
184.735 VU 2.0 Einführung in Künstliche Intelligenz

Artificial Intelligence

Institute of Logic and Computation
Knowledge-Based Systems Group
Vienna University of Technology

SS 2023

slides partially by S. Russell
AIMA Chapter 1, with extensions

Artificial Intelligence

The Russell/Norvig Book

“Artificial Intelligence : A Modern Approach” (AIMA)

The first edition (1995) can be found at

http://www.eecs.berkeley.edu/~russell/aima1e/

2nd edition (2004;2007, in German), and 3rd edition (2010;2012 German)
is available at the TU library (Lehrbuchsammlung)

The 4th edition (2021) is also available at the TU library
(Lehrbuchsammlung)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 1/45

http://www.eecs.berkeley.edu/~russell/aima1e/

Artificial Intelligence

Outline

1. What is AI?

2. History of AI

3. State of the Art

4. Shortcomings and Issues

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 2/45

Outline

1. What is AI?

2. History of AI

3. State of the Art

4. Shortcomings and Issues

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 3/45

Artificial Intelligence 1. What is AI? 1.1 Terminology

1. Systems thinking like humans 2. Systems acting like humans

“The exciting new effort to make computers think ...
machines with minds, in the full and literal sense
(Haugland, 1985)

“The art of creating machines that perform functions
that require intelligence when performed by people.”
(Kurzweil, 1990)

“[The automation of] activities that we associate with
human thinking, activities such as decision making,
problem solving, learning” (Bellman, 1978)

“The study of how to make computers do the things
at which, at the moment, people are better.” (Rich
and Knight, 1991)

3. Systems thinking rationally 4. Systems acting rationally

“The study of mental faculties through the use of
computational models.” (Charniak and McDermott,
1985)

“Computational Intelligence is the study of the de-
sign of intelligent agents.” (Poole et al., 1998)

“The study of computations that make it possible to
perceive, reason, and act.” (Winston, 1992)

“AI . . . is concerned with intelligent behaviour in ar-
tifacts.” (Nilsson, 1998)

1 + 2: “strong AI” 3 + 4: “weak AI”

“Künstliche Intelligenz” vs “gekünstelte Intelligenz”

KBS 184.735 VU 2.0 Einführung in KI SS 2023 4/45

Artificial Intelligence 1. What is AI? 1.2 Strong AI

1. Thinking humanly: Cognitive Science

1960s “cognitive revolution”: information-processing psychology replaced prevailing
orthodoxy of behaviorism

requires scientific theories of internal activities of the brain

• What level of abstraction? “Knowledge” or “circuits”?
• How to validate? Requires

• predicting and testing behavior of human subjects (top-down)
• direct identification from neurological data (bottom-up)

both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now
distinct from AI

both share with AI the following characteristic:

the available theories do not explain (or engender) anything resembling
human-level general intelligence

hence: all three fields share one principal direction!

KBS 184.735 VU 2.0 Einführung in KI SS 2023 5/45

Artificial Intelligence 1. What is AI? 1.2 Strong AI

2. Acting humanly: The Turing Test

Alan M. Turing (1912–1954)

key article: “Computing Machinery and Intelligence” (Mind 49:433-460, 1950)

question “Can machines think?” −→ “Can machines behave intelligently?”

KBS 184.735 VU 2.0 Einführung in KI SS 2023 6/45

Artificial Intelligence 1. What is AI? 1.2 Strong AI

2. Acting humanly: The Turing Test

operational test for intelligent behavior: the Imitation Game

AI SYSTEM

HUMAN

?
 HUMAN

INTERROGATOR

Turing predicted that by 2000, a machine might have a 30% chance of fooling a lay
person for 5 minutes

anticipated all major arguments against AI in next 50 years

suggested major components of AI: knowledge, reasoning, language
understanding, learning

problem: Turing Test is not reproducible, not constructive, and
not amenable to mathematical analysis

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/45

Artificial Intelligence 1. What is AI? 1.3 Weak AI

3. Thinking rationally: Laws of Thought

normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

several Greek schools developed various forms of logic:

• notation and rules of derivation for thoughts
• may or may not have proceeded to the idea of mechanization

direct line through mathematics and philosophy to modern AI

problems:

1. Not all intelligent behavior is mediated by logical deliberation

2. What is the purpose of thinking?
What thoughts should I have out of all the thoughts (logical or otherwise) that I
could have?

KBS 184.735 VU 2.0 Einführung in KI SS 2023 8/45

Artificial Intelligence 1. What is AI? 1.3 Weak AI

4. Acting rationally

Rational behavior: doing the right thing

do what expectedly maximizes goal achievement, given the available information

Thinking is not a must but should serve rational action

agents are entities that perceive and act

abstractly, an agent is a function f : P∗ → A mapping percept histories to actions

for any given class of environments and tasks, we seek a rational agent (or class of
rational agents) with the best performance

caveat: computational limitations make perfect rationality unachievable

→ design best program for given machine resources

KBS 184.735 VU 2.0 Einführung in KI SS 2023 9/45

Outline

1. What is AI?

2. History of AI

3. State of the Art

4. Shortcomings and Issues

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 10/45

Artificial Intelligence 2. History of AI 2.1 AI prehistory

AI prehistory

Philosophy logic, methods of reasoning
mind as physical system
foundations of learning, language, rationality

Mathematics formal representation and proof
algorithms, computation, (un)decidability, (in)tractability
probability

Psychology adaptation
phenomena of perception and motor control
experimental techniques (psychophysics, etc.)

Economics formal theory of rational decisions
Linguistics knowledge representation

grammar

Neuroscience plastic physical substrate for mental activity
Control Theory homeostatic systems, stability

simple optimal agent designs

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/45

Artificial Intelligence 2. History of AI 2.2 Potted history of AI

Early Beginnings

1943 McCulloch & Pitts: Boolean circuit model
of the brain

1950 Turing’s “Computing Machinery and Intelligence”

1952-69 Look, Ma, no hands!

1950s Early AI programs, including
• Samuel’s checkers program,
• Newell & Simon’s Logic Theorist
• Gelernter’s Geometry Engine

1956 Dartmouth Workshop:
“Artificial Intelligence” adopted

1958 LISP as an AI language

John McCarthy
(1927-2011)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 12/45

Artificial Intelligence 2. History of AI 2.2 Potted history of AI

The Rise of Logic and Rules

1958 McCarthy’s “programs with common sense”
(knowledge & reasoning)

1965 Robinson’s resolution principle:
complete algorithm for logical reasoning

1972 Prolog programming language

1966-74 AI discovers computational complexity

1969 Minsky & Papert: limitation of perceptrons
→ neural network research almost disappears

1969-79 Early knowledge-based systems,
focus on domain specific knowledge Marvin Minsky

(1927-2016)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 13/45

Artificial Intelligence 2. History of AI 2.2 Potted history of AI

The Roaring 1980s of AI

1980-88 expert systems (XPS) industry booms

• successful domain-specific systems
(MYCIN, XCON, . . .) sparked huge interest

• XPS everywhere

• ambitious projects around the globe
(5th Generation, CYC, ECRC, MCC)

• thousands of people at AI conferences

• expectations were flying high ...

• ... into a tough winter

early 1990s: XPS industry bursts

KBS 184.735 VU 2.0 Einführung in KI SS 2023 14/45

Artificial Intelligence 2. History of AI 2.2 Potted history of AI

AI Goes on

1986– Neural networks return to popularity

1987- Resurgence of probability and machine learning
• Hidden Markov Models
• Bayesian Networks

“Nouvelle AI”: Artifical Life, Genetic Algs, Soft Computing

1995- Agents, agents, everywhere . . .
first edition of AIMA

?

agent

percepts

sensors

actions

environment

actuators

2001- Big Data, due to computing power and the Web

2003- Human-level AI back on the agenda

2011- Deep Learning rise

KBS 184.735 VU 2.0 Einführung in KI SS 2023 15/45

Artificial Intelligence 2. History of AI 2.3 Landmark Achievements

Deep Blue (1997)

IBM’s Deep Blue beats World Champion Garry Kasparov

a milestone in man vs machine gaming

conventional game search techniques, massive hardware

KBS 184.735 VU 2.0 Einführung in KI SS 2023 16/45

Artificial Intelligence 2. History of AI 2.3 Landmark Achievements

IBM Watson (2011)

IBM’s DeepQA project: answer questions in natural language
massive text databases and heuristic search (run many algs)
wins against Jeopardy champions Ken Jennings and Brad Rutter
commercial exploitation: consultancy aid, e.g., medical; legal (Ross Intelligence)
autonomous vehicles (Olli bus)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 17/45

Artificial Intelligence 2. History of AI 2.3 Landmark Achievements

Alpha-Go (2015-2018)

Deep Learning (Google’s Deep Mind company)
• applied first to Atari games
• combine neural networks with search techniques

(Monte Carlo-Tree Search)

GO is considered notoriously hard (PSPACE-complete)
other games before (checkers 2007, poker on horizon)
earned the Marvin-Minsky Medal for Outstanding Achievements in AI
follow ups: Alpha-Go Master, Alpha-Go Zero (no human data), Alpha-Zero (chess
etc.), AlphaStar (StarCraft II)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 18/45

Artificial Intelligence 2. History of AI 2.3 Landmark Achievements

Libratus (2017) at Rivers Casino

Libratus (Carnegie Mellon University) defeated in Jan. 2017 four top humans in
Heads-up, No-Limit Texas Hold’em poker

exceedingly complex game: 10160 play paths

• over nearly 3 weeks, 120 000 hands played

breakthrough on strategic reasoning with imperfect information
• analyses its own weaknesses, not only the opponent’s

follow-up: Pluribus (2019) against multiple players
(and needs no super-computer as Libratus did)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 19/45

Artificial Intelligence 2. History of AI 2.3 Landmark Achievements

AlphaFold (2018)

AI Breakthrough in Biology

Protein folding problem: understand how an amino acid sequence can determine
the 3-D protrein structure

grand challenge

KBS 184.735 VU 2.0 Einführung in KI SS 2023 20/45

Outline

1. What is AI?

2. History of AI

3. State of the Art

4. Shortcomings and Issues

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 21/45

Artificial Intelligence 3. State of the Art

Benchmark: HAL of 2001: A Space Odyssey (1968)

capabilities
• vision
• language understanding
• game playing
• real world reasoning
• planning
• art and aesthetics
• robotics (inherently)
• ...

recently, striking advances through deep learning

KBS 184.735 VU 2.0 Einführung in KI SS 2023 22/45

Artificial Intelligence 3. State of the Art

The Deep Learning Decade

Deep Learning: Artifical Neural Networks with many layers

feature extraction and learning (un)supervised

tremendously increasing in the last decade

crux: lots of data

push for hardware (GPUs, designated chips)

“data-driven” vs “model-driven” processing

KBS 184.735 VU 2.0 Einführung in KI SS 2023 23/45

Artificial Intelligence 3. State of the Art

Vision, Image Understanding

meeting a cool bishop

big success of ANNs in face / object recognition

large amounts of training data

valuable e.g. in medical applications (diagnosis)

more difficult:
• semantic queries

• (partially) occluded objects

image captioning vs. visual question answering

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/45

Artificial Intelligence 3. State of the Art

Vision, Image Understanding

meeting a cool bishop

big success of ANNs in face / object recognition

large amounts of training data

valuable e.g. in medical applications (diagnosis)

more difficult:
• semantic queries

• (partially) occluded objects

image captioning vs. visual question answering

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/45

Artificial Intelligence 3. State of the Art

Vision, Image Understanding

meeting a cool bishop

big success of ANNs in face / object recognition

large amounts of training data

valuable e.g. in medical applications (diagnosis)

more difficult:
• semantic queries

• (partially) occluded objects

image captioning vs. visual question answering

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/45

Artificial Intelligence 3. State of the Art

Vision, Image Understanding

meeting a cool bishop horse riding a dog

big success of ANNs in face / object recognition

large amounts of training data

valuable e.g. in medical applications (diagnosis)

more difficult:
• semantic queries

• (partially) occluded objects

image captioning vs. visual question answering

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/45

Artificial Intelligence 3. State of the Art

Vision, Image Understanding

meeting a cool bishop occluded tiger

big success of ANNs in face / object recognition

large amounts of training data

valuable e.g. in medical applications (diagnosis)

more difficult:
• semantic queries
• (partially) occluded objects

image captioning vs. visual question answering

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/45

Artificial Intelligence 3. State of the Art

Vision, Image Understanding

meeting a cool bishop The tiny shiny cylinder has what color?

big success of ANNs in face / object recognition

large amounts of training data

valuable e.g. in medical applications (diagnosis)

more difficult:
• semantic queries
• (partially) occluded objects

image captioning vs. visual question answering

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/45

Artificial Intelligence 3. State of the Art

Image Generation

KBS 184.735 VU 2.0 Einführung in KI SS 2023 25/45

Artificial Intelligence 3. State of the Art

Speech Recognition

tremendous advances since 2001
• Hidden Markov Models
• later, since ≈ 2010, deep neural networks (e.g., Google Voice)

use long short-term memory

dictation systems

Alexa, Siri, Cortana, Google Assistant etc.

however, deeper understanding is still missing

KBS 184.735 VU 2.0 Einführung in KI SS 2023 26/45

Artificial Intelligence 3. State of the Art

Chatbots

smart chat programs (grandmother: ELIZA in the 1960s)

may fool people on a narrow topic some time (e.g. Cleverbot,
Eugene Goostman)

downscaled versions of the Turing Test (e.g. Löbner prize)

don’t work for broad generality

usage: guide & assist people (Google’s Allo platform), Aiko Chihira (Toshiba 2015),
MICA facebook chat (Ondrisek 2016)

Many AI researchers do not consider chatbot competitions as important

KBS 184.735 VU 2.0 Einführung in KI SS 2023 27/45

Artificial Intelligence 3. State of the Art

ChatGPT

KBS 184.735 VU 2.0 Einführung in KI SS 2023 28/45

Artificial Intelligence 3. State of the Art

Autonomous Vehicles

NASA/JPL-Caltech

Self-driving Cars
DARPA Challenges 2004/05
Urban Challenge 2007
immense progress
today, trial/development phase
industrial use in 5-20 years (?)

Mars Rovers
Spirit, Opportunity (2003)
Curiosity (2012)
Perseverance (2021)
AI techniques vital:

• sensing and control
• planning
• experiments

KBS 184.735 VU 2.0 Einführung in KI SS 2023 29/45

Artificial Intelligence 3. State of the Art

Configuration and Scheduling

KBS 184.735 VU 2.0 Einführung in KI SS 2023 30/45

Artificial Intelligence 3. State of the Art

Configuration and Scheduling, cont’d

c© Siemens AG

large scale configuration problems
• hardware, software
• plants
• user interfaces, . . .

scheduling as temporal configuration (loosely)
• job processing
• tournaments . . .

learning of limited value: ad-hoc formulation, hard constraints, missing data

KBS 184.735 VU 2.0 Einführung in KI SS 2023 31/45

Artificial Intelligence 3. State of the Art

Home Robotics

home assistant for household (U Tokyo)

nursery (Robear)

ambient assisted living

growing need and market

important: social components
(language, interaction, emotions)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 32/45

Outline

1. What is AI?

2. History of AI

3. State of the Art

4. Shortcomings and Issues

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 33/45

Artificial Intelligence 4. Shortcomings and Issues

What’s AI Missing?

from a cognitive perspective, a lot:

• understanding of the mind:
• “brains cause minds” (J. Searle) sounds

utterly simple, but how?
• Human Brain Project (EU FET flagship

program), 2013-2023: simulation as a
basis

• deeper real world reasoning
• abstraction
• commonsense and natural language

abstraction
reasoning
learning

perception

from a technological perspective, too:

• scalability and efficiency
• robustness
• validation and verifiability
• explainability: what/how and why

KBS 184.735 VU 2.0 Einführung in KI SS 2023 34/45

Artificial Intelligence 4. Shortcomings and Issues

Issue: Abstraction

Mutilated Chessboard Problem:

suppose a chessboard has two diagonally opposite corners removed

Is it possible to place dominoes of size 2x1 so as to cover all 62 squares?

