
Homework - Serie 10

Kevin Sturm
Python 3

Test your code with examples!

Problem 1.

(a) Create a figure object called fig using plt.figure().

(b) Use add_axes to add an axis to the figure canvas at [0.1, 0.1, 0.8, 0.8]. Call this new
axis ax.

(c) Plot (x, y) on that axes and set the labels and titles to match the plot below:

0 20 40 60 80 100
x

0

25

50

75

100

125

150

175

200

y

title
a line

Problem 2.

(a) Create a figure object and put two axes ax1 and ax2 on it which are located at [0.1, 0.1 , 0.8, 0.8]

and [0.2, 0.5, .2, .2], respectively.

1



0 20 40 60 80 100
X

0
25
50
75

100
125
150
175
200

x2

x2

20 21 22
X

30

40

50

x2

zoom

Figure 1: Problem 2

(b) Reproduce Figure 1!

Problem 3.
Use plt.subplots to create the following plot. Notice that the columns share the same x range.
Also the location of the legends should be identical to the one in Figure 2.

x
1

0

1

sin(4x)

x
0.5

0.0

0.5

cos(x)sin(x)

2 0 2
x

0

1

cos(x)

2 0 2
x

1
0
1

cos(x)+sin(x)

Figure 2: Problem 3

Problem 4. Consider the real nodes x1 < · · · < xn and function values yj ∈ R. Then, linear
algebra provides a unique polynomial p(t) =

∑n
j=1 ajt

j−1 of degree n− 1, such that p(xj) = yj for
all j = 1, . . . , n. Pick a fixed evaluation point t ∈ R. The Neville-algorithm is able to compute

2



the point evaluation p(t) without computing the vector of coefficients a ∈ Rn. It consists of the
following steps: First, define for j,m ∈ N with m ≥ 2 and j +m ≤ n+ 1 the values

pj,1 := yj,

pj,m :=
(t− xj)pj+1,m−1 − (t− xj+m−1)pj,m−1

xj+m−1 − xj
.

It can be shown that p(t) = p1,n, that is, the function value of p at t can be computed by p1,n.
Write a function neville which computes p(t) for a given evaluation point t ∈ R and vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. To do that, you can use the following scheme

y1 = p1,1 −→ p1,2 −→ p1,3 −→ . . . −→ p1,n = p(t)
↗ ↗ ↗

y2 = p2,1 −→ p2,2
↗ ↗

y3 = p3,1 −→
...

...
...

... ↗
yn−1 = pn−1,1 −→ pn−1,2

↗
yn = pn,1

(1)

One easy way to implement this scheme is by building a matrix with entries (pj,m)nj,m=1. For
testing, take an arbitrary polynomial resp. nodes, and compute yj = p(xj).

Problem 5. Study the documentation of mlab.quiver3d(ux,uy,uz,vx,vy,vz) of the mayavi
module. In this exercise we want to plot the (outward pointing) unit normal vector field along an
ellipsoid

E2 := {(x, y, z) : ax2 + by2 + cz2 = 1}.
In order to plot this vector field consider the parametrisation of the ellipsoid:

ϕ : (u, v)→ (a sin(u) cos(v), b sin(u) sin(v), c cos(v)) : [0, π)× [0, 2π) :→ E2 ⊂ R3,

The functions (ux,uy,uz) are the component functions of ϕ and the functions (vx,vy,vz) are
the component functions of ∂uϕ× ∂vϕ/‖∂uϕ× ∂vϕ‖2. Also put a nice coordinate system into the
plot. The output in case of a = b = c = 1 should look like Figure 3.

Problem 6. Write a function saveMatrix which takes a matrix A ∈ Rd×d and writes it into a file
matrix.dat via open. Write another function loadMatrix, which takes a string 'matrix.dat'

and reads the file with open and stores the data into numpy array. Compare your result with
numpy.savetxt and numpy.loadtxt.

Problem 7. Use the matplotlib function plt.quiver to visualise the vector field F : R2 → R2

given by

F (x, y) :=

{
(1, 1) + (−y, x) if x > 0
−(1, 1) + (y,−x) if x < 0

.

Plot the vector field on [−1, 1]× [−2, 1] and make nice captions and legends. Make sure the font
size of your plot is not too small.

3



Figure 3: Problem 5

Problem 8. Use the matplotlib function plt.scatter to produce the following plots.

4


