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Representations
(LO1) Understand and applyKnowledge Graph Embeddings ☐ I showed basic proficiency☒ exceeded basic proficiency
I trained TransE models, extracted embeddings, vi-sualised them with PCA and even enriched themwith attribute vectors 7,9-16,18

(LO2) Understand and applylogical knowledge in KGs ☐ I showed basic proficiency
☐ exceeded basic proficiency

I am not sure if this counts, but I have used a .ttlmodel and json and csv Files and logically con-nected. But I do not think that this is enough since Idid not write any logical constraints like “A is B andB is C => A is C”
6,18

(LO3) Understand and applyGraph Neural Networks ☐ I showed basic proficiency
☐ exceeded basic proficiency

I did not use any GNN libraries or message-passingmodels in the project 16

(LO4) Compare different Knowledge Graph datamodels from the database, semantic web, machinelearning and data science communities.
☒ I showed basic proficiency
☐ exceeded basic proficiency

My converter builds RDF, extracts an entity-only TTL 8
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and a separate JSON attribute store. Which (I think)shows awareness of multiple modelling layers

Systems
(LO5) Design and implement architecturesof a Knowledge Graph ☒ I showed basic proficiency

☐ exceeded basic proficiency
End-to-end pipeline: ETL → RDF → embeddings →Streamlit analytics; I demonstrate architecturalthinking across storage, reasoning and UI 7,18

(LO6) Describe and apply scalable reasoningmethods in Knowledge Graphs ☒ I showed basic proficiency
☐ exceeded basic proficiency

I perform link-level reasoning with embeddings andvector operations. Batch sizes & GPU support showscalability awareness 7,12,19

(LO7) Apply a system to createa Knowledge Graph ☐ I showed basic proficiency☒ exceeded basic proficiency
convert_municipality_data_to_triplets.py fuses fourheterogeneous datasets into a coherent KG withthousands of typed triples. These triples are thenused to train a KG with the use of TransE and Py-Keen. The results can be seen via the Streamlit app

7-16,19

(LO8) Apply a system to evolvea Knowledge Graph ☒ I showed basic proficiency
☐ exceeded basic proficiency

predict_kg.py adds link-prediction, combines em-bedding scores with attribute similarity and offersan interactive shell 7-16,20
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Applications
(LO9) Describe and design real-world applica-tions of Knowledge Graphs ☐ I showed basic proficiency☒ exceeded basic proficiency
The project focuses on Austrian municipalities. Con-cretely the public-sector planning, finance and elec-tions. 9,10,11

(LO10) Describe financial Knowledge Graph ap-plications ☒ I showed basic proficiency
☐ exceeded basic proficiency

Municipal finance CSVs are integrated and seman-tically typed; while not banking-grade, it should stillmeet the LO’s descriptive scope 7,17

(LO11) Apply a system to provide services througha Knowledge Graph ☐ I showed basic proficiency☒ exceeded basic proficiency
Streamlit app shows a geographic visualisation(which I am very proud of), similarity analytics andinteractive metrics 9-15

(LO12) Describe the connections between Knowl-edge Graphs (KGs), Machine Learning (ML) and Ar-tificial Intelligence (AI)
☒ I showed basic proficiency
☐ exceeded basic proficiency

The codebase marries RDF, embeddings, attribute-based ML features and visual analytics—showing aclear understanding of the interplay 8,17
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Additional Information
HAS NO EFFECT ON MARKING!
(please fill it out honestly, even if it is less than what is suggested in the ECTS break-
down – you are not judged on time spent!)

How many hours did you spend on yourmini-project?(the ECTS breakdown suggests 40 hours for this)
50 hours. (even more if it weren’tfor Claude and ChatGPT assistingin debugging)

* please exclude any hours you spent on parts reused from other courses

How many hours did you spend on yourportfolio document preparation (this PDF)?(the ECTS breakdown suggests 15 hours for this) About 7 hours
* please exclude any hours you spent on parts reused from other courses

Please indicate if you have reused parts of themini-project from other courses ☐ I reused some parts:0% of the mini-project
No

Please indicate if you have reused parts of theportfolio document from other courses ☐ I reused some parts:0% of this document
No

Declaration
I have marked all parts generated by Generative AI(e.g., ChatGPT) and given any prompt I used eitherin a footnote or in an appendix making clear whichparts are generated by which prompts or similar.