KBS 184.735 VU 2.0 Einführung in KI SS 2023 35/45

Artificial Intelligence 4. Shortcomings and Issues

Issue: Natural Language Understanding

co-reference resolution

• Pronoun Reference (PR) Problem

“One chilly May evening the priest invited Marjorie and myself into her room.”

Google Translate: “An einem kühlen Maiabend lud der Priester Marjorie
und mich in ihr Zimmer ein.”

• Winograd Schemes (WS) (Levesque et al. 2012): pair of almost identical
sentences, but different reference resolution

“I poured milk from a bottle to a glass until it was empty.”

Google Translate: “Ich goss Milch aus einer Flasche in ein Glas, bis es leer war.”

• WS Challenge (2016): level 1: PR, level 2: WS, none passed level 1
language model BERT achieved 90,1% in 2019, GPT-3 88,3% in 2020

negation: > do you not want to format your hard disk? (y/n)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 36/45

Artificial Intelligence 4. Shortcomings and Issues

Simple Question Answering

Monty Python’s Bridge Keeper

• encyclopedic questions

• answer requires little (no) inference

• Information Retrieval methods suffice

KBS 184.735 VU 2.0 Einführung in KI SS 2023 37/45

Artificial Intelligence 4. Shortcomings and Issues

Harder Question Answering

NY Regents Science exams (4-way multiple choice)
• questions of different levels of complexity
• sample (complex world knowledge):

Fourth graders are planning a roller-skate race. Which surface would be best
for the race? (A) gravel (B) sand (C) blacktop (D) grass

• Aristo System (Clarke & Ezioni, 2016):
performance of 75% / 63% / 41% for 4th / 8th / 12th grade

Allen AI Institute Reasoning Challenge (ARC) 2018
• 7,787 science exam questions drawn from a variety of sources

ST-MoE-32B (Google Brain, 2022) 87%
UnifiedQA + ARC MC/DA + IR (Aristo team, 2020) 81%
UnifiedQA - v2 (T5-11B) (D. Khashabi, 2020) 81%

particular challenge: bring in common sense knowledge/reasoning
background on naive physics, behavior of people, temporal relations, e.g.,

• objects fall down by gravity
• a selfish person will not share its cookie
• ’happens before’ is transitive

KBS 184.735 VU 2.0 Einführung in KI SS 2023 38/45

Artificial Intelligence 4. Shortcomings and Issues

Expert Question Answering

deeper problem solving

“Secretum finis Africae manus supra idolum age primum et septimum de quatuor.”

• understand the sentence (language)

• make sense out of it

• match it to the problem at hand

KBS 184.735 VU 2.0 Einführung in KI SS 2023 39/45

Artificial Intelligence 4. Shortcomings and Issues

Expert Question Answering, cont’d

KBS 184.735 VU 2.0 Einführung in KI SS 2023 40/45

Artificial Intelligence 4. Shortcomings and Issues

Expert Question Answering, cont’d

KBS 184.735 VU 2.0 Einführung in KI SS 2023 41/45

Artificial Intelligence 4. Shortcomings and Issues

Expert Question Answering: Reasoning I

KBS 184.735 VU 2.0 Einführung in KI SS 2023 42/45

Artificial Intelligence 4. Shortcomings and Issues

Expert Question Answering: Reasoning II

KBS 184.735 VU 2.0 Einführung in KI SS 2023 43/45

Outline

1. What is AI?

2. History of AI

3. State of the Art

4. Shortcomings and Issues

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 44/45

Artificial Intelligence 5. Conclusion

Summary

AI technology has advanced recently considerably

• Deep Learning (DL) in the spotlight

AI 6= Machine Learning: there is more than data-driven AI and DL

• hot topic: neuro-symbolic AI
marry Machine Learning and Symbolic AI

much is missing from a cognitive / technical perspective

• explainable and trustful AI

warning: cautious breed of expectations

• AI is not a silver bullet, just a tool

important: social perspective

• ethical issues, personal life, society

need for a Humane AI

KBS 184.735 VU 2.0 Einführung in KI SS 2023 45/45

184.735 VU 2.0 Einführung in Künstliche Intelligenz

Intelligent Agents

Institute of Logic and Computation
Knowledge-Based Systems Group
Vienna University of Technology

SS 2023

slides by S. Russell, adapted by T. Eiter
AIMA Chapter 2, Sections 1–4.5

Intelligent Agents

Issues

Design principles for implementing successful “intelligent” agents

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 1/21

Intelligent Agents 1. Agents and Environments

Outline

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 2/21

Intelligent Agents 1. Agents and Environments

Situated agents

?

agent

percepts

sensors

actions

environment

actuators

Agents include humans, robots, softbots, thermostats, etc.

Sensors for perceiving the “world” (they produce perception sequences)

Actuators for acting

The agent function f : P∗ → A maps from percept histories, i.e.,
sequences p1, p2, . . . , pn, of percepts pi, n ≥ 0, to actions

The agent program runs on the physical architecture to produce f

KBS 184.735 VU 2.0 Einführung in KI SS 2023 3/21

Intelligent Agents 2. Rationality

Outline

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 4/21

Intelligent Agents 2. Rationality

Aspects for defining rationality

Performance measure, defining criteria of success
E.g. cleaning robot: % of area cleaned;

shopping agent: low prize offer
the agent’s prior knowledge of the environment

agent actions

percept sequence (history)

Rational agent:

For each possible percept history, select an action that
is expected to maximize its performance measure, given
the evidence by the percept history and whatever built-in
knowledge the agent has.

KBS 184.735 VU 2.0 Einführung in KI SS 2023 5/21

Intelligent Agents 2. Rationality

Rationality, cont’d

Rational 6= omniscient: percepts may lack relevant infos

Rational 6= clairvoyant: action may turn out differently

Rational 6= successful

Important

• exploration (get new info about the world),

• learning (take experience, successful/failed actions into account)

• autonomy (replace and extend initial knowledge by experience and learned
knowledge)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 6/21

Intelligent Agents 3. PEAS

Outline

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/21

Intelligent Agents 3. PEAS

Rational agent design

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, . . .

Environment?? streets/freeways, traffic, pedestrians, weather, . . .

Actuators?? steering, accelerator, brake, horn, speaker/display, . . .

Sensors?? video, accelerometers, gauges, engine sensors, keyboard,
GPS, . . .

KBS 184.735 VU 2.0 Einführung in KI SS 2023 8/21

Intelligent Agents 3. PEAS

Agent application types with PEAS description

KBS 184.735 VU 2.0 Einführung in KI SS 2023 9/21

Intelligent Agents 4. Environment Types

Outline

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 10/21

Intelligent Agents 4. Environment Types

A list of different environment types

fully observable vs. partially observable:
sensors detect all relevant properties of the world for the current action

single-agent vs. multi-agent:
only one agent, no cooperation and no competition between agents

deterministic vs. stochastic:
next state determined by the current state and the performed action

episodic vs. sequential:
agent’s experience is divided into “atomic” parts (independent from each
other)
In episodic environments, the choice of action only depends on the current
episode

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/21

Intelligent Agents 4. Environment Types

A list of different environment types, cont’d

static vs. dynamic:
the world does not change during the reasoning time of the agent

semi-dynamic: static, but the performance score decreases with
deliberation time

discrete vs. continuous:
world properties have discrete values, e.g. time, number of possible states,
. . .

known vs. unknown:
state of knowledge about the “laws of physics” of the environment

KBS 184.735 VU 2.0 Einführung in KI SS 2023 12/21

Intelligent Agents 4. Environment Types

Environment examples

KBS 184.735 VU 2.0 Einführung in KI SS 2023 13/21

Intelligent Agents 5. Agent Types

Outline

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 14/21

Intelligent Agents 5. Agent Types

Agent hierachy by capabilities

Agent = Architecture + Program

Architecture: programming device + sensors + actuators

Program: gets sensor data, returns actions for the actuators

Four basic types of agent programs in order of increasing generality:

simple reflex agents

reflex agents with state (model-based reflex agent)

goal-based agents

utility-based agents

All these can be turned into learning agents (later)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 15/21

Intelligent Agents 5. Agent Types

1. Simple reflex agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

What the world

is like now

What action I

should do now
Condition−action rules

Actuators

no memory
no sequences of percepts
looping possible: if closed(door) then open_door

KBS 184.735 VU 2.0 Einführung in KI SS 2023 16/21

Intelligent Agents 5. Agent Types

2. Model-based reflex agents
Add on: internal state and model of the world’s evolution

Agent

E
n

v
iro

n
m

e
n

t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules

Actuators

What the world
is like now

memory, maintain/update world state
state← UPDATE-STATE(state, latest_action, percept,model)

reason about unobservable parts
deal with uncertainty, implicit goals

KBS 184.735 VU 2.0 Einführung in KI SS 2023 17/21

Intelligent Agents 5. Agent Types

3. Goal-based agents
Add on: explict goals

Agent

E
n

v
iro

n
m

e
n

t

Sensors

What it will be like
 if I do action A

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

What the world
is like now

model the world, goals, and actions & their effects explicitly
more flexible, better maintainable
Search & Planning for single/sequence of action/s to
achieve a goal

KBS 184.735 VU 2.0 Einführung in KI SS 2023 18/21

Intelligent Agents 5. Agent Types

4. Utility-based agents
Add on: take happiness into account

Agent

E
n

v
iro

n
m

e
n

t

Sensors

What it will be like
 if I do action A

How happy I will be
 in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

Actuators

What the world
is like now

assess goals with a utility function
resolve conflicting goals
use expected utility for decision

KBS 184.735 VU 2.0 Einführung in KI SS 2023 19/21

Intelligent Agents 6. Conclusion

Outline

1. Agents and Environments

2. Rationality

3. PEAS: Performance measure, Environment, Actuators, Sensors

4. Environment Types

5. Agent Types

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 20/21

Intelligent Agents 6. Conclusion

Summary

“Intelligent Agents” aim at acting rationally

Rational agent design comprises several aspects (PEAS criteria)

A range of different environments

A hierarchy of agents by capabilities

Building intelligent utility-based agents might sound simple, but is difficult in
general

Developing agent capabilities (problem solving, planning, reasoning,
decision making, learning, cooperation, communication) is challenging

KBS 184.735 VU 2.0 Einführung in KI SS 2023 21/21

184.735 VU 2.0 Einführung in Künstliche Intelligenz

Problem Solving and Search (I)

Institute of Logic and Computation
Knowledge-Based Systems Group
Vienna University of Technology

SS 2023

slides by S. Russell, adapted by T. Eiter
AIMA Chapter 3, Sections 1-4

Problem Solving and Search (I) 1. Introduction

An example scenario: Romania trip

on holiday in Romania; currently in Arad

flight leaves tomorrow from Bucharest
• formulate goal:

to be in Bucharest (before departure)

• formulate problem:
• states: various cities
• actions: drive between cities

• find solution:
route = sequence of cities

KBS 184.735 VU 2.0 Einführung in KI SS 2023 1/56

Problem Solving and Search (I) 1. Introduction

Example: Romania trip, cont’d

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

possible solution: Arad, Sibiu, Fagaras, Bucharest

KBS 184.735 VU 2.0 Einführung in KI SS 2023 2/56

Problem Solving and Search (I) 1. Introduction

Outline

Need a systematic approach to solve problems like the above

1. Introduction

2. Problem Formulation

3. Basic Search Algorithms

4. Search Strategies

5. Uninformed Search Strategies

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 3/56

Problem Solving and Search (I) 2. Problem Formulation

Outline

1. Introduction

2. Problem Formulation

3. Basic Search Algorithms

4. Search Strategies

5. Uninformed Search Strategies

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 4/56

Problem Solving and Search (I) 2. Problem Formulation 2.1 Definition

Search problem definition

A search problem is defined by four items:

1. initial state e.g., “at Arad”

2. successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad → Zerind,Zerind〉, . . .}

3. goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., HasAirport(x, ”Otopeni”)

4. path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

KBS 184.735 VU 2.0 Einführung in KI SS 2023 5/56

Problem Solving and Search (I) 2. Problem Formulation 2.1 Definition

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad→ Zerind” represents a complex set of possible routes, detours,
rest stops, etc.

For guaranteed realizability, any real state “in Arad” must get to some real
state “in Zerind”

(Abstract) solution = set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

KBS 184.735 VU 2.0 Einführung in KI SS 2023 6/56

Problem Solving and Search (I) 2. Problem Formulation 2.2 Examples

Example: vacuum-cleaner world

A B

World: contains two locations (squares)

Percepts: location and contents, e.g., [A,Dirty]

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/56

Problem Solving and Search (I) 2. Problem Formulation 2.2 Examples

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??
integer dirt and robot locations (ignore dirt amounts etc.)
actions??
Left, Right, Suck, NoOp
goal test??
no dirt
path cost??
1 per action (0 for NoOp)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 8/56

Problem Solving and Search (I) 2. Problem Formulation 2.2 Examples

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??
integer locations of tiles (ignore intermediate positions)
actions??
move blank left, right, up, down (ignore unjamming etc.)
goal test??
= goal state (given)
path cost??
1 per move

Note: Finding an optimal solution of a given n-puzzle is NP-hard
KBS 184.735 VU 2.0 Einführung in KI SS 2023 9/56

Problem Solving and Search (I) 2. Problem Formulation 2.2 Examples

Example: robotic assembly

R

RR

P

R R

states??
real-valued coordinates of robot joint angles, parts of the object to be
assembled
actions??
continuous motions of robot joints
goal test??
complete assembly with no robot included!
path cost??
time to execute

KBS 184.735 VU 2.0 Einführung in KI SS 2023 10/56

Problem Solving and Search (I) 3. Basic Search Algorithms

Outline

1. Introduction

2. Problem Formulation

3. Basic Search Algorithms

4. Search Strategies

5. Uninformed Search Strategies

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.1 Tree Search

Tree search algorithms

Basic idea:

offline, simulated exploration of state space

by generating successors of already-explored states (a.k.a. expanding
states)

maintain a list of states available for expansion (frontier, open list)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 12/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.1 Tree Search

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

KBS 184.735 VU 2.0 Einführung in KI SS 2023 13/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.1 Tree Search

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

KBS 184.735 VU 2.0 Einführung in KI SS 2023 14/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.1 Tree Search

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

KBS 184.735 VU 2.0 Einführung in KI SS 2023 15/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.1 Tree Search

Implementation: states vs. nodes

A state is a (representation of a) physical configuration

A node is a data structure constituting part of a search tree
it includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node
depth = 6

g = 6

state

parent, action

The CHILD-NODE function creates a new node

KBS 184.735 VU 2.0 Einführung in KI SS 2023 16/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.1 Tree Search

Repeated states

Failure to detect repeated states can turn a linear problem into an
exponential one!

A

B

C

D

A

BB

CCCC

Other issue: nontermination

KBS 184.735 VU 2.0 Einführung in KI SS 2023 17/56

Problem Solving and Search (I) 3. Basic Search Algorithms 3.2 Graph Search

Graph search algorithms

Besides frontier, maintain a list of already considered states (explored set,
closed list)

here: do goal test at expansion time

alternatively, test at generation time (benefit?)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 18/56

Problem Solving and Search (I) 4. Search Strategies

Outline

1. Introduction

2. Problem Formulation

3. Basic Search Algorithms

4. Search Strategies

5. Uninformed Search Strategies

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 19/56

Problem Solving and Search (I) 4. Search Strategies

Search strategies

A strategy is defined by picking the order of node expansion

Different types of strategies:

• uninformed search: basic algorithms, problem formulation as above

• informed search: further information about solution costs (heuristics)

• local search: “historyless,” one-step change

KBS 184.735 VU 2.0 Einführung in KI SS 2023 20/56

Problem Solving and Search (I) 4. Search Strategies

Search strategy evaluation

Search strategies are evaluated along the following dimensions:

• completeness: does it always find a solution if one exists?

