
Lab Workbook
SS 2024

Industrial Hardware Verification

Jakob Lechner

Markus Ferringer

Part 3: PSL

Contents

1 PSL 4
1.1 Exercise 1: PSL from Waveform . 4

1.1.1 Task 1 [1 Point] . 4
1.1.2 Task 2 [1 Point] . 4

1.2 Exercise 2: Pulse Clock Crosser . 4
1.2.1 Task 1 [2 Points] . 5

1.3 Exercise 3: Check Waveform . 5
1.3.1 Task 1 [1 Point] . 5
1.3.2 Task 2 [1 Point] . 6

1.4 Exercise 4: Burst Reads . 7
1.4.1 Task 1 [4 Points] . 7

1

Lab Mode

� You have to elaborate these exercises on your own. This lab part is not a team effort.
� We provide stubs containing basic templates for you which are to be extended with

your implementations
� Questions are to be ansered in the respective source-files of the corresponding exercise.

Just add appropriate comments at the end
� I strongly recommend to read through an entire task before starting with the imple-

mentation (including the questions section). You will sometimes find hints later that
might simplify things

� Once done with all exercises, please execute ./make.sh clean in each folder, zip ev-
erything (including makefiles, scripts, and frameworks) and submit it via TUWEL

2

Remarks

The syntax presented in the lextures was mostly based on Verilog flavor (because it’s shorter
and thus better fits on slides). Keep this in mind esp. for locial operators like !, &&, ||: Those
have to be replaces by not, and, or. Most of the time, the equality operator (or assignment
operator) = is to be replaced with is. I found that esp. LTL style is not supported according
to the standard. For example, I could not get the next command running in combination
with specifying a range, like next[2 to 3] or next[2:3].

Just try different combinations / styles, and be sure not to leave out any braces. PSL is
VERY picky about braces.

3

Chapter 1

PSL

1.1 Exercise 1: PSL from Waveform

� For the given waveforms, write PSL assertions that check the waveforms as depicted.

� In this exercise, the signals do not depend on each other, so you just have to describe
the depicted, static waveform in PSL

1.1.1 Task 1 [1 Point]

� Describe the given trace using assertions in LTL style

1.1.2 Task 2 [1 Point]

� Describe the given trace using assertions in SERE style

1.2 Exercise 2: Pulse Clock Crosser

The unit under test is a Pulse Clock Crosser. As you can see in the waveform, it crosses a
single-cycle pulse from clock domain 1 to a single-cycle pulse in clock domain 2. Those clock
domains can be totally unrelated.

4

CHAPTER 1. PSL 5

1.2.1 Task 1 [2 Points]

Write PSL expressions, either LTL or SERE style (or both), to cover the following require-
ments:

� The input pi is high for exactly one cycle at a time. It belongs to clock clk1

� The output po is high for exactly one cycle at a time. It belongs to clock clk2

� After input pi has been asserted, it must not be asserted again before the corresponding
po has been asserted first

� After input pi has been asserted, the output po must be asserted eventually

� After input pi has been asserted (at clk1), the output po must not be asserted for at
least 2 clock cylces (of clk2). There are internal clock crossers, and they need some
time. Notice: This does not mean that po must be asserted in the 3rd cycle - it could
take longer!

1.3 Exercise 3: Check Waveform

1.3.1 Task 1 [1 Point]

(a) (b)

There are waveforms (a) and (b) and PSL expressions p1, p2, p3. Check if the PSL expres-
sions hold for the given waveforms. If not, state in which cycle they fail, and why.

p1 : assert always { req } |=> {ack ; busy ; busy ; busy ; done } ;
p2 : assert always { req } |=> {ack ; busy [* 3] ; done } ;
p3 : assert always { req } |=> {ack ; busy [* 3 : 5] ; done } ;

CHAPTER 1. PSL 6

1.3.2 Task 2 [1 Point]

(a)

There is waveform (a) and PSL expressions p1, p2. Check if the PSL expressions hold for
the given waveform. If not, state in which cycle they fail, and why.

p1 : assert always
{{ r ead req ; [* 0 : 4] ; gnt} && { cance l [=0]}} |=>
{ d a t a s t a r t ; data [*] ; data end } ;

p2 : assert always
{{ r ead req ; [* 0 : 4] ; gnt} & { cance l [=0]}} |=>
{ d a t a s t a r t ; data [*] ; data end } ;

CHAPTER 1. PSL 7

1.4 Exercise 4: Burst Reads

The image shows a typical waveform of a burst-read interface:

� With rd ena, also rd burst is asserted.

� rd burst is in range 1-7 and defines the number of data values to be read

� Starting with the next cycle, data is applied by asserting rd valid (and setting
rd data)

� After the last transmitted word, rd done is asserted

� rd valid is not necessarily high for the entire burst. Pauses are allowed

� However, the first data value directly after rd ena is asserted, is always valid

� rd ena and rd done are never active at the same time

1.4.1 Task 1 [4 Points]

For the above waveform with the given specification, define the following PSL statements.
Please take a note at the hints for this exercise.

� Check that whenever rd ena becomes 1 (i.e., changes from 0 to 1), the next cycle
always contains valid data (with rd ena still asserted and rd done being deasserted).

� Check that when rd ena becomes 1, it is followed by 1 to 7 assertions of rd valid

(with rd done=0), followed by a single assertion of rd done. Notice that rd valid

can have interruptions.

� Check that rd ena stays asserted until rd done is asserted

� Check that when rd done is asserted, the correct number of rd valid cycles (according
to rd burst) have occured

Hints: There are probably various ways how the above requirements can be checked. I
will provide hints for one possible solution:

� In the PSL file, you can define VHDL signals. Define burst of type integer. You can
just write “inline VHDL” like every other PSL expression.

� Make a concurrent (VHDL-)assignment to burst such that it assigns the current value
of rd burst at the rising edge of rd ena, and that it decrements itself when both
rd ena and rd valid are asserted (otherwise, leave unaffected).

� You can then use the signal burst inside a PSL expression and check if it is indeed 0
when rd done is asserted

� You can use rising edge() inside PSL expressions

	PSL
	Exercise 1: PSL from Waveform
	Task 1 [1 Point]
	Task 2 [1 Point]

	Exercise 2: Pulse Clock Crosser
	Task 1 [2 Points]

	Exercise 3: Check Waveform
	Task 1 [1 Point]
	Task 2 [1 Point]

	Exercise 4: Burst Reads
	Task 1 [4 Points]