☒ I confirm this

I am sorry but I can not share the countless prompt Ihave used to debug my code with ChatGPT or ClaudeAIbecause they are already gone :( .For the Document the only prompt I used was „Theseare my notes. Please create me full sentences out of it:“
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Preamble
Github Link: https://github.com/Chrisvenator/Knowledge-Graph-aboutAdjacent-Municipalities
I have also hosted it onlne: https://austrian-municipalities-similarities-knowledge-graph.stream-
lit.app/. PLEASE DO NOT CHANGE THE SLIDER IN THE ONLINE VERSION OR THE SERVER CRASHES!!! I
have no Idea why, but please do not. The reason is probably because my KG is so inefficient that it
consumes quite a bit of resources and the (free) server does not provide as much as needed. But it
works in the local version.
Setting up the project shouldn‘t be much of a problem. Just follow the instructions in the README.
All models and csv files are committed to Github so they should load automatically. If not, you can
open an issue or contact me at christopher.scherling@tuwien.ac.at .
Also, you said in the lecture that we should dedicate 1 page to each LO that we have done. But I am
very bad with writing reports so I am fearing that I might have written way too little for a good gra-
de... I hope you will forgitve me. Furthermore, I fear that my explainatoins are not good enough for a
good grade. So I will link the LOs to the sections in the Code on the last Page!
ALSO I DON‘T THINK THE PURPLEHEADINGS LOOK GOOD, BUT I AMWAY TOO LAZY TO CHANGE THAT NOW THAT I HAVE THE REPORT FINISHED Ԅ(≖‿≖Ԅ)

https://github.com/Chrisvenator/Knowledge-Graph-aboutAdjacent-Municipalities
https://austrian-municipalities-similarities-knowledge-graph.streamlit.app/
https://austrian-municipalities-similarities-knowledge-graph.streamlit.app/
mailto:christopher.scherling@tuwien.ac.at
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Introduction
Link to the Github: https://github.com/Chrisvenator/Knowledge-Graph-aboutAdjacent-Municipali-
ties. Please follow the guidlines of the README.md if you want to run it. Note that the Geographic
map can be quite slow...
Motivation
Austria’s 2 095 municipalities vary greatly in population size, tax base and political profile. Policy ana-
lysts therefore need a quick way to discover comparable peers—e.g. “Which small alpine towns vote
similarly but manage debt more efficiently?” The project addresses exactly that gap ... is my formal
answer.
My informal answer is that I find it interesting which municipalities are similiar. Like is location a big
factor? Population? Budget? Elections? Or other factors? I actually just wanted to know that XD
Project goal
I built the Similar Municipality Predictor, an end-to-end Knowledge-Graph (KG) pipeline that ingests
open-government data, learns embeddings, and serves an interactive Streamlit dashboard.
Basially that I have a map of all Austrian Municipalities where all/most similar municipalities are
connected.
Service Outcome
I built the Similar Municipality Predictor, an interactive Streamlit web-app that

· loads an RDF knowledge graph with geography, election and finance facts,
· computes similarity scores, and
· visualises them on an interactive map, histograms and drill-down tables.

The landing page title hard-codes that purpose: “Austrian Municipalities Geographic Know-
ledge Graph Explorer”

Genre
Within the lecturer’s “portfolio genres” the work is application-oriented (real civic-analytics use-case)
with system-oriented elements (scalable embeddings + dashboard).

https://github.com/Chrisvenator/Knowledge-Graph-aboutAdjacent-Municipalities
https://github.com/Chrisvenator/Knowledge-Graph-aboutAdjacent-Municipalities
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Knowlege Graph Construction
1. Datasets were downloaded from th officioal Austian Data Provider like: https://www.da-

ta.gv.at/katalog/dataset/4bd85183-cba6-3079-881d-45981f1f9f78
2. Datasets: Four public sources: adjacency JSON, 2019 election JSON, finance CSV and a muni-

cipality code→name mapping CSV. Comment block at the top of convert_municipality_da-
ta_to_triplets.py lists them explicitly (LO7).

3. Storage & stack:
rdflib builds a Turtle file; literals keep explicit XSD/EUR datatypes; a separate JSON stores nu-
meric attributes for ML. (LO5). I tried to use all numbers as Literals but it dod not work. It
predicted the Entity „0“ as an dEntitiy most similar to Vienna... So I removed all numbers and
moved them to another step later.

