
Winfried Auzinger Sommersemester 2019
Kevin Sturm 27.03.2019

Übungsaufgaben zur VU Computermathematik

Serie 3

Exercise 3.1: Two simple recursions.

a) Design a recursive procedure p(n) which produces the following output (using print(...):

n^2

.

.

.

16

9

4

1

0

1

2

3

4

.

.

.

n

Your procedure produces printed output but returns no value. This means that no return is necessary (one may also use
return without specifying a return value).

b) (cf. Exercise 1.1.) A list L is called palindromic if L[i]=L[n+1−i] for i = 1 . . . n, where n denotes the length of L.

Design a recursive procedure ispalindromic(L) which expects a list L as its argument and returns true if L is palindro-
mic, otherwise false.

Special cases: [] and a list of length 1 are palindromic.

Exercise 3.2: Partial integration.

a) Design a procedure myintparts(f,g) which expects two functions f and g as its arguments and computes the indefinite
integral∫

f(t) g(t) dt

by means of partial integration.

Hint: Recall the the well-known formula for partial integration. You need to differentiate f and integrate g (or vice versa).
Compare your result with the answer delivered by int.

b) Use your procedure from a) to compute∫
log2(t) dt.

Compare your result with the answer delivered by int.



Exercise 3.3: Recursion for a sequence of definite integrals.

a) Use partial integration (by hand) to derive a recursion (n−1→ n) for

In =

∫ 1

0

tn eλ t dt (λ 6= 0, n ∈ N0),

and implement this recursion in form of a procedure IR(n). Compare your results for n = 0, 1, 2, 3, . . . with the results
delivered by int.

b) Maple knows an explicit formula for In, n ∈ N0. Check this, using assume(n,nonnegint), and compare with a).

Exercise 3.4: Convex minimization: a numerical bisection algorithm.

Design a procedure find minimum(f,a,b,accuracy) which finds the unique minimum of a strictly convex real function
f : [a, b] → R by the searching algorithm indicated below. Here, accuracy is a small positive number specifying how much
the search should be refined. The procedure returns an interval of length ≤ accuracy (in form of a list) which contains the
position xmin where the minimum is attained. All numerical computations are performed in floating point arithmetic.

We assume that f and its derivatives are continuous, f ′(a) < 0, f ′(b) > 0, and f ′′(x) > 0 for all x ∈ (a, b). Then, by elementary
calculus, f has a unique minimum in (a, b). This can be found numerically by a bisection strategy : Let c := (a+ b)/2.

(i) If f ′(c) = 0, the minimum is located at c.

(ii) If f ′(c) > 0, the minimum is contained in (a, c).

(ii) If f ′(c) < 0, the minimum is contained in (c, b).

This leads, in an an obvious way, to a simple bisection algorithm for identifying an interval of length ≤ accuracy in which
xmin is located. You may formulate it in an iterative or recursive way.

Exercise 3.5: Parametric plots.

a) In spherical coordinates (θ, φ), a parametrization of the unit sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is given by

x(θ, φ) = cos θ cosφ

y(θ, φ) = cos θ sinφ

z(θ, φ) = sin θ

where θ = −π2 . . .
π
2 and φ = −π . . . π.

Use plot3d and play with plot parameters in order to produce a nice plot:

plot3d([x(theta,phi),y(theta,phi),z(theta,phi)],theta=-Pi/2..Pi/2,phi=-Pi..Pi,...,...)

b) Let C be a curve in the (x, y)-plane, specified by two functions x(t) and y(t), where t is a real parameter, t = a . . . b. You
may expect that this can be plotted analogously as in a) using plot in the form

plot([x(t),y(t)],t=a..b,...)

Try out – what happens? Consult the help page for plot to check how to realize such a parametric 2D plot. Play with
plot parameters in order to produce a nice plot. Choose your own functions x(t) and y(t).

c) Combination of a) and b): Assume that two functions φ(t) and θ(t) define a curve in the (θ, φ)-plane. Then,(
x(θ(t), φ(t)), y(θ(t), φ(t)), z(θ(t), φ(t))

)
(with x(θ, φ), y(θ, φ), z(θ, φ) from a)) represents a spatial curve on the unit sphere.

Use plots[spacecurve] to produce a nice plot of such a curve. Play with parameters.



d) Each plot command produces a special plot structure representing the data of the plot. Normally, the plot is immediately
displayed. But you can also store the plot data by assigning them to a variable,
e.g. (for two 3D plots):

p[1]:=plot3d(...): p[2]:=spacecurve(...):

Then you may use plots[display] to render the plots together:

plots[display]([p[1],p[2]],...)

Combine a) and c) in this way.

Again, play with plot parameters in display to produce a nice plot.

Exercise 3.6: Continued fractions.

A continued fraction is an (infinite) expression of the form

a0 + b1/
(
a1 + b2/

(
a2 + b3/(a3 + b4/ . . .)

))
a) Assume that the values ak and bk are given by a pair of functions a(.) and b(.). Design a procedure CFR(a,b,n,mode)

which evaluates the truncated continuous fraction, stopping at depth n. Here, mode should be an option for evaluation
(exact or float).

b) Let a0 = 3 and ak = 6, bk = (2 k− 1)2 (k ≥ 1). Find out experimentally to which limit this continued fraction converges.

Exercise 3.7: Animated graphs.

a) Prepare a nice example demonstrating the use of ? animate.

b) Prepare a nice example demonstrating the use of ? animate3d.

Choose your own examples (as cool as possible).

Exercise 3.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.

Choose one of them, have a closer look, and prepare a small demo of its basic features.

If you have no other special preference, you may take a closer look at plottools, geometry. Aficionados of combinatorics
may look at combinat (see also combstruct). And there are many, many more, like for instance GraphTheory.


