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Serie 4

We use the packages plots and LinearAlgebra.

Exercise 4.1: Visualization of linear mappings.

a) With plots[arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping ϕ : R2 → R2 represented
by its coefficient matrix, by drawing the parallelogram spanned by the images of the unit vectors (1, 0) and (0, 1) under
the mapping. Produce a nice plot.

b) Analogous to a), but for ϕ : R3 → R3.

Exercise 4.2: Data-sparse representation of a linear mapping.

A data-sparse representation of a low-rank linear mapping or of its coefficient matrix A is a procedural representation which
does not involve the explicit form of the matrix. Example:

Ax =

m∏
k=1

(I − ukvTk ) · x = (I − umvTm) · · · (I − u1vT1 ) · x, uk, vk ∈ Rn

with m� n. Here, the column vectors uk, vk ∈ Rn contain the full information about the mapping.

Design a procedure mvmul(U::Matrix,V::Matrix,x::Vector) which computes Ax without explicitly building the matrix
A. (Here, the columns of U,V ∈ Rn×m represent the vectors uk, vk, k = 1 . . .m.) Use inner products and scalar · vector
multiplications only. Verify the correctness of your code for at least one example.

Hint: Since matrix multiplication is associative, we have (uvT )x = u(vTx) = (vTx)u.

Exercise 4.3: Sherman-Morrison-Woodbury (SMW).

Let A ∈ Rn×n be invertible, and U, V ∈ Rn×m. Then, the Sherman-Morrison-Woodbury - formula holds true: A + UV T ∈
Rn×n is invertible iff I + V TA−1U ∈ Rm×m is invertible, and

(A+ UV T )
−1

= A−1 −A−1U (I + V TA−1U)
−1
V TA−1 .

This identity (which is not very difficult to prove) can be used to compute the inverse (A+ UV T )
−1

, assuming A−1 is

already known. The additional effort involves only computing the small inverse (I + V TA−1U)
−1 ∈ Rm×m; thus, using the

SMW formula is more efficient than direct inversion of (A+ UV T )
−1

, if m� n.

Implement this formula in form of a procedure

SMW(AI::Matrix,U::{Matrix,Vector[column]},V::{Matrix,Vector[column]})

and test.

Exercise 4.4: A matrix depending on two parameters.

Consider the matrix

A =


0 α 1 0 β

0 1 0 α 0

α 0 1 0 0

β 1 0 0 0

0 1 0 αβ 0


depending on two parameters α, β ∈ C.

a) What is the generic rank of A? 1

1 Recall from lecture what is to be understood by ‘generic’.



b) Determine all possible values of the parameters α, β such that A is a singular matrix, and determine the rank of A for
these special cases.

Exercise 4.5: Projection in 3D.

Let U be a linear subspace of R3 of dimension 2 (i.e., a plane containing the point 0). We wish to determine the matrix
representation of the projector P , a linear mapping which projects points x ∈ R3 onto U in the direction of a given vector
0 6= w 6∈ U . It is not difficult to see (check this) that P is a rank 2 matrix uniquely determined by the requirements

P u = u, P v = v, P w = 0,

where u, v ∈ U are given linearly independent vectors spanning U .

a) Design a procedure

projector(u::Vector,v::Vector,w::Vector)

which returns the matrix P ∈ R3×3 in form of an object of type Matrix. Use LinearSolve.

b) It is easy to see that P 2 = P . Check this by an example.

c) If w ⊥ U , the outcome P is the so-called orthogonal projector onto U . In this case not only P 2 = P holds, but also

P = Q. What is Q ? 2

Exercise 4.6: (∗) Similar matrices. 3

A pair of matrices A,B ∈ Rn×n is called similar if there exists a regular matrix X ∈ Rn×n such that B = X AX−1. For
given A,B we want to find X (if it exists).

a) Reformulate the problem in a way such that the inverse of the unknown matrix X is not involved.

b) Try to solve this problem for the special case n = 2, at least for a simple numerical example.

Exercise 4.7: Derivation of a formula for the numerical approximation of a second derivative.

Let h > 0, and consider

ϕ(x, h) = c−2 f(x− 2h) + c−1 f(x− h) + c0 f(x) + c1 f(x+ h) + c2 f(x+ 2h),

where the constants ci are to be determined in a such a way that ϕ(x, h) approximates the second derivative f ′′(x) of some
function f at the point x.

Find the ci such that as many as possible terms in the Taylor expansion of ϕ(x, h)− f ′′(x) about h = 0 vanish.

Hint: Use taylor and solve a system of linear equations.

Exercise 4.8: Polynomial derivatives and matrix representation.

We consider the (n+ 1) - dimensional vector space Pn of polynomials p of degree ≤ n,

p(t) = a0 + a1 t+ a2 t
2 + . . .+ an tn ,

and the linear operation D : Pn → Pn−1 defined by D(p) = p′ (first derivative w.r.t. t).

a) Computation of the polynomial D(p) = p′ is equivalent to a linear transformation which maps the coefficient vector
(a0, a1, a2, . . . , an) of p(t) to the corresponding coefficient vector of p′(t) = a1 + 2 a2 t+ . . ..

Design a procedure which, for given n, returns the matrix representation A ∈ R(n−1)×n of this linear transformation.

b) How can you use a) to generate the analogous matrix representation of D(2)(p) = p′′?

Validate your findings using numerical examples (i.e., for some concrete values of n and the ak).

2 This is a nice exercise in linear algebra. If you do not already know the answer, you may test examples, and such an experiment maybe helpful
for grabbing the idea of the proof.

3 This problem looks simple at first sight, but it is not straightforward to solve (see the course Linalg 2). Do not worry too much about it – it
is not mandatory. On the other hand, it is a realistic example in the following sense: If not sure what is going on with some problem, one may use
computer algebra for trying to get an idea.