4. Mapping workflow:
1. BatchedGraphUpdate streams triples in 10 000-row chunks to cap memory,
2. then add schema
3. materialise 2 k municipality URIs
4. attach adjacency edges
5. attach election and finance literals.
Evidence: Creation of neighbour count literal and explicit election/finance loops (LO4, LO7)

ML-based Representation
Embedding choice & training (LO1, LO6)
A TransE model is trained with PyKEEN (200-dim vectors, margin-ranking loss, early-stopping); Py-
Torch automatically switches to GPU if available.
Five sample vectors (rounded):
VIENNA [ 1.03,-0.22,…]GRAZ [ 0.97,-0.25,…]INNSBRUCK [-0.12, 0.88,…]
ADJACENT [ 0.04, 0.31,…]
HASNEIGHBORCOUNT [-0.30, 0.10,…]
Using embeddings to evolve the KG (LO8, LO12)
predict_kg.py ranks candidate links by (1 – L2) distance and merges the score with attribute-based
cosine similarity to suggest new adjacent edges or “most-similar municipality” lists for the dash-
board. True-positive example: Lech↔Warth is proposed and indeed borders in real life.
False-positive example: Wien↔ Eisenstadt—politically similar but obviously not adjacent—high-
lights the need for a geographic rule (see § 4).
Scalability & limits (LO6)

· 2 k entities × 16 k triples train in < 7 minutes on a 4090.
· 80k (with literals) train in about 35 Minutes on a 4090.
· Cold-start towns with zero literals get mediocre vectors; future GNN layers could inject coor-

dinate geometry to help.
· Score aggregation is a simple weighted sum; a learned combiner is left for future work.

https://www.data.gv.at/katalog/dataset/4bd85183-cba6-3079-881d-45981f1f9f78
https://www.data.gv.at/katalog/dataset/4bd85183-cba6-3079-881d-45981f1f9f78
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Reflection
Did the service deliver? (LO11)
Definetly! I am very proud of the Network graph! You can open the dashboard, select “30 edges with
relative colouring” and immediately see that Tyrolean mountain villages form a tight cluster while
Vienna is an outlier. The colour-gradient and line-thickness code makes that insight visually obvious .
Data-model comparison (LO4)

Model Pros Cons in this scenario
RDF + Turtle explicit semantics, easy PyKEEN ex-port verbose; literals require separatestore
Property graph (e.g.Neo4j) native path queries, built-in GDSembeddings no standard for datatypes; ex-port friction
Document store(JSON) fastest ingest from heterogeneousCSV/JSON no first-class edges; harder simi-larity joins
The hybrid RDF relations + JSON attributes strikes a pragmatic balance. (Which is my excuse that I
could not fix the Porblem that „Wien“ is connected to „0“, which I wrote in my Email)
Interplay of AI methods (LO12)
Embeddings pull together municipalities with similar literals even if no border edge exists; logic rules
could in turn prune impossible suggestions (water-separated towns) or feed high-confidence edges
back into the next embedding retraining.
Lessons learned & future work

· Embedding quality plateaus after 128 dims—focus shifted to UX polish instead.
· Adding even one spatial rule would cut false positives by ≈15 %.
· A lightweight GNN over the adjacency matrix may capture altitude effects absent from lite-

rals.
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Results
Network Graph

30 edges with relative coloring to see which links are the most similar to each other. Green is most
similar and red is the least similar of the links shown. If we show more links (10k) then it looks like
this:
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Now if we turn off relative coloring, we see that most links are green.Which means they are similar.
The graphic before shows the comparison between the different links. This graph shows the total
similarity. Currently the maximum edges are capped at 10k. But this could be extended in the code. I
would not reccommend it because of performance issues, but it can be done.
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There is also a Network Grpah:
Switching to NetworkX, the same municipalities form clusters that largely follow Land borders—evi-
dence that embeddings captured geographic adjacency without any explicit coordinate input (LO1,
LO9).
The Idea was that (in contrast to the one before), you can see the links better. Like how many Cities
are similar to other cities. But sadly, it failed :sweat_smile:. You only see two entities that are „super
similar“ which is sadly incorrect...
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Attribute Analysis:
A Plotly histogram reveals a bimodal distribution of similarity scores: urban centres cluster tightly,
while rural municipalities are more dispersed (LO6). At least that‘s what it should do. I don‘t know
what happened, but in this view, it‘s always quite ... unexpected. This view SHOULD show the diffe-
rence between similar entities. It shows something but not the thing I envisioned... But since I have
worked or about 50h, I will let that be.
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Similar entity finder:
This screen is in essence the detail view from the Network Graph. You can search for a city and then
see the most X similar (in the picture blow: most 5 similar) Entities. That means if you want to search
ONLY for a specific city, you can do that in this screen.
For Vienna the system suggests Graz, Linz and Salzburg when both embeddings and attributes are
combined, confirming face validity of the hybrid metric (LO8, LO12)
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Similarity Analysis:
I was not sure as to what LO this graph fits most. So I asked ChatGPT „Which LO would this Graph fit
the most“?`And it answered:
Although similarity comes from numeric vectors, the whole Similarity-Analysis tab is part of the in-teractive Streamlit front-end that exposes knowledge-graph services to an end user.
That aligns best with LO11 – “Apply a system to provide services through a Knowledge Graph”as described in your portfolio cover pages.
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Data Explorer:
A tabular drill-down lets users inspect raw RDF triples and numeric indicators side-by-side, bridging
semantic web and data-science views (LO4, LO11).
This was a santiy check for me. This was implemented to see, if everything worked as it should.
Thanks to ClaudeAI for helping me with debugging!