• time complexity: number of nodes generated/expanded

• space complexity: maximum number of nodes in memory

• optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of

• b: maximum branching factor of the search tree

• d: depth of the least-cost solution

• m: maximum depth of the state space (may be∞)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 21/56

Problem Solving and Search (I) 5. Uninformed Search Strategies

Outline

1. Introduction

2. Problem Formulation

3. Basic Search Algorithms

4. Search Strategies

5. Uninformed Search Strategies

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 22/56

Problem Solving and Search (I) 5. Uninformed Search Strategies

Overview

Uninformed strategies use only the information available
in the problem definition

Some popular examples:

• Breadth-first search (BFS)

• Uniform-cost search (UCS)

• Depth-first search (DFS)

• Depth-limited search (DLS)

• Iterative deepening search (IDS)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 23/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

Breadth-first search (BFS)

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

Breadth-first search (BFS)

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

KBS 184.735 VU 2.0 Einführung in KI SS 2023 25/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

Breadth-first search (BFS)

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

KBS 184.735 VU 2.0 Einführung in KI SS 2023 26/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

Breadth-first search (BFS)

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

KBS 184.735 VU 2.0 Einführung in KI SS 2023 27/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

BFS Algorithm

Variant: do goal test at generation time

Use queue data structure

EMPTY?(queue) POP(queue) INSERT(element, queue)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 28/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

Properties of breadth-first search

Complete??
Yes (if b is finite)
Time??
Suppose solution is at depth d, worst case

1 + b + b2 + b3 + . . .+ bd = O(bd)

note: exponential in d

solution test at expansion time
1 + b + b2 + b3 + . . .+ bd + bd+1 = O(bd+1)

Space??
O(bd) resp. O(bd+1) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

big problem:
time and space
can easily generate large number of nodes per second

KBS 184.735 VU 2.0 Einführung in KI SS 2023 29/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.1 Breadth-First Search

Space / Time Problem

branching b = 10
generate 1 million nodes / sec

1k bytes per node

KBS 184.735 VU 2.0 Einführung in KI SS 2023 30/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.2 Uniform Cost Search

Uniform-cost search (UCS)
Expand least-cost unexpanded node

Implementation: frontier = queue ordered by path cost, lowest first

Note: goal test is not at generation time but later at expansion
KBS 184.735 VU 2.0 Einführung in KI SS 2023 31/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.2 Uniform Cost Search

Uniform-cost search: Example

initial state Sibiu, goal state Sibiu; expand

Sibiu: Rimnicu Vilcea (80), Fagaras (99)

Rimniu Vilcea: Pitesti (80 + 97 = 177)

Fagaras: Bucharest (99 + 211 = 310) goal state

Pitesti: Bucharest (177 + 101 = 288) optimal solution

KBS 184.735 VU 2.0 Einführung in KI SS 2023 32/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.2 Uniform Cost Search

Properties of uniform-cost search

Complete??
Yes, if step cost ≥ ε
Time??
of nodes n with g(n) ≤ C∗, where C∗ is the cost of an optimal solution, is
O(b1+bC∗/εc)

note: – solution test at expansion time
– for step cost = 1, same cost as BFS

Space??
of nodes n with g(n) ≤ C∗ is O(b1+bC∗/εc)

Optimal??
Yes – nodes expanded in increasing order of g(n)

note: solution test at expansion time ensures optimality

KBS 184.735 VU 2.0 Einführung in KI SS 2023 33/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 34/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 35/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 36/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 37/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 38/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 39/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 40/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 41/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 42/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 43/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 44/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-first search (DFS)

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 45/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Properties of depth-first search

Complete??
No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path (explored set, frontier)
⇒ complete in finite spaces

Time??
O(bm), where m is the maximum depth of the state space

terrible if m is much larger than d but if solutions are dense, may be much
faster than BFS

Space??
O(bm), i.e., linear space!

Optimal??
No

variant: backtracking (keep one successor node at a time)

Implementation: generate child node with ∆-change

KBS 184.735 VU 2.0 Einführung in KI SS 2023 46/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.3 Depth First Search

Depth-limited search

Depth-first search may not terminate (even for finite search space)

Bound search with depth limit ` and report cutoff at the limit

Recursive implementation:

KBS 184.735 VU 2.0 Einführung in KI SS 2023 47/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.4 Iterative Deepening Search

Iterative deepening search (IDS)

Depth-Limited Search does not find goals beyond limit

Increase the limit `

Repeat this systematically⇒ gain completeness

KBS 184.735 VU 2.0 Einführung in KI SS 2023 48/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.4 Iterative Deepening Search

Iterative deepening search ` = 0

Limit = 0 A A

KBS 184.735 VU 2.0 Einführung in KI SS 2023 49/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.4 Iterative Deepening Search

Iterative deepening search ` = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

KBS 184.735 VU 2.0 Einführung in KI SS 2023 50/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.4 Iterative Deepening Search

Iterative deepening search ` = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

KBS 184.735 VU 2.0 Einführung in KI SS 2023 51/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.4 Iterative Deepening Search

Iterative deepening search ` = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

KBS 184.735 VU 2.0 Einführung in KI SS 2023 52/56

Problem Solving and Search (I) 5. Uninformed Search Strategies 5.4 Iterative Deepening Search

Properties of iterative deepening search

Complete?? Yes

Time??
(d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space??
O(bd)

Optimal??
Yes, if step cost = 1; modifiable to explore uniform-cost tree
comparison for b = 10, d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450
N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

N(BFS′) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

• BFS′ = BFS with goal test at expansion time is much worse

• IDS is mildly (≈ 11%) more expensive than BFS

KBS 184.735 VU 2.0 Einführung in KI SS 2023 53/56

Problem Solving and Search (I) 6. Conclusion

Outline

1. Introduction

2. Problem Formulation

3. Basic Search Algorithms

4. Search Strategies

5. Uninformed Search Strategies

6. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 54/56

Problem Solving and Search (I) 6. Conclusion

Uninformed search algorithms – assessment summary

b branching factor
d depth of the shallowest solution
` depth limit
m maximum depth of the search tree

Criterion BFS UCS DFS DLS IDS

Complete? Yesα Yesα,β No No Yesα

Time O(bd) O(b1+bC∗/εc) O(bm) O(b`) O(bd)

Space O(bd) O(b1+bC∗/εc) O(bm) O(b`) O(bd)
Optimal? Yesγ Yes No No Yesγ

α if b is finite
β if step costs ≥ ε for positive ε
γ optimal if step costs are all identical

IDS is very attractive!
KBS 184.735 VU 2.0 Einführung in KI SS 2023 55/56

Problem Solving and Search (I) 6. Conclusion

Summary

Search problem formulation involves modelling

Usually requires abstracting away real-world details to define a state space
that can be feasibly explored

Graph search can be exponentially more efficient than tree search

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time
than other uninformed algorithms

KBS 184.735 VU 2.0 Einführung in KI SS 2023 56/56

184.735 VU 2.0 Einführung in Künstliche Intelligenz

Problem Solving and Search (II)

Institute of Logic and Computation
Knowledge-Based Systems Group
Vienna University of Technology

SS 2023

slides by S. Russell, adapted by U. Egly and T. Eiter
AIMA Chapter 3, Section 5; Chapter 4, Sections 1-2

Outline

1. Heuristic Search
1.1 Greedy Search
1.2 A∗-search

2. Admissible Heuristics
2.1 Dominance
2.2 Relaxed Problems

3. Local Search
3.1 Hill Climbing
3.2 Simulated annealing
3.3 Local beam search
3.4 Genetic algorithms

4. Conclusion

Problem Solving and Search (II)

Overview

Search: very important technique in CS and AI

Different kinds of search (refined picture)
Deterministic search
• uninformed (“blind”) search strategies 4
• informed or “heuristic” search strategies

Local search

Search in game trees (not covered in this course)

In this unit: heuristic & local search

KBS 184.735 VU 2.0 Einführung in KI SS 2023 1/39

Problem Solving and Search (II)

Outline

1. Heuristic Search

2. Admissible Heuristics

3. Local Search

4. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 2/39

Problem Solving and Search (II) 1. Heuristic Search

Outline

1. Heuristic Search

2. Admissible Heuristics

3. Local Search

4. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 3/39

Problem Solving and Search (II) 1. Heuristic Search

Basic ideas of heuristic search

Use problem- or domain-specific knowledge during search

Evaluation function f (n): estimation for a function f ∗(n)

Use a heuristic function h ; “desirability”
(expand “most-desired” node next (= a kind of best-first search))

• estimates minimal costs from state n to a goal state
(h(n) = 0 always holds for a goal state)

• computing h(n) has low cost

Consider two algorithms:
• greedy search and
• A∗ search

KBS 184.735 VU 2.0 Einführung in KI SS 2023 4/39

Problem Solving and Search (II) 1. Heuristic Search

Romania again

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0

160

242

161

77

151

241

366

193

178

253

329

80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

KBS 184.735 VU 2.0 Einführung in KI SS 2023 5/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

Greedy search

Uses evaluation function f (n) = h(n)

Does not take already “spent” costs into account
(decisions are based on local information)

Example: h(n) = straight-line distance from n to Bucharest

Greedy search expands the node with the smallest f -value (node
appears to be closest to goal)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 6/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

Greedy search for the travel example

1. Expand the only node Arad

Arad

366

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

Greedy search for the travel example

2. Expand the node Sibiu, because it has the smallest f -value

Zerind

Arad

Sibiu Timisoara

253 329 374

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

Greedy search for the travel example

3. Expand the node Fagaras, because it has the smallest f -value

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

Greedy search for the travel example

Solution found: Arad–Sibiu–Fagaras–Bucharest (140+99+211=450)

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

An Alternative and optimal solution

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0

160

242

161

77

151

241

366

193

178

253

329

80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Non-optimal solution: Arad–Sibiu–Fagaras–Bucharest (450km)
Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest is shorter

KBS 184.735 VU 2.0 Einführung in KI SS 2023 8/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

Properties of greedy search

Complete?? No (can get stuck in loops)
Yes with loop checks

Time?? O(bm), i.e., exponential in m

Space?? O(bm), i.e., exponential in m (keep any node)

Optimal?? No

KBS 184.735 VU 2.0 Einführung in KI SS 2023 9/39

Problem Solving and Search (II) 1. Heuristic Search 1.1 Greedy Search

A∗-search

Problems of greedy search: loops and non-optimality
(induced by the use of only local info)

A∗: Use evaluation function f (n) = g(n) + h(n)
(and avoid expanding paths that are already expensive)

• g(n): path costs from start to n, (i.e., costs so far up to n)
• h(n): estimated cost to goal from n (like in greedy search)
• f (n): estimated total cost of path through n to goal

h(n) has to be admissible

Definition 1
A heuristics h is admissible, if for every node n the following holds:
1. h(n) ≤ h∗(n) where h∗(n) is the true cost from n (h is “optimistic”);
2. h(n) ≥ 0;
3. h(g) = 0 for every goal g (follows from 1 and 2).

http://en.wikipedia.org/wiki/A*_search_algorithm

KBS 184.735 VU 2.0 Einführung in KI SS 2023 10/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

A∗-search for the travel example

We use the straight-line distance as an optimistic heuristic

1. Expand the only node Arad

Arad

366=0+366

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

A∗-search for the travel example

We use the straight-line distance as an optimistic heuristic

2. Expand the node Sibiu, because it has the smallest f -value

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

A∗-search for the travel example

We use the straight-line distance as an optimistic heuristic

3. Expand the node Rimnicu Vilcea (and not Fagaras as in GS)

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

A∗-search for the travel example

We use the straight-line distance as an optimistic heuristic

4. Expand the node Fagaras, because it has the smallest f -
value

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

A∗-search for the travel example

We use the straight-line distance as an optimistic heuristic

5. Expand the node Pitesti, because it has the smallest f -value

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

A∗-search for the travel example

We use the straight-line distance as an optimistic heuristic

Solution: Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest
Since f -values of all other open nodes are bigger ; terminate

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

Do we really need admissible heuristics?

S

G H

3

5

1

h(G)=0 h(H)=0

T h(T)=6

h(S)=7 S is the start state
h is not optimistic
S expands immediately to G and T

f (G) = 5 and f (T) = 7, so we are
done
Solution G is obviously not optimal
Hence, heuristics must be
optimistic!

Theorem 2

If h is admissible, then A∗ using tree search is optimal.

KBS 184.735 VU 2.0 Einführung in KI SS 2023 12/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

Optimality of A∗: the standard proof
Let h be admissible, and G an optimal goal
Suppose some suboptimal goal G2 has been generated
Let n be an unexpanded node on an optimal path to G

S

n

2G

G

f (G2) = g(G2) since h(G2) = 0 (G2is a goal!)
> g(G) as G2 is suboptimal
= g(n) + h∗(n) as h∗(n) is optimal to reach G
≥ g(n) + h(n) as h is admissible
= f (n)

Since f (G2) > f (n), A∗ will never select G2 for expansion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 13/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

Problems with optimality of A∗ using graph search

A∗ does not require for a path from start S to n that g(n) is minimal

No problem for tree search (there is only one path)

In graph search (GS), we can reach nodes with non-optimal costs

GS can discard optimal paths, even if h is admissible
å optimality is lost

Two possibilities to fix the problem

1. change algorithm and add more complicated bookkeeping
(But what’s the effect on the run time?)

2. impose a stronger restriction on h: consistency

å Implies that f -value is non-decreasing on every path

KBS 184.735 VU 2.0 Einführung in KI SS 2023 14/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

Optimality of A∗ using graph search

Definition 3

A heuristic is consistent if, for every node n,
every successor n′ of n and every operator a,

h(n) ≤ c(n, a, n′) + h(n′)
holds, where c(n, a, n′) are the path costs for a.

n

c(n,a,n’)

h(n’)

h(n)

G

n’

Lemma 4

If h is consistent, then f is non-decreasing along every path:

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n) = f (n).

Theorem 5

If h is consistent, then A∗ using graph search is optimal.

KBS 184.735 VU 2.0 Einführung in KI SS 2023 15/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

Optimality of A∗

A∗ expands nodes in order of increasing f -values
The “f -contours” of nodes are added gradually
(cf. BFS adds layers)
Contour i has all nodes with f ≤ fi, where fi < fi+1

O

Z

A

T

L

M

D

C

R

F

P

G

B

U

H

E

V

I

N

380

400

420

S

KBS 184.735 VU 2.0 Einführung in KI SS 2023 16/39

Problem Solving and Search (II) 1. Heuristic Search 1.2 A∗ -search

Properties of A∗

Complete?? Yes unless there are infinitely many nodes n
with f (n) ≤ f (G)

Time?? Exponential in ε× d

ε = h(n0)−h∗(n0)
h∗(n0)

. . . relative error (h∗(n0) = C∗)

d = solution depth (= path length)

Space?? Exponential (keeps all nodes in memory)

Optimal?? Yes

Note: A∗ expands
all nodes with f (n) < C∗

some nodes with f (n) = C∗

no nodes with f (n) > C∗

fewest nodes safely possible if h is consistent

KBS 184.735 VU 2.0 Einführung in KI SS 2023 17/39

Problem Solving and Search (II) 2. Admissible Heuristics

Outline

1. Heuristic Search

2. Admissible Heuristics

3. Local Search

4. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 18/39

Problem Solving and Search (II) 2. Admissible Heuristics

Admissible heuristics

Consider the following heuristics for the 8-puzzle:
h1(n): number of misplaced tiles

h2(n): total Manhattan distance
(no. of squares (↔ and l) from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(Start State) = 6

h2(Start State) = 4+0+3+3+1+0+2+1 = 14

KBS 184.735 VU 2.0 Einführung in KI SS 2023 19/39

Problem Solving and Search (II) 2. Admissible Heuristics 2.1 Dominance

Dominance

Definition 6

For admissible heuristics h1 and h2, we say h2 dominates h1, if h2(n) ≥ h1(n)
for every node n.

If h2 dominates h1, it is better for search
Typical search costs (8-puzzle)

d = 14 DFIDS requires 3,473,941 nodes
A∗ with h1 requires 539 nodes
A∗ with h2 requires 113 nodes

d = 24 DFIDS requires ≈ 54,000,000,000 nodes
A∗ with h1 requires 39,135 nodes
A∗ with h2 requires 1,641 nodes

Proposition 7

If h1, h2 are admissible heuristics, then also the heuristic
h(n) = max(h1(n), h2(n))is admissible, and it dominates h1, h2.

