I = (0 + I)

(−(a+ I)) + (a+ I) = ((−a) + I) + (a+ I) = ((−a) + a) + I = (0 + I)

so −(a+ I) is the inverse element of (R/I,+) . Hence, (R,+) is a group.

• R/I is commutative because addition in R is commutative and

(a+ I) + (b+ I) = (a+ b) + I = (b+ a) + I = (b+ I) + (a+ I)

with a, b ∈ R.

Alternative for the group part: (R,+) is an abelian group because R is a
ring. As I is an ideal of R it holds I ≤ R by definition from the lecture. Then
I inherits the property of being abelian. This means I is a normal subgroup of
R. R/I is the factor group of R by I. It is known that the factor group of a
group by a normal subgroup forms a group itself. Then the factor group R/I is
a group under addition.

2. Considering that (R, ·) is associative because R is a ring, we get

((a+ I) · (b+ I)) · (c+ I) =

((a · b) + I) · (c+ I) =

((a · b) · c) + I =

(a · (b · c)) + I =

(a+ I) · ((b · c) + I) =

(a+ I) · ((b+ I) · (c+ I))

that (R/I, ·) is a semi-group.

3. Considering that multipication in R is distributive wrt addition because R is a
ring, we get

((a+ I) + (b+ I)) · (c+ I) =

((a+ b) + I) · (c+ I) =

((a+ b) · c) + I =

(ac+ bc) + I =

((ac) + I) + ((bc) + I) =

(a+ I) · (c+ I) + (b+ I) · (c+ I)
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and

(c+ I) · ((a+ I) + (b+ I)) =

(c+ I) · ((a+ b) + I) =

(c · (a+ b)) + I =

(ca+ cb) + I =

((ca) + I) + ((cb) + I) =

(c+ I) · (a+ I) + (c+ I) · (b+ I)

that (R/I, ·) is distributive over (R/I,+)

Well-defined
There was a 3 line proof in the presentation and it was too short. It had the multipli-
cation (a+I)*(b+I) which is not defined. Tutor mentioned something like: a+I=b+I
if and only if a-b in I, so the definition of equivalence classes. Then you show ac-bd
is in I. This is sort of clear because you insert terms that are 0 so ac+ad-ad-bd and
then you factor out. Tutor said really much about equivalence classes. You have to be
really exact and careful here to only do defined things.

Suppose a+ I = c+ I and b+ I = d+ I.

Recall again the definition (R/I,+) = {a+ I | a ∈ R}. As I is an ideal of R it holds
I ≤ R. If I ≤ R then a + I means {a + i | i ∈ I} and is called left coset of I in R.
This means (R/I,+) is a set of cosets. Example: We know from the lecture that

Z/4Z = {a+ 4Z | a ∈ Z} = {0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}
= {{0 + i | i ∈ 4Z}, {1 + i | i ∈ 4Z}, {2 + i | i ∈ 4Z}, {3 + i | i ∈ 4Z}}

is a factor ring. Note that a can be in the full range of Z, but for example

{0 + 4Z} = {−8,−4, 0, 4, 8, 12, 16, . . . } {1 + 4Z} = {−7,−3, 1, 5, 9, 13, 17 . . . }
{4 + 4Z} = {−8,−4, 0, 4, 8, 12, 16, . . . } {5 + 4Z} = {−7,−3, 1, 5, 9, 13, 17 . . . }

see comment With this knowledge, it follows from a + I = c + I that a = c + x and
from b+ I = d+ I b = d+ y with x, y ∈ I. For example with 10, 2 ∈ Z it follows from
10 + 4Z = 2 + 4Z that 10 = 2 + x with x = 8 ∈ 4Z.

We use the normal subgroup property

Using this and c, x, d, y ∈ Z and multiplication in Z we get

ab = (c+ x)(d+ y) = cd+ xd+ cy + xy

and so

ab+ I = cd+ xd+ cy + xy + I = cd+ I
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because I absorbs xd + cy + xy because x, y ∈ I. Using again our example: x, y ∈
4Z =⇒ xd, cy, xy ∈ 4Z, and also 6 + 4Z = 2 + 4 + 4Z = 2 + 4Z. Consequently,
multiplication is well-defined.
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Exercise 99
For m ∈ R is (m) := mR = {ma | a ∈ R} the multiples of m a principal ideal. (m) is
an ideal.

Task: Let U = {0̄, 2̄, 4̄} ⊆ Z6. Show that U is an ideal of (Z6,+, ·). Is it a subring as
well? Does it have a 1-element?

Solution: Let m = 4.
a ∈ R 0 1 2 3 4 5

ma 0 4 8 12 16 20
ma mod 6 0 4 2 0 4 2

So (m) = U is an ideal of Z6.

(U,+, ·) is a subring of (Z6,+, ·) if it is non-empty and closed under substraction (or
alternatively addition and additive inverse) and multiplication.

Consider that ā− b̄ = (a− b). Example: 2̄− 4̄ = 2− 4 = −2 = 4̄.

0̄ 1̄ 2̄ 3̄ 4̄ 5̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄ 0̄
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

+ 0 2 4
0 0 2 4
2 4 4 0
4 2 0 2

inv 0 2 4
0 0 4 2

- 0 2 4
0 0 2 4
2 4 0 2
4 2 4 0

* 0 2 4
0 0 0 0
2 0 4 2
4 0 2 4

We see in the the tables that (U,+, ·) is non-empty, closed under substraction & closed
under multiplication and therefore a subring of (Z6,+, ·)

4 is the 1-element.
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Exercise 100
We know

1. For m ∈ R is (m) := mR = {ma | a ∈ R} the multiples of m. Then (m) is
principal ideal. (m) is also an ideal.

2. For M ⊆ R we define the ideal that is generated by M to be
(M) :=

⋂
(ideals of R that contain M).