https://claude.ai/new
https://claude.ai/new
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Conclusion
What worked:

· End-to-end pipeline
· clear visual feedback
· hybrid scoring improves recommendation quality.
· Front end. I am really proud of the Geographic Map :)

What did not work:
· Training TransE with number based entities. It did not use numbres as additional information

or as literals, but it used it as a seperate entity. I have already sent an email to Professor Sai-
linger because of the issue that „Wien“ is connected to „0“ which does not make any sense.
So I remove all numbers and just added them later during the prediction step.

· I did not find any useful application of LO2 rule based constriant
· I honestly did too much work already so I skipped the LO3 GNN. But maybe I did it unintenti-

onally. Who knows ¯\_(ツ)_/¯.
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FOR TH FOLLOWING TWO SECTIONS, I USED CHATGPT TO LINGUISTICALLY REWRITE MY TRASH SENTENCES. I USED THEPROMPT: „THESE ARE MY BULLTPOINTS AND THOUGHTS. PLEASE MAKE A COHERENT NARRATIVE OUT OF IT: [NOTES]“. I
THEN CHECKED EVERTHING AND REWROTE MOST.

Financial Knowledge Graphs
A financial knowledge graph is a way to organize and connect information about money, companies,
people, and relationships between them. It shows how companies, investors, and banks are all lin-
ked. You can see who owns what, who works with who, or who invested in what. It helps track down
fraud or money laundering. If someone’s trying to hide money or do sketchy deals, the graph can re-
veal weird connections that don’t make sense or in GenZ words: „KGs can detect transactions that
are sus“. Furthermore, people in finance (like investors or analysts) use it to make better decisions.
Instead of reading a ton of reports, they can quickly see patterns and risks just by looking at the
graph. It can pull information super fast. You can almost instantly know how companies are related.
Our professor made a KG with the Bank of Italy and was able to see through a lot of shell companies
to determine sus transacations and connections and thereby busted an italian mafia. ┌( ͝° ͜ʖ°͡)=ε/̵͇̿/̿’̿’̿ ̿

Connections between KGs, ML, AI
Artificial Intelligence (AI)
AI is the broad field focused on making machines smart — able to do things that normally require
human intelligence (like understanding language, recognizing images, making decisions, etc.).
Machine Learning (ML)
ML is a part of AI. It’s about teaching machines to learn from data. Instead of programming exact ru-
les, you give the machine examples and it figures out patterns by itself. ML is basically the "learning
engine" of AI.
Knowledge Graphs (KGs)
KGs are like giant networks that store facts and relationships between things (like “Company A owns
Company B” or “Paris is the capital of France”). They give structured, connected knowledge — basi-
cally, they organize data in a way machines can understand.
How They Work Together
1. KGs help ML and AI make sense of the world:

KGs give context. For example, in natural language understanding, a KG can help an AI know
that “Apple” might be a fruit or a company, depending on the context.2. ML makes KGs smarter and more complete
ML can be used to build or expand KGs — by finding new connections or predicting missing
ones. For instance, ML might suggest a link between two companies based on patterns it
sees in the data.3. Together, they improve reasoning
AI systems can use KGs for logic and structure, and ML for learning from new data — combi-
ning both gives you intelligent systems that can reason, learn, and explain their decisions bet-
ter.
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Code references
LO1 (train_kg_on_dataset.py):

· load_entity_attributes() → create_attribute_features() (if using attributes)
· train_model()→ calls pipeline() for TransE training
· extract_embeddings()→ gets embeddings from trained model
· visualize_embeddings()→ applies PCA and creates 2D visualization
· find_similar_entities()→ demonstrates embedding applications

LO2 (convert_municipality_data_to_triplets.py and csv/json files):
· parse_args() -> Parses command-line arguments for input/output paths and options.
· validate_files() -> Checks if required .json and .csv files exist before processing.
· load_data() -> Loads and parses the input files (adjacency .json, election .json, finance .csv,

mapping .csv).
· get_municipality_uri(identifier, name) -> Generates a consistent URI for each munici-

pality based on ID or name.
· add_typed_literal(batch, subject, predicate, value, datatype) -> Adds literals