KBS 184.735 VU 2.0 Einführung in KI SS 2023 20/39

Problem Solving and Search (II) 2. Admissible Heuristics 2.2 Relaxed Problems

Admissible heuristics from relaxed problems

Derive admissible heuristics from exact solution cost of a relaxed
version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: optimal solution cost of a relaxed problem is not greater than
the optimal solution cost of the real problem

KBS 184.735 VU 2.0 Einführung in KI SS 2023 21/39

Problem Solving and Search (II) 2. Admissible Heuristics 2.2 Relaxed Problems

Relaxed problems cont’d

Well-known example: traveling salesperson problem (TSP)

“Find the shortest tour visiting all cities exactly once.”

Relaxation: should be polynomially computable

view as graph G = (V,E); must be connected

no superfluous edges: spanning tree (ST) a subgraph T of G that is a
tree and connects all vertices

Minimum spanning tree (MST): smallest cost
• (undirected) MST is polynomially computed (e.g., in time O(|E| log |E|)

resp. O(|V|2) by Kruskal’s / Prim’s algorithm)
• MST cost is a lower bound on the shortest (open) tour

KBS 184.735 VU 2.0 Einführung in KI SS 2023 22/39

Problem Solving and Search (II) 3. Local Search

Outline

1. Heuristic Search

2. Admissible Heuristics

3. Local Search

4. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 23/39

Problem Solving and Search (II) 3. Local Search

Iterative improvement

Up to now, search constructed a path of actions from initial to goal state
(actions change a current state)

For many (also optimization) problems, paths are irrelevant; a goal
state (described implicitly) is the solution

Then
• state space = set of “complete” configurations;
• find optimal configuration, e.g., TSP; or
• find configuration satisfying constraints, e.g., timetable

In such cases, one can use iterative improvement algorithms
• keep a single “current” state
• try to improve it

Constant space, suitable also for unknown environments (online
search)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/39

Problem Solving and Search (II) 3. Local Search

Example: Traveling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with
thousands of cities

KBS 184.735 VU 2.0 Einführung in KI SS 2023 25/39

Problem Solving and Search (II) 3. Local Search

Example: n-queens

Put n queens on an n× n board with no two queens threatening each
other (i.e., not on the same row, column, or diagonal)

Move a queen to reduce number of conflicts (attacks), e.g., in column

h = 5 h = 2 h = 0

Terminates in few steps (at most quadratic, but much fewer in reality)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 26/39

Problem Solving and Search (II) 3. Local Search

Agenda

Hill-climbing

Simulated annealing

Genetic algorithms (briefly)

Local search in continuous spaces (omitted)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 27/39

Problem Solving and Search (II) 3. Local Search 3.1 Hill Climbing

Hill-climbing (or gradient ascent/descent)

“Like climbing Mount Everest in thick fog with amnesia”

function HILL-CLIMBING(problem)
returns a state that is a local maximum

inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor← a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current← neighbor

end

KBS 184.735 VU 2.0 Einführung in KI SS 2023 28/39

Problem Solving and Search (II) 3. Local Search 3.1 Hill Climbing

Hill-climbing, cont’d
Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Sideways moves: , escape shoulders, / loop on flat maxima
Random-restart hill climbing: restart after step limit
overcomes local maxima—trivially (expectedly) complete
Alternative neighbor selection: stochastic, or first-choice

KBS 184.735 VU 2.0 Einführung in KI SS 2023 29/39

Problem Solving and Search (II) 3. Local Search 3.1 Hill Climbing

Example: 8-queens

state space: 88 ≈ 17 million states

standard hill climbing (random initial state)
• 4 steps on average, if successful
• 3 steps on average, if unsuccessful
• chance of success: 14%

sideways moves: limit 100
• ≈ 21 steps, if successful
• ≈ 64 steps, if unsuccessful
• chance of success: 14% ; 94%

random restart hill climbing:
• find solutions for large n (three millions) within short time

(one minute)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 30/39

Problem Solving and Search (II) 3. Local Search 3.2 Simulated annealing

Simulated annealing

Devised in the 1950s for physical process modeling

Widely used (VLSI layout, airline scheduling, etc.)

Idea: escape local maxima by
• allowing some “bad” moves
• but gradually decrease their size and frequency

corresponds to “cooling off” process of materials
• value = energy E

KBS 184.735 VU 2.0 Einführung in KI SS 2023 31/39

Problem Solving and Search (II) 3. Local Search 3.2 Simulated annealing

Simulated annealing, cont’d

function SIMULATED-ANNEALING(problem, schedule)
returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current←MAKE-NODE(INITIAL-STATE[problem])
for t← 1 to∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E← VALUE[next] – VALUE[current]
if ∆E > 0 then current← next
else current← next only with probability e∆E/T

KBS 184.735 VU 2.0 Einführung in KI SS 2023 32/39

Problem Solving and Search (II) 3. Local Search 3.2 Simulated annealing

Properties of simulated annealing

Boltzmann distribution: state occupation probability of a
thermodynamical system within fixed temperature T:

p(x) = αe−
E(x)

kT

• x . . . state
• α . . . degeneracy (= # of states x′ with same energy as x)
• E(x) . . . energy
• k . . . Boltzmann constant

If T is decreased slowly enough: reach best (lowest energy) state x∗

with probability approaching 1, as

e−
E(x∗)

kT /e−
E(x)

kT = e
E(x)−E(x∗)

kT � 1 for small T

Above, we maximize (change sign)
Is this necessarily an interesting guarantee??
“Slowly enough” can be worse than exhaustive search

KBS 184.735 VU 2.0 Einführung in KI SS 2023 33/39

Problem Solving and Search (II) 3. Local Search 3.3 Local beam search

Local beam search

Idea:
• keep k states instead of 1
• choose top k of all their successors

Not the same as running k searches in parallel! Searches that find
good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones
Observe the close analogy to natural selection!

KBS 184.735 VU 2.0 Einführung in KI SS 2023 34/39

Problem Solving and Search (II) 3. Local Search 3.4 Genetic algorithms

Genetic algorithms

Genetic algorithm (GA) =
stochastic local beam search + successors from pairs of states

8-queens: r1r2 · · · r8 ri= row index of queen in column i

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Fitness: number of nonattacking pairs
Selection: probability (here proportional to fitness)
Crossover: randomly choose pairs for mating + crossover point
Mutation: with low probability, move random queen i randomly in column

KBS 184.735 VU 2.0 Einführung in KI SS 2023 35/39

Problem Solving and Search (II) 3. Local Search 3.4 Genetic algorithms

Pseudocode Formulation

KBS 184.735 VU 2.0 Einführung in KI SS 2023 36/39

Problem Solving and Search (II) 3. Local Search 3.4 Genetic algorithms

Observations

GAs require states encoded as strings
(Genetic Programs use programs/lists of instructions as individuals)

Crossover can produce solutions quite distant from their parents

32752411 + 24748552 on columns 1-3 and 4-8

+ =

Crossover helps if and only if substrings are meaningful
components (blocks)
• no advantage if string could be randomly shuffled

GAs 6= evolution: e.g., real genes themselves encode replication
machinery!

KBS 184.735 VU 2.0 Einführung in KI SS 2023 37/39

Problem Solving and Search (II) 4. Conclusion

Outline

1. Heuristic Search

2. Admissible Heuristics

3. Local Search

4. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 38/39

Problem Solving and Search (II) 4. Conclusion

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h(n)
• Incomplete and not always optimal

A∗ search expands lowest g(n) + h(n)
• Complete and optimal

Derive admissible heuristics from exact solution of relaxed
problems

Local search uses different methods to find better (locally
optimal) solutions
• paths are not important
• use constant space

A variety of further methods and refinements exists

KBS 184.735 VU 2.0 Einführung in KI SS 2023 39/39

184.735 VU 2.0 Einführung in Künstliche Intelligenz

Learning from Observations

Institute of Logic and Computation
Knowledge-Based Systems Group
Vienna University of Technology

SS 2023

slides by S. Russell, adapted by T. Eiter

AIMA Chapter 2, Section 4.6-4.7; Chapter 18, Sections 1-3

Outline

1. Learning
1.1 Learning Agents
1.2 Representation and Modes

2. Inductive Learning

3. Decision Tree Learning
3.1 Choosing an Attribute
3.2 Problems and Generalizations

4. Measuring Learning Performance

5. Conclusion

Learning from Observations 1. Learning

Outline

1. Learning

2. Inductive Learning

3. Decision Tree Learning

4. Measuring Learning Performance

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 1/37

Learning from Observations 1. Learning

Learning

“Nobody is perfect” (Osgood Fielding, ‘Some like it hot’)

Learning modifies the agent’s decision mechanisms to improve
performance
Learning is essential for unknown environments,
i.e., when designer lacks omniscience
• can not anticipate all situations
• can not anticipate all changes, updates

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down
• programming might be “impossible” (e.g., face recognition)

Suggestion by A. Turing (1950)

build learning machinery and teach it

KBS 184.735 VU 2.0 Einführung in KI SS 2023 2/37

Learning from Observations 1. Learning 1.1 Learning Agents

Recall: Agent Architecture

Agent

E
n

v
iro

n
m

e
n

t

Sensors

What it will be like
 if I do action A

How happy I will be
 in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

Actuators

What the world
is like now

rich model of utility-based agent
the components in between sensors (input) and actuators (output) can
be abstracted to a performance element

KBS 184.735 VU 2.0 Einführung in KI SS 2023 3/37

Learning from Observations 1. Learning 1.1 Learning Agents

Learning Agents (Architecture)

Performance standard

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Effectors

Performance
 element

changes

knowledge

learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

Performance element: select external actions
Critic: performance / result assessment
Learning element: make improvements
Problem generator: suggest actions for new experiences

KBS 184.735 VU 2.0 Einführung in KI SS 2023 4/37

Learning from Observations 1. Learning 1.1 Learning Agents

Learning Element

The learning element (LE) makes changes to the “knowledge components”
of an agent architecture (reflex, logical, utility, etc.)

The LE design is dictated by
what type of performance element is used
which functional component is to be learned
what representation is chosen for the functional component
what kind of feedback is available

Example scenarios:

Performance element Functional component Representation Feedback
Alpha-beta search Evaluation function Weighted linear function Win/loss
Logical agent Transition model Successor-state axioms Outcome
Utility-based agent Transition model Dynamic Bayes net Outcome
Simple reflex agent Percept-action function Neural net Right action

Note: Learning the transition model can be “supervised” if the environment
is observable

KBS 184.735 VU 2.0 Einführung in KI SS 2023 5/37

Learning from Observations 1. Learning 1.1 Learning Agents

Taxi Example

Drive a taxi

Performance element: knowledge about driving, and procedures to do
so

Critic: assess status, reactions of customer / other drivers /
pedestrians / bikers / police

Learning element: create e.g. rule not to turn steering wheel to
quickly; break softly etc.

Problem generator: try brakes on slippery road; push back with side
(wing) mirror only

KBS 184.735 VU 2.0 Einführung in KI SS 2023 6/37

Learning from Observations 1. Learning 1.2 Representation and Modes

Representation

B C

(a) Atomic (b) Factored (b) Structured

B C

Different levels of granularity to represent states of the “world”

Atomic: states e.g. identified with labels (names)
like a “black box”, “image”;
search algorithms may treat states in this way
Factored: attributes (variables) with values
exploited e.g. in planning, constraint satisfaction
Structured: dependence model between attributes
e.g. logical knowledge bases, Bayesian networks

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/37

Learning from Observations 1. Learning 1.2 Representation and Modes

Learning Modes

Important for learning: feedback
Unsupervised learning: no explicit feedback
• most common: clustering of “similar” examples, concept formation

Reinforcement learning: occasional rewards or punishments in terms of
payoff
Supervised learning: correct answers for each instance
• requires “teacher”
• reward 6= correct answer
• issue: choose the examples (teaching set/sequence)

In practice: semi-supervised learning (mix of labeled and unlabeled
examples)

Issues
noise
inaccuracies (biased data)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 8/37

Learning from Observations 2. Inductive Learning

Outline

1. Learning

2. Inductive Learning

3. Decision Tree Learning

4. Measuring Learning Performance

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 9/37

Learning from Observations 2. Inductive Learning

2. Inductive Learning (also known as Science)

Simplest form: learn a function from examples (tabula rasa)
f is the target function (unknown)
An example is a pair (x, y), where y = f (x).
E.g.,

O O X
X

X
, +1

Problem:

Given a (finite) training set (x1,y1),. . . ,(xN ,yN) of examples, find a func-
tion h that approximates f (h ≈ f).

h is called hypothesis
usually, h must be from a restricted class of functions (hypothesis
space)
if h = f is possible, the learning problem is realizable

KBS 184.735 VU 2.0 Einführung in KI SS 2023 10/37

Learning from Observations 2. Inductive Learning

Inductive Learning, cont’d

Type of output value to learn:
classification: one of finitely many values (e.g. win, loss)

regression: a (real) number (e.g. price)

This is a highly simplified model of real learning:

Ignores prior knowledge

Assumes a deterministic, observable “environment”

Assumes examples are given
• selection of new examples is challenging (maximize utility)

Assumes that the agent wants to learn target f — why?

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/37

Learning from Observations 2. Inductive Learning

Inductive Learning Method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

x

f(x)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 12/37

Learning from Observations 2. Inductive Learning

Inductive Learning Method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting: linear function

x

f(x)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 13/37

Learning from Observations 2. Inductive Learning

Inductive Learning Method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting: quadratic function

x

f(x)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 14/37

Learning from Observations 2. Inductive Learning

Inductive Learning Method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting: interpolation polynomial (degree <k for k examples)

x

f(x)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 15/37

Learning from Observations 2. Inductive Learning

Inductive Learning Method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting: complicated function

x

f(x)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 16/37

Learning from Observations 2. Inductive Learning

Inductive Learning Method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize simplicity under consistency

Entia non sunt multiplicanda praeter necessitatem.

KBS 184.735 VU 2.0 Einführung in KI SS 2023 17/37

Learning from Observations 2. Inductive Learning

Complex vs Simple Hypotheses

Tradeoff between
• complex hypotheses that fit the data well, and

• simpler hypotheses that might generalize better

Tradeoff between
• expressiveness of the hypothesis space, and

• finding a good hypothesis in it

Problem: computational complexity

KBS 184.735 VU 2.0 Einführung in KI SS 2023 18/37

Learning from Observations 3. Decision Tree Learning

Outline

1. Learning

2. Inductive Learning

3. Decision Tree Learning

4. Measuring Learning Performance

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 19/37

Learning from Observations 3. Decision Tree Learning

Decision Trees

Decision tree: one possible representation for hypotheses

Uses factored (attribute valued) representation

Takes as input a vector x = (x1, ..., xm) of values for attributes A1, . . . ,Am,
and returns an output value y (‘decision’)
The decision is reached by a sequence of tests, arranged in a tree
• each internal node n amounts to a test Ai? of the value of some Ai;
• node n has for each possible value vik of Ai one child node
• branch to the child node for vik = xi (start at root)
• each leaf node gives a decision

Boolean classification: y is positive (T) or negative (F)

Note: the reason for the output y is understandable
(not so e.g. for neural nets)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 20/37

Learning from Observations 3. Decision Tree Learning

Example: Restaurant Waiting

Decide whether to wait (Yes/No) for a table in a restaurant
Attributes:
• Alternate: suitable alternative restaurant close by
• Bar : comfortable bar area to wait in
• Fri/Sat : true on Fridays/Saturdays
• Hungry : whether we are hungry
• Patrons: how many people are there (none, some, full)
• Price: $, $$, $$$
• Raining: whether it is raining
• Reservation: whether we made a reservation
• Type: kind of restaurant (French, Italian, Thai, or burger)
• WaitEstimate: wait estimate by the host (0-10, 10-30, 30-60, >60

mins)
GoalPredicate: WillWait

KBS 184.735 VU 2.0 Einführung in KI SS 2023 21/37

Learning from Observations 3. Decision Tree Learning

Restaurant Waiting, cont’d
The “true” tree for deciding whether to wait:

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

KBS 184.735 VU 2.0 Einführung in KI SS 2023 22/37

Learning from Observations 3. Decision Tree Learning

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row→ path to leaf:

FT

A

B

F T

B

A B A xor B

F F F

F T T

T F T

T T F

F

F F

 T

 T T

There is a trivial consistent decision tree for any training set: one path
to leaf for each example
• it probably won’t generalize to new examples
• need not be a compact decision tree
• in some cases, no much more compact decision tree might be

possible (e.g., majority function)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 23/37

Learning from Observations 3. Decision Tree Learning

Hypothesis Spaces

How many non-equivalent decision trees with n Boolean attributes??
= number of Boolean functions with n variables
= number of distinct truth tables with 2n rows
= 22n

E.g., for n = 6, there are 22n
= 18,446,744,073,709,551,616

note: and many equivalent decision trees do exist!