3. If R is an Euclidean ring then all ideals are principle.

4. If R is an Euclidean ring and M = {m1,m2, . . . ,mn} consists of a finite number
of elements, then the ideal that is generated by M is the principal ideal (M) =
(gcd(m1,m2, . . . ,mn)) = gcd(m1,m2, . . . ,mn) ·R.

Task: Show that (Z[x],+, ·) is a ring and that 1 /∈ ({x, x+ 2}).
Remark: It can be shown that a principal ideal which is generated by a1, a2, . . . , ak can
be alternatively generated by gcd(a1, a2, . . . , ak). Therefore this example shows that
Z[x] is a ring where not every ideal is a principal ideal. As a consequence, Z[x] cannot
be a Euclidean ring.

Solution: From Joseph A. Gallian’s Contemporary Abstract Algebra: Let R be a
commutative ring. The set of formal symbols

R[x] = {anxn + an−1x
n−1 + · · ·+ a1x+ a0 | ai ∈ R,n is a nonnegative integer} (2)

is called the ring of polynomials over R in the indeterminate x.

Let R be a commutative ring and let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and

g(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0

belong to R[x]. Then

f(x) + g(x) = (as + bs)x
s + (as−1 + bs−1)x

s−1 + · · ·+ (a1 + b1)x+ a0 + b0,

where s is the maximum of m and n, ai = 0 for i > n and bi = 0 for i > m. Also,

f(x)g(x) = cm+nx
m+n + cm+n−1x

m+n−1 + · · ·+ c1x+ c0

where

ck = akb0 + ak−1b1 + · · ·+ a1bk−1 + a0bk

for k = 0, . . . ,m+ n.
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Note that this is just the usual multiplication. For example:

(a1x+ a0) (b1x+ b0) = a1b1x
2 + a1b0x+ a0b1x+ a0b0

= a1b1︸︷︷︸
c2

x2 + (a0b1 + a0b1)︸ ︷︷ ︸
c1

x+ a0b0

with k = 0, . . . , 2

c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2︸︷︷︸
=0

b0 + a1b1 + a0 b2︸︷︷︸
=0

Addition and multiplication are formulated so that they are commutative and as-
sociative. Furthermore, multiplication is distributive over addition. (R[x],+) has
0 as identity element and as ai ∈ Z we can always find the inverse −ai such that
aix

n + (−aix
n) = 0. This makes R[x] a ring.

As the multiplication of integers is a commutative operation, Z is a commutative ring.
Then by our previous definition Z[x] is a ring.

Let for brevity P (i) be the property that ai ∈ Z, n is a nonnegative integer.

• 1 ∈ Z. Therefore by equation 2 holds 1x = x ∈ Z[x]. Therefore

(x) = xZ[x] = {xa | a ∈ Z[x]}
= {anxn+1 + an−1x

n + · · ·+ a1x
2 + a0x | P (i)}

is a (principal) ideal of Z[x].

• 1 ∈ Z and 2 ∈ Z. Therefore by equation 2 holds x+ 2 ∈ Z[x]. Therefore

(x+ 2) = (x+ 2)Z[x] = {(x+ 2)a | a ∈ Z[x]}
= {anxn(x+ 2) + an−1x

n−1(x+ 2) + · · ·+ a1x(x+ 2) + a0(x+ 2) | P (i)}
= {anxn+1 + 2anx

n + an−1x
n + 2an−1x

n−1 + · · ·+ a1x
2 + 2a1x+ a0x+ 2a0 | P (i)}

is a (principal) ideal of Z[x].

An alternative definition for the ideal generated by a set is: If R is a commutative ring
with unity and a1, a2, . . . , an belong to R then I = 〈a1, a2, . . . , an〉 = {r1a1 + r2a2 +
· · ·+ rnan | ri ∈ R} is an ideal of R called the ideal generated by a1, a2, . . . , an

x and x + 2 belong to Z[x]. We get 〈x, x,+2〉 = ({x, x + 2}) = {r1x + r2(x + 2) |
r1, r2 ∈ Z[x]}.

Note that there is a mistake here. r1 and r2 are not necessarily equal, so all the variable
names should be different.
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We already calculated the single summands before, so now we have to add them:

· · · = {2anxn+1 + 2anx
n + 2an−1x

n + 2an−1x
n−1 + · · ·+ 2a1x

2 + 2a1x+ 2a0x+ 2a0 | P (i)}
= {x

(
2anx

n + 2anx
n−1 + 2an−1x

n−1 + 2an−1x
n−2 + · · ·+ 2a1x+ 2a1 + 2a0

)
+ 2a0 | P (i)}

= {2x
(
anx

n + anx
n−1 + an−1x

n−1 + an−1x
n−2 + · · ·+ a1x+ a1 + a0

)
+ 2a0 | P (i)}

There is no way to set the ai such that this polynomial equals 1. Hence 1 /∈ ({x, x+2})

About the remark: From 4. and by the definition of an implication it holds Z[x]
is not Euclidean or the ideal that is generated by {x, x+ 2} is not the principal ideal
(M) = gcd(x, x+ 2) · Z[x].

gcd(x, x+ 2) is 1 if x is odd and 2 otherwise . 1 · Z[x] = Z[x] and 2 · Z[x] is Z[x] with
all coefficients even.

1 ∈ Z[x] but 1 /∈ ({x, x+2}). So those sets are not equal. 2 ∈ 2Z[x] but 2 /∈ ({x, x+2}).
So those sets are not equal either. It follows that Z[x] is not Euclidean.
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