(e.g., numbers, strings) to the graph with correct RDF types.
· build_graph(adjacency_data, election_data, id2name, finance_rows) -> Main

function that logically connects all loaded data into RDF triples.
· to_uri(label, namespace) -> Converts a label into a URI-safe RDF identifier (spaces → un-

derscores).
LO3: Did not do it
LO4: Document
LO5:

· convert_municipality_data_to_triplets.py
· parse_args() -> Reads ETL config like data paths and output format.
· validate_files() -> Checks existence of all required input files (CSV, JSON).
· load_data() -> Loads raw data from JSON and CSV files into Python structures.
· build_graph() -> Combines all data sources into an RDF graph in Turtle format.

· train_kg_on_dataset.py
· parse_args() -> Parses arguments for training config (input TTL, model path, etc.).
· load_entity_attributes() -> Loads JSON-encoded entity attributes fo training.
· create_attribute_features() -> Creates numerical vectors from RDF attributes

for model input.
· train_model() -> Orchestrates the model training on RDF-derived triples.
· save_model() -> Saves trained model, embeddings, and metadata to disk.
· visualize_embeddings() -> Creates PCA plot of entity embeddings for insight.

· kg_explorer_app.py
· load_rdf_data() -> Parses RDF triples into visualizable format.
· load_model() -> Loads trained embeddings and metadata for use in app.
· extract_embeddings() -> Extracts entity and relation embeddings from a PyKEEN

model.
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· create_feature_vectors() ->Builds numerical features from attributes for UI
· calculate_similarity_matrix() -> Computes cosine similarity between entities.
· create_basic_geographic_map() -> Generates interactive map visualizing similari-

ties and topology.
· create_network_graph() -> Builds NetworkX graph from triples for visualization.
· visualize_network_plotly() -> Displays the graph in Plotly inside Streamlit.

LO6 (predict_kg.py):
· load_model()→ load a trained TransE model and entity/relation mappings from disk
· extract_embeddings()→ extract entity and relation vectors for inference
· predict_links() → perform link prediction using vector-based scoring (supports batching

and GPU)
· find_similar_entities() → compute embedding-based entity similarity via vector di-

stance
· interactive_prediction()→ run link reasoning interactively via user input (loops through

prediction/similarity)
· handle_link_prediction() → prompt and handle user input for link prediction
· handle_similarity_search()→ prompt and handle user input for similarity search

LO7:
· convert_municipality_data_to_triplets.py:

· parse_args()→ parse command-line inputs like file paths and output format
· validate_files()→ check if required CSV/JSON files are present
· load_data() → load election, finance, mapping, and adjacency data
· get_municipality_uri()→ generate consistent RDF URIs for municipalities
· add_typed_literal()→ add datatype-aware RDF triples to the batch
· build_graph()→ convert all loaded data into a typed RDF knowledge graph

· train_kg_on_dataset.py:
· parse_args()→ parse training parameters (model dir, epochs, etc.)
· load_entity_attributes() → load JSON attributes for each entity
· create_attribute_features() → convert attributes into numeric vectors
· train_model()→ train a TransE model on RDF triples using PyKEEN
· save_model()→ persist model weights and metadata to disk
· visualize_embeddings()→ create PCA plot of entity embeddings

· kg_explorer_app.py
· load_rdf_data()→ parse RDF triples for use in the frontend
· load_model()→ load trained PyKEEN TransE model from disk
· extract_embeddings()→ extract entity and relation embeddings
· create_feature_vectors()→ build feature vectors from attribute data
· calculate_similarity_matrix()→ compute pairwise entity similarity
· create_basic_geographic_map()→ visualize entities and similarity on a map
· create_network_graph()→ build graph structure from RDF triples
· visualize_network_plotly()→ render the graph as an interactive Plotly chart

LO8 (predict_kg.py):
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· load_model() → load a trained TransE model and attribute data for inference
· extract_embeddings()→ extract entity and relation embeddings for reasoning tasks
· predict_links()→ suggest new links using embedding scores and attribute similarity
· find_similar_entities()→ find similar entities using embedding and attribute distances
· show_entity_attributes()→ display raw attribute values for a given entity
· interactive_prediction()→ interactive CLI to test link prediction, similarity, and inspect

entities
· handle_link_prediction() → process user input for predicting likely triple completions
· handle_similarity_search()→ process user input to find similar entities based on vectors
· handle_attribute_display()→ show attribute values in the interactive shell

LO9 - 12: Described in the Document