How many conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??
Each attribute can be (i) in positive, (ii) in negative, or (iii) out
=⇒ 3n distinct conjunctive hypotheses

A more expressive hypothesis space increases
the chance that target function can be expressed; ,

the number of hypotheses consistent with the training set
=⇒ may get worse predictions. /

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/37

Learning from Observations 3. Decision Tree Learning

Decision Tree Learning

Aim: find a small tree consistent with the training examples E
Idea: (recursively) choose “most significant” attribute as root of
(sub)tree

function DTL(examples, attributes, parent_examples)
returns a decision tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else

A← argmaxB ∈ attributes IMPORTANCE(B, examples)
tree← a new decision tree with root test A
for each value vk of A do

exs←{ e ∈ examples | e.A = vk}
subtree← DTL(exs, attributes\{A}, examples)
add a branch to tree with label A = vk and subtree subtree

return tree

attributes is empty: nondeterministic domain; hidden attributes; noise

call DTL(E, {A1, . . . ,Am},{ }), for attribute set A = {A1, . . . ,Am}

KBS 184.735 VU 2.0 Einführung in KI SS 2023 25/37

Learning from Observations 3. Decision Tree Learning

Restaurant Waiting, cont’d

Build a waiting tree from example data:

Example
Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

KBS 184.735 VU 2.0 Einführung in KI SS 2023 26/37

Learning from Observations 3. Decision Tree Learning 3.1 Choosing an Attribute

Choosing an Attribute: IMPORTANCE(B, examples)

Desired: compact, “flat” decision tree

Idea: a good attribute splits the examples into subsets that are (ideally)
“all positive” or “all negative”

Patrons? is a better choice than Type?

Greedy approach: pick most promising in next step
simple notion: maximize classifications ad hoc

KBS 184.735 VU 2.0 Einführung in KI SS 2023 27/37

Learning from Observations 3. Decision Tree Learning 3.1 Choosing an Attribute

Example, cont’d
Decision tree learned from the 12 examples:

No Yes

Fri/Sat?

None Some Full

Patrons?

No Yes

Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree – a more complex hypothesis isn’t
justified by small amount of data
Some attributes are not relevant (Raining, Reservation)
Patterns detectable (if hungry, wait for Thai food on weekends)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 28/37

Learning from Observations 3. Decision Tree Learning 3.1 Choosing an Attribute

Choosing an Attribute: Information Gain

Maximum ad hoc classification is not necessarily good

Better: consider information gain, defined by entropy

The answer to a question provides information: the more clueless
we are about it, the more information it contains

Scale: 1 bit = answer to Boolean question with prior 〈 1
2 ,

1
2 〉 (uniformly random)

Information in a lottery outcome (e.g., Euro Millions)?

Information in an answer with prior 〈P1, . . . ,Pn〉 is its entropy

H(〈P1, . . . ,Pn〉) =
∑n

i = 1−Pi log2 Pi

(
=
∑n

i = 1 Pi log2
1
Pi

)
.

Special case n = 2: P2 = 1− P1

H(〈P1,P2〉) = −P1 log2 P1 − (1− P1) log2(1− P1) =: B(P1)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 29/37

Learning from Observations 3. Decision Tree Learning 3.1 Choosing an Attribute

Choosing an Attribute: Information Gain, cont’d

Assume E has p positive, n negative examples (P1 = p/(p + n))

=⇒ need B(p/(p + n)) bits to classify a new example

restaurant example: p= n= 6 thus 1 bit

Value vk of attribute A creates Ek ⊆ E with pk pos. and nk neg.
examples =⇒ need B(pk/(pk + nk)) bits to classify a new example

Hopefully, Ek needs less information than E

The expected number of bits per example over all Ek is

Rem(A) =
∑

k
pk+nk
p+n B(pk/(pk + nk))

Example: Rem(Patrons) = 0.459 bits, Rem(Type) = 1 bit

Principle

choose A with minimal Rem(A), or equivalently,
choose A with maximal Gain(A) = B(p/(n + p))− Rem(A)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 30/37

Learning from Observations 3. Decision Tree Learning 3.2 Problems and Generalizations

Overfitting

Problem of all learners: overfitting the training examples
hypothesis may consider irrelevant attributes
• e.g., color of dices

may break with new examples (recall Ockham’s razor!)
more likely to happen with many attributes
less likely to happen with more examples

Remedies:
Decision tree pruning
• Idea: Prevent split on “irrelevant” attributes, using information gain

and statistical methods
Cross-validation
• Use part of the data for training, part for testing

KBS 184.735 VU 2.0 Einführung in KI SS 2023 31/37

Learning from Observations 3. Decision Tree Learning 3.2 Problems and Generalizations

Generalizations (see book)
Missing Data:
some attribute value is unknown
• consider all possible values, weighted with frequency to reach

the test node (by the examples)
Multi-valued attributes:
attributes with many values may spoil compact decision tree
(e.g., social security number, time stamp)
• e.g. normalize Gain(A) with the entropy of A

(=
∑

k

P(A = vk) log2 P(A = vk))

Continuous, integer valued attributes:
use split points (e.g., age > 35) that give highest information gain

Continuous valued output attributes:
regression trees whose leaves are functions of a subset of the
attributes

KBS 184.735 VU 2.0 Einführung in KI SS 2023 32/37

Learning from Observations 4. Measuring Learning Performance

Outline

1. Learning

2. Inductive Learning

3. Decision Tree Learning

4. Measuring Learning Performance

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 33/37

Learning from Observations 4. Measuring Learning Performance

Measuring Learning Performance

How do we know that h ≈ f ? (Hume’s Problem of Induction)
- Use theorems of computational/statistical learning theory

- Try h on a new test set of examples (use same distribution over example
space as training set)

Learning curve = % correct on test set as a function of training set size

restaurant data,

graph averaged over

20 trials

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

o
rr

e
c
t

o
n

 t
e

s
t

s
e

t

Training set size

KBS 184.735 VU 2.0 Einführung in KI SS 2023 34/37

Learning from Observations 4. Measuring Learning Performance

Performance Measurement, cont’d

Learning curve depends on
realizability of the target function
non-realizability can be due to
• missing attributes
• too restrictive hypothesis space (e.g.,linear function)

redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

of examples

1

nonrealizable

redundant

realizable

KBS 184.735 VU 2.0 Einführung in KI SS 2023 35/37

Learning from Observations 5. Conclusion

Outline

1. Learning

2. Inductive Learning

3. Decision Tree Learning

4. Measuring Learning Performance

5. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 36/37

Learning from Observations 5. Conclusion

Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning element depends on
• type of performance element
• available feedback
• type of component to be improved
• representation

For supervised learning, the aim is to find a simple hypothesis
that is approximately consistent with training examples

Decision tree learning using information gain

Learning
performance =

prediction accuracy measured on test
set as a function of the training set size

KBS 184.735 VU 2.0 Einführung in KI SS 2023 37/37

184.735 VU 2.0 Einführung in Künstliche
Intelligenz

Neural Networks

Institute of Logic and Computation
Knowledge-Based Systems Group
Vienna University of Technology

SS 2023

slides by S. Russell, adapted by T. Eiter

AIMA Chapter 1, Sec. 2; Chapter 18, Sec. 7; Chapter 18, Sec. 11

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

Neural Networks 1. Brains

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 1/44

Neural Networks 1. Brains

Neuron (Human Brain)

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Axon is 100 times longer than cell body, typically 1cm (up to 1 m)
Up to some thousand synapses
Signals are noisy “spike trains” of electrical potential
Electro-chemical processes to pass potential through synapses
(increase or decrease) using neuro-transmitters

KBS 184.735 VU 2.0 Einführung in KI SS 2023 2/44

Neural Networks 1. Brains

Human Brain

1011 neurons of > 20 types
1014 synapses, 1ms–10ms cycle time
Functioning is still little understood
Brain mapping: areas to body
functions
four lobes

source: Wikipedia

occipital l.: vision, visual reception, visual-spatial processing, movement, colors
parietal l.: somatosensation, hearing, language, attention, spatial cognition
frontal l.: control attention, abstract thinking, behavior, problem solving,

physical reactions, personality
temporal l.: controls auditory & visual memories, language, some hearing & speech

learning
take over functions (brain damage, e.g. stroke)

“Brains cause minds” (Searle, 1992)
KBS 184.735 VU 2.0 Einführung in KI SS 2023 3/44

Neural Networks 1. Brains

Human Brain

Supercomputer: IBM BLUE GENE (speedup ∼ 10 every 5 years)

PC: typical as of 2008

KBS 184.735 VU 2.0 Einführung in KI SS 2023 4/44

Neural Networks 1. Brains

Human Brain: Simulation

Challenging (high complexity)

Human Brain Project (Future & Emerging Techn. Flagship)
• 10 years, approved 2013
• > 1 billion Euros
• > 200 research groups, in 19 European countries + USA,

Israel, Argentina, Japan and China (lead: EPFL, Suisse)

Precursor: Blue Brain Project

• simulation of 10,000 neurons at cellular level
• experimentally generated data
• supercomputer with 8,000 IBM processors (“Big Blue”)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 5/44

Neural Networks 1. Brains

McCulloch–Pitts “unit” (1943)

Abstraction of a neuron uj:
• input is a linear sum of weighted inputs ai:

inj =
∑

i wi,jai

a0 . . . fixed input (; shift by bias w0,j) (in earlier AIMA, a0 = −1)
• activation function g(inj) squashes the input to a value
• output aj formed from g(inj), typically aj ← g(inj)

Gross oversimplification, but helps to develop understanding
what networks of such units can do

KBS 184.735 VU 2.0 Einführung in KI SS 2023 6/44

Neural Networks 1. Brains

Activation Functions

Typical activation functions g(x) (x = inj):
(a) step function (aka hard limiter)
(b) linear function (aka threshold function)
(c) sigmoid function 1/(1 + e−x) (fully differentiable)

Changing w0,j shifts the threshold location

Evaluation at discrete time points or continuously

KBS 184.735 VU 2.0 Einführung in KI SS 2023 7/44

Neural Networks 1. Brains

Implementing Logical Functions

AND

w0,j = –1.5

w1,j = 1

w2,j = 1

OR

w2,j = 1

w1,j = 1

w0,j = –0.5

NOT

w1,j = –1

w0,j = 0.5

McCulloch and Pitts:
a complete basis of Boolean functions can be represented by
single neurons

activation function: g(x) =

{
1 if x ≥ 0
0 otherwise

arbitrary Boolean functions can be represented by a network of
neurons

KBS 184.735 VU 2.0 Einführung in KI SS 2023 8/44

Neural Networks 2. Neural Networks

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 9/44

Neural Networks 2. Neural Networks

Network Structures

Neural networks are composed of nodes (units) ui, i = 1, . . . ,N

Nodes types: input, output, and processing (hidden) nodes

Direct links from ui to uj (arcs ui → uj), with weight wi,j

Abstractly, a neural network is a function f (x) that maps each
valuation x = (x1, . . . , xn) of the input units uin

1 , ...u
in
n to a valuation

y = y1, . . . , ym of the output units uout
1 , . . . , uout

m

Single output: write y and uout for y1 resp. uout
1

If the graph and the activation functions are known, f is
determined by the edge weights w = (wi,j) (N×N matrix)

f (x) = hw(x)

Major task: set up w

KBS 184.735 VU 2.0 Einführung in KI SS 2023 10/44

Neural Networks 2. Neural Networks

Network Example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

hW(x), where x = (x1, x2)

Input units u1, u2, output unit u5, hidden units u3, u4

a5 = g(w3,5·a3 + w4,5·a4)

= g(w3,5·g(w1,3·a1 + w2,3·a2) + w4,5·g(w1,4·a1 + w2,4·a2))

Different network types allow for different capacities

KBS 184.735 VU 2.0 Einführung in KI SS 2023 11/44

Neural Networks 2. Neural Networks

Feed-Forward Networks

Uni-directional

Straight flow of information from input to output (directed acyclic
graph, DAG)

Layered networks: node in layer i is directly connected only to
nodes in layer i+1 (and layer i−1).

Types:

• single-layer perceptrons

• multi-layer perceptrons

No internal state: implement reflex agents

KBS 184.735 VU 2.0 Einführung in KI SS 2023 12/44

Neural Networks 2. Neural Networks

Feed-Forward Example (again)

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

hW(x), where x = (x1, x2)

input units u1, u2, output unit u5

a5 = g(w3,5·a3 + w4,5·a4)

= g(w3,5·g(w1,3·a1 + w2,3·a2) + w4,5·g(w1,4·a1 + w2,4·a2))

Adjusting weights changes the function: do learning this way!

KBS 184.735 VU 2.0 Einführung in KI SS 2023 13/44

Neural Networks 2. Neural Networks

Recurrent Neural Networks

Directed cycles with delays
• internal state (like flip-flops), short term memory

Can become unstable, oscillating, chaotic

Several types of networks

• Hopfield Networks

• Boltzmann Machines

• Long Short-Term Memory

• . . .

KBS 184.735 VU 2.0 Einführung in KI SS 2023 14/44

Neural Networks 2. Neural Networks

Recurrent Neural Networks, cont’d

Hopfield networks
• all nodes are input and output
• bidirectional connections, symmetric weights (wi,j = wj,i),
• sign activation function (= output ai):

g(x) = sign(x) =

{
1 x ≥ 0,
−1 x < 0

• enables holographic associative memory
• training on examples
• stimulus (partial data): get to “closest” training example
• N units can store ∼ 1.4 ∗ N training examples reliably

KBS 184.735 VU 2.0 Einführung in KI SS 2023 15/44

Neural Networks 2. Neural Networks

Recurrent Neural Networks, cont’d

Boltzmann machines
• hidden nodes, symmetric weights
• use stochastic activation functions (output is 1 with some

probability)
• state transitions akin to simulated annealing

Long short-term memory (LSTM)
• building units to achieve a memory for long(er) time in RNNs
• record value in a cell using a write gate, a keep gate, and a

read gate
• LSTM networks are well-suited to deal with time series

having time lags of unknown size and duration between
events

KBS 184.735 VU 2.0 Einführung in KI SS 2023 16/44

Neural Networks 3. Perceptrons

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 17/44

Neural Networks 3. Perceptrons

Single-Layer Perceptrons

Input

Units Units

Output
w i,j

-4 -2 0 2 4x
1

-4
-2

0
2

4

x
2

0

0.2

0.4

0.6

0.8

1

Perceptron output

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness
of cliff
Can view this as independent single perceptron, simplify wi,j to wi

KBS 184.735 VU 2.0 Einführung in KI SS 2023 18/44

Neural Networks 3. Perceptrons

Expressiveness of Perceptrons

Perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc.

Always represents a linear separator in the input space:
I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2∑
i wixi > 0 (i.e., w ·x > 0)

Minsky and Papert (1969): can not express XOR
• pricked the neural network balloon
• little research for an extended period

KBS 184.735 VU 2.0 Einführung in KI SS 2023 19/44

Neural Networks 4. Multi-Layer Perceptrons

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 20/44

Neural Networks 4. Multi-Layer Perceptrons

Multi-Layer Perceptrons

Layers are usually fully connected

Numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ak

wj,k

aj

wi,j

ai

KBS 184.735 VU 2.0 Einführung in KI SS 2023 21/44

Neural Networks 4. Multi-Layer Perceptrons

Example: xor Function

I1 0 0 1 1
I2 0 1 0 1

I1 xor I2 0 1 1 0

in/out
H1 0/0 -1/0 1/1 0/0
H2 0/0 1/1 -1/0 0/0
O 0/0 1/1 1/1 0/0

I2

I1 H1

H2

O

1

-1

-1

1

1

1

Perceptron with hidden layer

Activation: step function g(x) = 1⇔ x ≥ 1

KBS 184.735 VU 2.0 Einführung in KI SS 2023 22/44

Neural Networks 4. Multi-Layer Perceptrons

Expressiveness of MLPs

-4 -2 0 2 4x
1

-4
-2

0
2

4

x
2

0

0.2

0.4

0.6

0.8

1

h
W

(x
1
, x

2
)

-4 -2 0 2 4x
1

-4
-2

0
2

4

x
2

0

0.2

0.4

0.6

0.8

1

h
W

(x
1
, x

2
)

1 layer (no hidden layer): all linearly separable functions

2 layers: all continuous functions (arbitrary precision)

3 layers: all functions
Method:
• make with opposite-facing threshold (sigmoid) functions a

ridge
• make with two ridges at right angles a bump
• add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden unitsKBS 184.735 VU 2.0 Einführung in KI SS 2023 23/44

Neural Networks 5. Learning

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 24/44

Neural Networks 5. Learning

Perceptron Learning

Recall: hw(x) = g(in), for single output unit u (= uj) where

in =
∑

i wixi

Let Err = y−hw(x), where y is the target (true) output for x

Learn f (x) by adjusting w to reduce error on training set

Consider loss as squared error (square loss):
Loss(w) = Err2 = (y− hw(x))2

Search for minimal loss by gradient descent:

∂Loss
∂wi

= 2Err·∂Err
∂wi

% chain rule:
∂f1(f2(x))

∂x
= f ′1(f2(x))·∂f2(x)

∂x

= 2Err· ∂
∂wi

(
y− g

(∑
i

wixi
))

= −2Err× g′(in)× xi

KBS 184.735 VU 2.0 Einführung in KI SS 2023 25/44

Neural Networks 5. Learning

Perceptron Learning, cont’d

Simple update rule for weights:

Perceptron Learning Rule

wi ← wi + α× Err× g′(in)︸ ︷︷ ︸
=∆

× xi

α . . . learning rate (step size)

Multi-output learning (y = y1, . . . , ym):
the weights wi,j′ for j′ 6= j do not influence the output unit uj

thus, splits into m independent single output learning problems
for uj and yj, j = 1, . . . ,m

KBS 184.735 VU 2.0 Einführung in KI SS 2023 26/44

Neural Networks 5. Learning

Perceptron Learning, cont’d

Perceptron learning rule converges to a consistent function
for every linearly separable data set
⇒ every linearly separable f (x) is learnable from sufficient data

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

p
o
rt

io
n
 c

o
rr

e
c
t
o
n
 t
e
s
t
s
e
t

Training set size - MAJORITY on 11 inputs

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

p
o
rt

io
n
 c

o
rr

e
c
t
o
n
 t
e
s
t
s
e
t

Training set size - RESTAURANT data

Perceptron
Decision tree

Perceptron learns majority function easily (w0,i = −n/2, wi,j = 1);
DTL is hopeless (exponential size decision tree)
DTL learns restaurant function easily; perceptron can’t represent
it (not linearly separable)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 27/44

Neural Networks 5. Learning

Multi-Layer Perceptron Learning
Issues:

Separation of multi- to single-output learning fails:
• wi,j can influence multiple outputs ak, ak′

How to push errors back??

helpful: additive loss Loss =
∑

k Lossk, where Lossk is for uk

Square Loss: Loss = Err2 = |y− hw(x)|2 =
∑

k (yk − ak)
2︸ ︷︷ ︸

Lossk=Err2
kMinimal loss by gradient search on w:

∂
∂w Loss = ∂

∂w |y− hw(x)|2 = ∂
∂w

∑
k(yk − ak)

2 =
∑

k
∂
∂w(yk − ak)

2

i.e., we just need to sum up the individual gradient losses at uk

What is the error at hidden unit uj (true value is unknown)??

Divide errors on contributing weights.

KBS 184.735 VU 2.0 Einführung in KI SS 2023 28/44

Neural Networks 5. Learning

Multi-Layer Perceptron Learning, cont’d

Learning rules (learning rate α):

Output layer (ak): same rule as for single-layer perceptron

wj,k ← wj,k + α · aj ·∆k, where ∆k = Errk · g′(ink)

Hidden layer (aj): node aj is “responsible” for a fraction of the
errors ∆k at the output layer

• back-propagate the error from there:

∆j = g′(inj)·
∑

k

wj,k∆k .

• update rule for weights in hidden layer:

wi,j ← wi,j + α · ai ·∆j

(Most neuroscientists deny that back-propagation occurs in the brain)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 29/44

Neural Networks 5. Learning

Backpropagation Algorithm

KBS 184.735 VU 2.0 Einführung in KI SS 2023 30/44

Neural Networks 5. Learning

Example

U3

U4U2

U5

U1
-0.15

0.64

0.90

0.08

0.24

0.98

0

0

0

0.5

0.5

0.648

Forward Propagation

Sigmoid function g(x) = 1/(1 + e−x)
• derivation g′(x) = g(x) · (1− g(x))

Calculation (numbers rounded):
• output unit ak: ∆k = ak · (1 − ak) · (yk − ak)

• hidden unit aj: ∆j = aj · (1 − aj) ·
∑

k(∆k · wj,k)

∆5 = Err5 · g′(in5) = a5 · (1 − a5) · (y5 − a5)
= 0.648 · (1 − 0.648) · (0 − 0.648) = −0.148

∆4 = g′(in4) ·
∑

k w4,k∆k = a4 · (1 − a4) · (w4,5 · ∆5)
= 0.5 · (1 − 0.5) · (0.98 · −0.148) = −0.036

other ∆j values: ∆3 = −0.009, ∆2 = 0.011, ∆1 = −0.022

KBS 184.735 VU 2.0 Einführung in KI SS 2023 31/44

Neural Networks 5. Learning

Example, cont’d

U3

U4U2

U1

U5

-0.15

0.64

0.90

0.08

0.24

0.98

0

0

0

0.5

0.5

0.648
-0.074

-0.074
 = 0.90

 = 0.17

-0.15

0.64
0.90

0.08

Backward Propagation

Computation of the weight changes (learning rate α = 1):
w4,5 : α · a4 ·∆5 = 1 · 0.5 · (−0.148) = −0.074

Updated weight w4,5 = 0.90

Other weight changes: computations similar

KBS 184.735 VU 2.0 Einführung in KI SS 2023 32/44

Neural Networks 5. Learning

Backpropagation: Derivation

Recall: ∂
∂w Loss = ∂

∂w |y− hw(x)|2 =
∑

k
∂
∂w

Lossk︷ ︸︸ ︷
(yk − ak)

2

consider gradient descent of Lossk wrt. w (write ∂α
∂β also as ∂α/∂β)

1) Output weight wj,k′ : ∂Lossk/∂wj,k′ 6= 0 only if k′ = k

∂Lossk

∂wj,k
= ∂/∂wj,k(yk − ak)

2 % chain rule: ∂f1(f2(x))
∂x = f ′1(f2(x))·∂f2(x)

∂x

= −2(yk − ak)∂ak/∂wj,k

= −2(yk − ak)∂g(ink)/∂wj,k

= −2(yk − ak)g′(ink)∂ink/∂wj,k

= −2(yk − ak)g′(ink)∂
(∑

j′
wj′,kaj′

)
/∂wj,k % only j′ = j matters

= −2 (yk − ak)g′(ink)︸ ︷︷ ︸
=∆k

aj

= −2aj∆k

KBS 184.735 VU 2.0 Einführung in KI SS 2023 33/44

Neural Networks 5. Learning

Back-Propagation: Derivation, cont’d
2) Interior weight: unit ai connecting to hidden unit aj

∂Lossk

∂wi,j
= ∂/∂wi,j(yk − ak)

2 % chain rule: ∂f1(f2(x))
∂x = f ′1(f2(x))·∂f2(x)

∂x

= −2(yk − ak)∂ak/∂wi,j

= −2(yk − ak)∂g(ink)/∂wi,j

= −2(yk − ak)g′(ink)∂ink/∂wi,j % (yk − ak)g′(ink) = ∆k

= −2∆k∂
(∑

j′wj′,kaj′
)
/∂wi,j % only j′ = j matters

= −2∆kwj,k∂aj/∂wi,j

= −2∆kwj,k∂g(inj)/∂wi,j

= −2∆kwj,kg′(inj)∂inj/∂wi,j

= −2∆kwj,kg′(inj)∂
(∑

i′ wi′,jai′
)
/∂wi,j % only j′ = j matters

= −2∆kwj,kg′(inj)ai

Thus, ∂Loss
∂wi,j

=
∑

k
∂Lossk
∂wi,j

=
∑

k –2∆kwj,kg′(inj)ai

= –2ai g′(inj)
∑

k ∆kwj,k︸ ︷︷ ︸
=∆j

= –2ai∆j

KBS 184.735 VU 2.0 Einführung in KI SS 2023 34/44

Neural Networks 5. Learning

Back-Propagation Learning, cont’d

At each epoch, sum gradient updates for all examples and apply

Restaurant example: use a MLP with 4 hidden units
Training curve for 100 examples (finds exact fit)

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
o

ta
l
e

rr
o

r
o

n
 t

ra
in

in
g

 s
e

t

Number of epochs
Typical problems:
slow convergence, local minima

KBS 184.735 VU 2.0 Einführung in KI SS 2023 35/44

Neural Networks 5. Learning

Back-Propagation Learning, cont’d

Learning curve for restaurant example

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

p
o

rt
io

n
 c

o
rr

e
c
t

o
n

 t
e

s
t

s
e

t

Training set size - RESTAURANT data

Decision tree
Multilayer network

Problem: determine suitable network structure

KBS 184.735 VU 2.0 Einführung in KI SS 2023 36/44

Neural Networks 6. Applications

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 37/44

Neural Networks 6. Applications

Applications of Neural Networks

Thousands of applications, e.g.,

Prediction of air pollution (e.g., ozone concentration)
(better than physical/chemical, statistical models)

Prediction of electric power prizes

Prediction of stock developments

Desulfurization in steel making

Pattern recognition (e.g., handwriting)

Face recognition

Speech recognition

. . .

KBS 184.735 VU 2.0 Einführung in KI SS 2023 38/44

Neural Networks 6. Applications

Handwritten Digit Recognition

US NIST database: 60,000 digit samples (20×20 pxs, 8bit gray)

Performance of different learning strategies
3-nearest-neighbor classification: 2.4% error
2 layer MLP (400–300–10 units): 1.6% error
LeNet (1989;1995+): 0.9% error, using specialized neural net
family
• input layer of 32×32 units, on which 20×20 pixel were centered

(pixels + local neighborhoods)
• apply slight transformations to the input (rotate, shift, scale)
• 3 hidden layers, 768–192–30 units

groups of n×n units (feature detectors)
current/recent best: ≈ 0.23% error, multi-col. convoluted deep
NNs

(see http://yann.lecun.com/exdb/mnist/)

KBS 184.735 VU 2.0 Einführung in KI SS 2023 39/44

http://yann.lecun.com/exdb/mnist/

Neural Networks 6. Applications

Deep Learning

Hierarchical structure learning: NNs with many layers
(AlphaGo: 12/14 hidden layers for policy/value network)
Feature extraction and learning (un)supervised
Increasing in the last decade
Crux: lots of data
Push for hardware (GPUs, designated chips)
“Data-Driven” vs. “Model-Driven” computing

KBS 184.735 VU 2.0 Einführung in KI SS 2023 40/44

Neural Networks 6. Applications

Advantages and Disadvantages of NNs

Pros
Less need for determining relevant input factors

Inherent parallelism

Easier to develop than statistical methods

Capability to learn and improve

Quite good for complex pattern recognition tasks

Usable for “unstructured” and “difficult” input (e.g., images)

Fault tolerance

KBS 184.735 VU 2.0 Einführung in KI SS 2023 41/44

Neural Networks 6. Applications

Advantages and Disadvantages of NNs, cont’d

Cons
Choice of parameters (layers, units) requires skill

Requires sufficient training material

Resulting hypotheses cannot be understood easily

Knowledge implicit (subsymbolic representation)

Verification, behavior prediction difficult (if not impossible)

Challenges
Interpretability

Explainability

Trustworthiness

Robustness (adversarial examples)

Combine symbolic and subsymbolic approaches

KBS 184.735 VU 2.0 Einführung in KI SS 2023 42/44

Neural Networks 7. Conclusion

Outline

1. Brains

2. Neural Networks

3. Perceptrons

4. Multi-Layer Perceptrons

5. Learning

6. Applications

7. Conclusion

KBS 184.735 VU 2.0 Einführung in KI SS 2023 43/44

Neural Networks 7. Conclusion

Summary

Most brains have lots of neurons
each neuron ≈ linear–threshold / sigmoid unit

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by
gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection,
etc.

Engineering, cognitive modeling, and neural system modeling
subfields have largely diverged

Challenges:
• Interpretability, Explainability, Trustworthiness, Robustness
• Combine symbolic and subsymbolic approaches

KBS 184.735 VU 2.0 Einführung in KI SS 2023 44/44

VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs)

ä Standard search problem:

• From the point of view of a search algorithm, a state is a
“black box” with no discernible internal structure.

• It is represented by a suitable data structure that can be
accessed only by the problem specific routines:

– the successor function,

– the heuristic function,

– and the goal test.

ä Constraint satisfaction problem (CSP):

• The states and the goal test conform to a standard, structured,
and simple representation.

• Search algorithms can be defined that take advantage of the
structure of states and use general-purpose rather than
problem-specific heuristics.

1/30

Constraint Satisfaction Problems (ctd.)

ä In a constraint satisfaction problem

• a state is defined by variables with values from an associated
domain

• the goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

å Example of a simple formal representation language

• allows useful general-purpose algorithms with more power than
standard search algorithms.

2/30

CSP: Formal Definition

A constraint satisfaction problem (CSP) consists of the following
components:

ä a finite set V = {V1,V2, . . . ,Vn} of variables;

ä each variable Vi ∈ V has an associated non-empty domain Di of
possible values;

ä a finite set C = {C1,C2, . . . ,Cm} of constraints.

• A constraint C ∈ C between variables Vi1 , . . . ,Vij is a subset of
the Cartesian product

Di1 × · · · × Dij = {(d1, . . . , dj) | dl ∈ Dil , 1 ≤ l ≤ j}.

3/30

CSP: Formal Definition (ctd.)

ä Each constraint limits the values that variables can take, e.g.,
V1 6= V2.

ä There are constraints of different arities:

• n-ary constraints restrict the possible assignment of n variables,
i.e., n-ary constraints are n-ary relations.

• In particular:

– Unary constraints restrict the domain Di of one variable Vi .
E.g., C (Vi) = {1, 3, 5, 7, 8}.

– Binary constraints restrict the domains Di ×Dj of a pair of
variables Vi ,Vj .
E.g., C (Vi ,Vj) = {(1, 2), (3, 5), (7, 3), (8, 2)}.

– Ternary constraints,. . .

4/30

CSP: Further notions

ä A state of a CSP is defined by an assignment of values to some or
all of the variables.

ä An assignment that does not violate any constraints is consistent or
legal.

ä An assignment is complete iff it mentions every variable.

ä A solution to a CSP is a complete consistent assignment, i.e., a
function which assigns

1. each variable a value of its associated domain and

2. such that all constraints are satisfied.

ä Some CSPs also require a solution that maximises an objective
function

å these are called constrained optimisation problems.

5/30

Example: Map-colouring

Consider the task of colouring a map of Australia with the colours red,
green, and blue such that no neighbouring region have the same colour.

6/30

Example: Map-colouring (ctd.)

We can formulate this problem as the following CSP:

ä Variables: V = {WA,NT ,Q,NSW ,V , SA,T}
ä Domains: Di = {red , green, blue}, i ∈ V
ä Constraints: adjacent regions must have different colors

• e.g., the allowable combinations of WA and NT are

C (WA,NT) = {(red , green), (red , blue), (green, red),
(green, blue), (blue, red), (blue, green)},

• or simply written as WA 6= NT (if the language allows this).

7/30

Example: Map-colouring (ctd.)

There are many possible solutions, e.g.,
{WA = red ,NT = green,Q = red ,NSW = green,V = red ,

SA = blue,T = green}

8/30

Constraint graph

ä For a binary CSP (in which all constraints are binary), it is helpful to
visualise the problem as a constraint graph:

• the nodes are the variables,

• the edges correspond to the constraints, i.e., there is an edge
between two variables if there is a constraint involving them.

ä E.g., our map-colouring problem has the following constraint graph:

• General-purpose CSP algorithms use the graph structure to
speed up the search.

• E.g., Tasmania is an independent subproblem! 9/30

Constraint graph (ctd.)

ä Higher-order constraints can be represented by a constraint
hypergraph.

• Reminder: a hypergraph is a pair (X ,E), where X is a set of
nodes and E is a set of non-empty subsets of X , the
hyperedges.

ä Cryptarithmetic puzzles are examples of involving higher-order
constraints.

• Usually, one assumes that each letter in a cryptarithmetic
puzzle represents a different digit.

10/30

Constraint graph (ctd.)

Example:

ä This is formulated as the following CSP:

• Variables: F , T , U, W , R, O, X1, X2, X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Constraints:

– Alldiff (F ,T ,U,W ,R,O);

– addition constraints:
O + O = R + 10 · X1,
X1 + W + W = U + 10 · X2,
X2 + T + T = O + 10 · X3,
X3 = F .

ä A solution for this CSP is, e.g., 938 + 938 = 1876.
11/30

Varieties of CSPs

ä The simplest kind of CSPs involves variables that are discrete and
have finite domains.

• E.g., map-colouring problems are of this kind.

ä If the maximum domain size of any variable in a CSP is d , and there
are n variables, then the number of possible complete assignments is
O(dn)

å exponential in the number of variables!

12/30

Varieties of CSPs (ctd.)

ä Finite domain CSPs whose variables can be either true or false are
called Boolean CSPs.

ä E.g., 3SAT can be expressed as a Boolean CSP

• a clause like X1 ∨ ¬X2 ∨ X3 corresponds to the constraint

C (X1,X2,X3) =

({true, false} × {true, false} × {true, false}) \ {(false, true, false)}.

ä Since 3SAT is an NP-complete problem we cannot expect to solve
finite-domain CSPs in less than exponential time (unless P = NP).

ä However, in most practical applications, CSP algorithms can solve
problems orders of magnitude larger than those solvable via general
search algorithms.

13/30

Varieties of CSPs (ctd.)

ä Discrete variables can also have infinite domains, e.g., the set of
integers or the set of strings.

• E.g., for construction job scheduling, variables are the start
dates and the possible values are integer numbers of days from
the current date.

ä Note:

• With infinite domains it is no longer possible to describe
constraints by enumerating all allowed combinations of values.

• Rather, a constraint language must be used.

– E.g., if Job1, which takes 5 days, must precede Job3, then
we need a language of algebraic inequalities like
StartJob1 + 5 ≤ StartJob3.

14/30

Varieties of CSPs (ctd.)

ä It is also no longer possible to solve constraints with infinite domains
by enumerating all possible assignments

å there are infinitely many of them!

ä Special solution algorithms exist for linear constraints on integer
values

• linear constraint = variables appear only in linear form

• e.g., StartJob1 + 5 ≤ StartJob3 is linear.

ä Non-linear constraints are undecidable—no algorithm exists for
solving such constraints!

15/30

Varieties of CSPs (ctd.)

ä Finally, there are CSPs with continuous domains

• very common in real-world applications and widely studied in
operations research

• e.g., scheduling the start/end times for the Hubble Space
Telescope

– require a very precise timing of observations,

– taking a variety of real-valued astronomical, precedence,
and power constraints into account.

ä Linear constraints can be solved with linear programming methods
in polynomial time.

16/30

Some real-world CSPs

ä Assignment problems

• e.g., who teaches what class

ä Timetabling problems

• e.g., which class is offered when and where?

ä Hardware configuration

ä Transportation scheduling

ä Factory scheduling

ä Floor planning

+ Notice that many real-world problems involve real-valued variables.

17/30

CSPs as standard search problems

ä It is straightforward to give an incremental formulation of a CSP as
a standard search problem.

• States are defined by the values assigned so far.

• Initial state: the empty assignment, ∅.
• Successor function: assign a value to an unassigned variable

providing it does not conflict with the current assignment.

• Goal test: the current assignment is complete.

ä This is the same for all CSPs!

å Any standard search algorithm can be used to solve CSPs.

18/30

CSPs as standard search problems (ctd.)

Caveat: Suppose we use breadth-first search.

ä If there are n variables and d values, the branching factor at the top
level is nd .

ä At the next level, the branching factor is (n − 1)d , and so on for n
levels.

å We generate a tree with n!dn leaves although there are only dn

possible complete assignments!

19/30

Backtracking search

ä The naive formulation ignored one crucial property of CSPs:

• Variable assignments are commutative, i.e., the order of an
assignment of variables does not matter and one reaches the
same partial assignment regardless of order.

• Therefore, CSP search algorithms need only to consider a single
variable at each node of the search tree!

– E.g., in the map-colouring problem, initially we may have a
choice between SA = red , SA = green, and SA = blue,

– but we would not choose between SA = red and
WA = blue.

å With this restriction, we generate only dn leaves as expected.

ä Depth-first search for CSPs with single-variable assignments is called
backtracking search.

• Backtracking search is the basic uninformed algorithm for CSPs.

20/30

Backtracking search (ctd.)

Below gives part of the search tree for the Australia problem, where the
variables are assigned in the order WA, NT , Q, . . .

21/30

Backtracking search (ctd.)

ä Since plain backtracking search is an uninformed algorithm, we do
not expect it to be very effective for large problems.

ä Different general-purpose methods help improving the performance,
addressing the following issues:

• Which variable should be assigned next, and in what order
should its values be tried?

• What are the implications of the current variable assignments
for the other unassigned variables?

• When a path fails, can the search avoid repeating this failure in
subsequent paths?

22/30

Minimum-remaining-values heuristic

ä The minimum-remaining-values (MRV) heuristic:

• choose the variable with the fewest legal values.

ä If there is a variable X with 0 legal values remaining, the MRV
heuristic will select X and failure will be detected immediately

• avoiding pointless searches through further unassigned variables.

ä E.g., in the Australia example, after the assignments for WA = red
and NT = green, there is only one possible value for SA.

• It makes sense to assign SA = blue next rather than
assigning Q.

• Actually, after SA is assigned, the choices for Q, NSW , and V
are all forced.

23/30

Degree heuristic

ä The MRV heuristic does not help at all in choosing the first region
to colour.

ä In this case, the degree heuristic comes in:

• it selects the variable that is involved in the largest number of
constraints on other unassigned variables.

ä In the Australia example, SA is the variable with highest degree, 5.

• The others have degree 0, 2, or 3.

• Actually, once SA is chosen, we can can assign the mainland
regions clockwise or counterclockwise with a colour different
from SA and the previous region.

24/30

Least-constraining-value heuristic

ä Once a variable has been selected, to decide on the order in which
to examine its values, the least-constraining-value heuristic can be
effective:

• it prefers a value that rules out the fewest choices for the
neighbouring variables in the constraint graph.

ä In the Australia example, suppose we have the partial assignment
WA = red and NT = green, and our next choice is for Q.

• Blue would be a bad choice, because it eliminates the last legal
value for Q’s neighbour SA.

å The least-constraining-value heuristic thus prefers red to blue.

25/30

Forward checking

ä The methods discussed so far consider the constraints on a variable
only at the time that the variable is chosen.

ä By looking at some of the constraints earlier in the search, or even
before the search, the search space can be drastically reduced.

ä One such method is forward checking:

• whenever a variable X is assigned, it looks at each unassigned
variable Y that is connected to X by a constraint

• and deletes from the domain of Y any value that is inconsistent
with the value chosen for X .

26/30

Forward checking (ctd.)

ä Consider colouring Australia using forward checking:

ä Note:
• After assigning WA = red and Q = green, the domains of NT

and SA are reduced to a single value.

å The MRV heuristic would select SA and NT next.

• After assigning V = blue, the domain of SA is empty, so we get
failure and the algorithm backtracks.

27/30

Forward checking (ctd.)

ä Forward checking does not provide early detection for all failures:

ä NT and SA cannot both be blue!

+ Constraint propagation is the general term for propagating the
implications of a constraint on one variable onto other variables.

28/30

Arc consistency

ä The simplest form of constraint propagation is arc consistency:

• “arc” refers to a directed arc in the constraint graph;

• X → Y is consistent iff for every value x of X there is some
allowed value y of Y .

ä For SA = blue in the Australia colouring, there is a consistent
assignment for NSW , namely red =⇒ the arc from SA to NSW is
consistent

• the reverse arc is not consistent, but can be made so by
deleting blue from the domain of NSW .

29/30

Further techniques

ä Intelligent backtracking:

• do not backtrack to the preceding variable if a failure occurs,
but go back to one in the set of variables that caused the failure

– this set is the conflict set

– e.g., backjumping goes to the most recent variable in this
conflict set.

ä Local search algorithms are very effective for solving CSPs

• the million-queens problem can be solved in an average of 50
steps.

ä The structure of the constraint graph can be taken into account.

• E.g., colouring Tasmania is an independent subproblem of
colouring Australia.

• Tree-structured problems can be solved in linear time.

30/30

VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Planning

(Adapted from Chapters 10.1 and 10.2 in
Russell & Norvig: Artificial Intelligence—A Modern

Approach)

Planning—General Considerations

Planning = coming up with a sequence of actions that will achieve
some goal.

ä Reasoning about the results of actions is central to the operation of
an intelligent agent.

ä One way to represent actions is to use first-order logic expressing
things like

∀ t, such-and-such is the result at t + 1 of doing action at t.

ä In what follows, we describe a planning language which avoids
explicit times and focusses instead on states.

å A state results from another state by applying some action.

1/27

Planning—General Considerations (ctd.)

ä In dealing with reasoning about actions, three problems have in this
context been identified in the literature:

• the frame problem,

• the ramification problem, and

• the qualification problem.

ä The frame problem deals with the question how to represent things
which stay unchanged after performing some action.

• Indeed, most things stay the same when applying a single
action

å a large number of so-called frame axioms would be needed
in general to represent what does not change by
performing an action.

2/27

Planning—General Considerations (ctd.)

ä The ramification problem deals with the representation of implicit
effects.

• E.g., if a car moves from one position to another, so does

– any person in the car, the engine of the car, any dust
particle in the car, any bacteria in the driver, etc.

ä The qualification problem deals with the required preconditions (the
“qualifications”) ensuring that an action succeeds.

• E.g., if a robot needs to move a block A on top of another
block B, the following requirements may apply:

– B should have a clear top, A must not be too heavy, the
robot’s arm must not be broken, etc.

• The qualification problem thus deals with a correct
conceptualisation of things

å there is no general solution for it.

3/27

Planning—General Considerations (ctd.)

+ We are only concerned with classical planning environments, which
are

• fully observable,

• deterministic,

• finite,

• static (change happens only when the agent acts), and

• discrete (in time, actions, objects, and effects).

4/27

The Language of Planning Problems

ä Key issues of a good planning language:

• expressive enough to describe a wide variety of problems;

• restrictive enough to allow efficient algorithms.

å We first discuss STRIPS (Fikes and Nilsson, 1971), a basic
representation language of classical planners.

• “STRIPS” stands for “Stanford Research Institute Problem
Solver”.

• STRIPS was designed as the planning component of the
software for the Shakey robot project at SRI.

5/27

The Language of Planning Problems (ctd.)

Shakey, the Robot (1966-72)
6/27

STRIPS—States and Goals

The syntax of STRIPS consists of the following items:

ä Representation of states: Planners decompose the world into logical
conditions and represent a state as a conjunction of positive literals.

• Literals are atomic formulas or negations thereof (a positive
literal is just an atom)

– literals can be propositional or first-order, but first-order
literals must be ground (i.e., variable-free) and
function-free.

• For instance,

– Rich ∧ InJail may represent the state of some person,

– while At(x , y) or At(president(USA),White House) are
not allowed.

• Furthermore, the closed-world assumption is used, meaning
that any condition not mentioned in a state is assumed false.

7/27

STRIPS—States and Goals (ctd.)

ä Representation of goals: A goal is a partially specified state,
represented as a conjunction of positive ground literals, such as
Rich ∧ Famous or At(P2, LakeTahoe).

• A propositional state s satisfies a goal g if s contains all the
atoms in g (and possibly others).

• E.g., the state Rich ∧ Famous ∧ InJail satisfies the goal
Rich ∧ Famous.

8/27

STRIPS—Actions

ä Representation of actions: An action is specified in terms of the
preconditions that must hold before it can be executed and the
effects that ensue when it is executed.

• E.g., an action for flying a plane from one location to another
is:
Action(Fly(p, from, to),

Precond: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

Effect: ¬At(p, from) ∧ At(p, to))

• More precisely:

– this is actually an example of an action schema,

– representing a number of different actions that can be
derived by instantiating the variables p, from, and to to
different constants.

9/27

STRIPS—Action Schemata
In general, an action schema consists of three parts:

ä The action name and parameter list—e.g., Fly(p, from, to).

ä The precondition: a conjunction of function-free positive literals
stating what must be true in a state before the action can be
executed.

+ Any variables in the precondition must also appear in the
action’s parameter list.

ä The effect: a conjunction of function-free literals describing how the
state changes when the action is executed.

• A positive literal P in the effect is true in the state resulting
from the action; a negative literal ¬P results in P being false.

• Variables in the effect must also appear in the action’s
parameter list.

+ Some planning systems divide the effect into the add list for positive
literals and the delete list for negative literals.

10/27

STRIPS—Semantics

An action is applicable in any state that satisfies the preconditions;
otherwise, the action has no effect.

ä For a first-order action schema, establishing applicability involves a
substitution for the variables in the precondition.

ä E.g., suppose the current state is described by

At(P1, JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK) ∧ Airport(SFO).

This state satisfies the precondition

At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

of action schema Fly(p, from, to) with substitution
{p/P1, from/JFK , to/SFO}.
å The concrete action Fly(P1, JFK ,SFO) is applicable.

11/27

STRIPS—Semantics (ctd.)

ä Starting in a state s, the result of executing an applicable action a is
a state s ′ that results from s by

• adding any positive literal P in the effect of a and

• removing any P where ¬P appears in the effect of a.

ä Thus, for our flight example, after executing Fly(P1, JFK , SFO), the
current state

At(P1, JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK) ∧ Airport(SFO).

becomes

At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK) ∧ Airport(SFO).

12/27

STRIPS—Semantics (ctd.)

Remarks:

ä If a positive effect is already in s it is not added twice, and if a
negative effect is not in s, then that part of the effect is ignored.

ä The definition of the semantics of STRIPS embodies the so-called
STRIPS assumption:

• every literal not mentioned in the effect remains unchanged.

=⇒ This is the way STRIPS deals with the frame problem.

13/27

STRIPS—Semantics (ctd.)

ä Finally, a solution for a planning problem is an action sequence that,
when executed in the initial state, results in a state that satisfies the
goal.

+ Later on, we will allow solutions to be partially ordered sets of
actions, provided that every action sequence that respects the
partial order is a solution.

14/27

Language Variants

ä For some real-world domains, STRIPS is not sufficient

å many language variants have been developed as a consequence.

ä An important such variant is ADL (Pednault, 1986), the Action
Description Language.

ä In ADL, the Fly action can be written as follows:
Action(Fly(p : Plane, from : Airport, to : Airport),

Precond: At(p, from) ∧ from 6= to
Effect: ¬At(p, from) ∧ At(p, to))

ä Note:
• ADL allows typing—e.g., the notation p : Plane is an

abbreviation for Plane(p).

• The precondition from 6= to expresses that a flight cannot be
made from an airport to itself.

=⇒ This could not be expressed succinctly in STRIPS!

15/27

STRIPS vs. ADL

STRIPS ADL
Only positive literals in states: Positive and negative literals in states:
Rich ∧ InJail ¬Poor ∧ ¬Free
Closed-World Assumption: Open-World Assumption
Unmentioned literals are false Unmentioned literals are unknown

Effect P ∧ ¬Q means Effect P ∧ ¬Q means add P and ¬Q
add P and delete Q and delete ¬P and Q

Only ground atoms in goals: Quantified variables in goals:
Rich ∧ InJail ∃ x (At(P1, x) ∧ At(P2, x)) is the goal of having

P1 and P2 in the same place

Goals are conjunctions: Goals allow conjunction and disjunction:
Rich ∧ Famous ¬Poor ∧ (Famous ∨ Smart)

Effects are conjunctions Conditional effects are allowed:
when P : E means E is an effect
only if P is satisfied

No support for equality Equality is built in

No support for types Variables can have types, as in (p : Plane)

16/27

Remarks

ä The various planning formalisms used in AI have been systematised
within a standard syntax called the Planning Domain Definition
Language, or PDDL (Ghallab, Howe, Knoblock, McDermott, 1998).

+ PDDL includes sublanguages for STRIPS and ADL. Moreover,
it was subsequently extended and variants were defined.

ä STRIPS and ADL are adequate for many real-world domains, but
they have some significant restrictions.

• An important one is that ramifications of actions cannot be
represented in a natural way.

– Indirect actions, like dust particles moving with airplanes,
need to be represented as direct effects

å it would be more natural if these changes could be derived
from the location of the plane.

ä Also, classical planning systems do not attempt to address the
qualification problem.

17/27

Example: Air Cargo Transport

We describe in pure STRIPS notation the problem of loading and
unloading cargo onto and off planes and flying it from place to place.

ä We use three actions: Load , Unload , and Fly .

ä The actions affect two predicates:

• In(c , p): cargo c is inside plane p,

• At(x , a): object x is at airport a.

18/27

Example: Air cargo transport (ctd.)

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1,SFO) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Goal(At(C1, JFK) ∧ At(C2, SFO))

Action(Load(c, p, a),
Precond: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a),
Effect: ¬At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
Precond: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a),
Effect: At(c, a) ∧ ¬In(c, p))

Action(Fly(p, from, to),
Precond: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to),
Effect: ¬At(p, from) ∧ At(p, to))

ä The following plan is a solution to the problem:
[Load(C1,P1,SFO),Fly(P1, SFO, JFK),Unload(C1,P1, JFK),

Load(C2,P2, JFK),Fly(P2, JFK ,SFO),Unload(C2,P2, SFO)].

19/27

Example: Air Cargo Transport (ctd.)
Init At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1,SFO) ∧ At(P2, JFK) ∧ Cargo(C1)∧

Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Load(C1,P1, SFO),
⇓ Precond: At(C1, SFO)∧At(P1, SFO)∧Cargo(C1)∧Plane(P1)∧Airport(SFO),

Effect: ¬At(C1, SFO) ∧ In(C1,P1))

s1 In(C1,P1) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Fly(P1, SFO, JFK),
⇓ Precond: At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK),

Effect: ¬At(P1,SFO) ∧ At(P1, JFK))

s2 In(C1,P1) ∧ At(C2, JFK) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Unload(C1,P1, JFK),
⇓ Precond: In(C1,P1)∧At(P1, JFK)∧Cargo(C1)∧Plane(P1)∧Airport(JFK),

Effect: At(C1, JFK) ∧ ¬In(C1,P1))

s3 At(C1, JFK) ∧ At(C2, JFK) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

20/27

Example: Air Cargo Transport (ctd.)
s3 At(C1, JFK) ∧ At(C2, JFK) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧

Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Load(C2,P2, JFK),
⇓ Precond: At(C2, JFK)∧At(P2, JFK)∧Cargo(C2)∧Plane(P2)∧Airport(JFK),

Effect: ¬At(C2, JFK) ∧ In(C2,P2))

s4 At(C1, JFK) ∧ In(C2,P2) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Fly(P2, JFK , SFO),
⇓ Precond: At(P2, JFK) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO),

Effect: ¬At(P2, JFK) ∧ At(P2, SFO))

s5 At(C1, JFK) ∧ In(C2,P2) ∧ At(P1, JFK) ∧ At(P2, SFO) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Unload(C2,P2, SFO),
⇓ Precond: In(C2,P2)∧At(P2,SFO)∧Cargo(C2)∧Plane(P2)∧Airport(SFO),

Effect: At(C2, SFO) ∧ ¬In(C2,P2))

s6 At(C1, JFK) ∧ At(C2,SFO) ∧ At(P1, JFK) ∧ At(P2, SFO) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

=⇒ s6 satisfies the goal At(C1, JFK) ∧ At(C2, SFO).

21/27

Example: Blocks World

One of the most famous planning domains is the blocks world
=⇒ consists of a set of cube-shaped blocks sitting on a table.

ä The blocks can be stacked, but only one block can fit directly on
top of another.

ä A robot arm can pick up a block and move it to another position,
either on the table or on top of another block.

ä The arm can pick up only one block at a time, so it cannot pick up
a block that has another one on it.

ä The goal is always to build one or more stacks of blocks, specified in
terms of what blocks are on top of what other blocks.

22/27

Example: Blocks World (ctd.)

ä We use On(b, x) to indicate that block b is on x , where x is either
another block or the table.

ä The action Move(b, x , y) expresses that block b is moved from the
top of x to the top of y .

• One of the preconditions on moving b is that no other block be
on it.

• In ADL, we could state this as a sentence of first-order logic:
¬∃ x On(x , b), or, equivalently, ∀ x ¬On(x , b).

• In STRIPS, we use a new predicate, Clear(x), that is true when
nothing is on x .

23/27

Example: Blocks World (ctd.)

ä We can formally describe Move in STRIPS as follows:
Action(Move(b, x , y),

Precond: On(b, x) ∧ Clear(b) ∧ Clear(y),
Effect: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))

ä But this action does not maintain Clear properly when x or y is the
table:

• for x = Table, we get Clear(Table), but the table should not
become clear,

• for y = Table, it has the precondition Clear(Table), but the
table does not have to be clear to move a block onto it.

24/27

Example: Blocks World (ctd.)

To fix this, we do the following:

1. We introduce another action to move a block b from x to the table:
Action(MoveToTable(b, x),

Precond: On(b, x) ∧ Clear(b),
Effect: On(b,Table) ∧ Clear(x) ∧ ¬On(b, x))

2. We interpret Clear(b) as “there is a clear space on b to hold a
block”
=⇒ Clear(Table) will always be true.

25/27

Example: Blocks World (ctd.)

ä One caveat in doing this:

• Nothing prevents a planner from using Move(b, x ,Table)
instead of MoveToTable(b, x)

– it will lead to a larger-than-necessary search space albeit to
no incorrect answers

– to avoid this, we can introduce the predicate Block and
add Block(b) ∧ Block(y) to the precondition of Move.

ä There is also the problem of spurious actions like Move(B,C ,C).
=⇒ can be avoided by adding inequalities.

å The complete specification of the blocks world problem is given next
(in slightly generalised STRIPS notation, as discussed).

26/27

Example: Blocks World (ctd.)

Init(On(A,Table) ∧ On(B,Table) ∧ On(C ,Table)∧
Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A,B) ∧ On(B,C))

Action(Move(b, x , y),
Precond: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y)∧

(b 6= x) ∧ (b 6= y) ∧ (x 6= y),
Effect: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))

Action(MoveToTable(b, x),
Precond: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ Block(x) ∧ (b 6= x),
Effect: On(b,Table) ∧ Clear(x) ∧ ¬On(b, x))

ä The following plan is a solution to the problem:
[Move(B,Table,C),Move(A,Table,B)].

27/27

VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Planning with State-space Search

We now turn to planning algorithms.

ä The most straightforward approach is to use state-space search.

ä Two possibilities:

• forward state-space search (or progression planning): from
initial state to goal;

• backward state-space search (or regression planning): from goal
to initial state.

1/26

Planning with State-space Search (ctd.)

The two approaches illustrated: (a) progression planning; (b) regression
planning.

2/26

Progression Planning

ä We start in the problem’s initial state, considering sequences of
actions until we find a sequence that reaches a goal state.

ä The formulation of planning problems as state-space search
problems is as follows:

• The initial state of the search is the initial state of the planning
problem.

– Each state will be a set of positive ground literals;

– literals not appearing are false.

• The actions that are applicable to a state are all those whose
preconditions are satisfied.

– The successor state resulting from an action is generated
by adding the positive effect literals and deleting the
negative effect literals.

+ In case of a first-order logic language, we must apply a
unifier from the preconditions to the effect literals.

3/26

Progression Planning (ctd.)

ä The goal test checks whether the state satisfies the goal of the
planning problem.

ä The step cost of each action is typically 1.

+ Allowing different costs for different actions could be easily
realised, but this is seldom done for STRIPS planners.

Note: in the absence of function symbols, the state space of a planning
problem is finite

å any complete graph search algorithm (like A∗) yields a complete
planning algorithm!

4/26

Regression Planning

ä The main advantage of backward search is that it allows to consider
only relevant actions.

+ An action is relevant to a conjunctive goal if it achieves one of the
conjuncts of the goal.

5/26

Regression Planning (ctd.)

For instance:

ä Consider the cargo problem with 20 pieces of cargo, having the goal

At(C1,B) ∧ At(C2,B) ∧ . . . ∧ At(C20,B).

ä Seeking actions having, e.g., the first conjunct as effect, we find
Unload(C1, p,B) as relevant.

• This action will work only if its preconditions are satisfied.
=⇒ any predecessor state must include the preconditions

In(C1, p) ∧ At(p,B).

• Moreover, the subgoal At(C1,B) should not be true in the
predecessor state.
=⇒ The predecessor state description is

In(C1, p) ∧ At(p,B) ∧ At(C2,B) ∧ . . . ∧ At(C20,B).

6/26

Regression Planning (ctd.)

Besides insisting that actions achieve some desired goal, they should not
undo any desired literals.

ä Actions satisfying this restriction are called consistent.

ä E.g., Load(C2, p,B) would not be consistent with the current goal
as it would negate the literal At(C2,B).

7/26

Regression Planning (ctd.)

We can now describe the general process of constructing predecessors for
backward search.

ä Given a goal description G , let A be an action that is relevant and
consistent.

ä The corresponding predecessor is as follows:

• Any positive effects of A that appear in G are deleted.

• Each precondition literal of A is added, unless it already
appears.

å Any standard search algorithm can be used to carry out the search.

+ In the first-order case, satisfaction might require a substitution for
variables in the predecessor description.

8/26

Partial-order Planning

ä Forward and backward state-space search are particular forms of
totally ordered plan searches.

ä They explore only strictly linear sequences of actions and do not
take advantage of problem decomposition.

å Any planning algorithm that can place two actions into a plan
without specifying which comes first is called a partial-order planner.

9/26

Example

Consider a simple example of putting on a pair of shoes:

Init()

Goal(RightShoeOn ∧ LeftShoeOn)

Action(RightShoe, Precond : RightSockOn, Effect : RightShoeOn)

Action(RightSock, Effect : RightSockOn)

Action(LeftShoe, Precond : LeftSockOn, Effect : LeftShoeOn)

Action(LeftSock, Effect : LeftSockOn)

ä A partial-order planner should come up with the following
two-action sequences:
• [RightSock,RightShoe] to achieve the first conjunct of the goal

and

• [LeftSock, LeftShoe] for the second conjunct.

ä Then, the two sequences can be combined to yield the final plan.

ä In doing so, the planner manipulates the two subsequences
independently.

10/26

Example (ctd.)

11/26

Partial-order Planning—Basics

Partial-order planning can be implemented as a search in the space of
partial-order plans:

ä We start with an empty plan.

ä Then, we consider ways of refining the plan until we come up with a
complete plan that solves the problem.

ä The actions in this search are not actions in the world but actions
on plans:

• adding a step to the plan;

• imposing an ordering that puts one action before another;

• and so on.

å We will define the POP algorithm for partial-order planning (as an
instance of a search problem).

12/26

Partial-order Plans—Components

Each plan has the following four components:

1. a set of actions;

2. a set of ordering constraints;

3. a set of causal links;

4. a set of open preconditions.

13/26

Partial-order Plans—Components (ctd.)

The set of actions constitutes the elements for making up the steps of
the plan.

ä The actions are taken from the set of actions in the planning
problem.

ä The empty plan contains just the Start and Finish actions.

• Start has no preconditions and has as its effect all the literals in
the initial state of the planning problem.

• Finish has no effects and has as its preconditions the goal
literals of the planning problem.

14/26

Partial-order Plans—Components (ctd.)

ä An ordering constraint is a pair of actions of the form A ≺ B, read
as “A before B”.

• A ≺ B means that action A must be executed sometime before
action B, but not necessarily immediately before.

ä The ordering constraints must describe a proper partial order.

ä Any cycle, like A ≺ B and B ≺ A, represents a contradiction

å an ordering constraint cannot be added to the plan if it creates
a cycle.

15/26

Partial-order Plans—Components (ctd.)

ä A causal link between two actions A and B in the plan is an
expression of form A

p−→ B, read as “A achieves p for B”.

ä E.g., the causal link

RightSock
RightSockOn−→ RightShoe

asserts that RightSockOn is an effect of the RightSock action and a
precondition of RightShoe.

• It also asserts that RightSockOn must remain true from the
time of action RightSock to the time of action RightShoe.

• In other words, the plan may not be extended by adding a new
action C that conflicts with the causal link.

16/26

Partial-order Plans—Components (ctd.)

ä An action C conflicts with A
p−→ B if

1. C has the effect ¬p and

2. C could (according to the ordering constraints) come after A
and before B.

ä A precondition is open if it is not achieved by some action in the
plan.

ä Planners will work to reduce the set of open preconditions to the
empty set, without introducing a contradiction.

17/26

Shoe-and-sock Example Revisited

For instance, the final plan in the shoe-and-sock example has the
following components (omitting the ordering constraints that put every
other action after Start and before Finish):

Actions: {RightSock,RightShoe, LeftSock, LeftShoe, Start,Finish}

Orderings: {RightSock ≺ RightShoe, LeftSock ≺ LeftShoe}

Links: {RightSock
RightSockOn−→ RightShoe, LeftSock

LeftSockOn−→ LeftShoe,

RightShoe
RightShoeOn−→ Finish, LeftShoe

LeftShoeOn−→ Finish}

Open preconditions: {}

18/26

Partial-order Plans—Solutions

ä We define a consistent plan as a plan in which

• there are no cycles in the ordering constraints and

• no conflicts with the causal links.

ä A solution is a consistent plan with no open preconditions.

å Every linearisation of a partial-order solution is a total-order solution
whose execution from the initial state will reach a goal state.

å We can extend the notion of “executing a plan” from total-order
plans to partial-order plans:

• A partial-order plan is executed by repeatedly choosing any of
the possible next actions.

19/26

The POP Algorithm

ä The initial plan contains

• Start and Finish,

• the ordering constraint Start ≺ Finish,

• no causal links, and

• all the preconditions in Finish as open preconditions.

ä The successor function arbitrarily picks

• one open precondition p on an action B and

• generates a successor plan for every possible consistent way of
choosing an action A that achieves p.

20/26

The POP Algorithm (ctd.)

Consistency is enforced as follows:

1. The causal link A
p−→ B and the ordering constraint A ≺ B are

added to the plan.

• Action A may be an existing action in the plan or a new one.

• If it is new, add it to the plan and also add Start ≺ A and
A ≺ Finish.

2. We resolve conflicts between (i) the new causal link and all existing
actions and (ii) action A and all existing causal links, providing A is
new.

• A conflict between A
p−→ B and C is resolved by adding B ≺ C

or C ≺ A.

• We add successor states for either or both if they result in
consistent plans.

21/26

The POP Algorithm (ctd.)

ä The goal test checks whether a plan is a solution to the original
planning problem.

å Because only consistent plans are generated, the goal test just needs
to check that there are no open preconditions.

22/26

Planning—Summary

ä Planning systems are problem-solving algorithms that operate on
explicit propositional or first-order representations of states and
actions.

ä STRIPS language:

• describes actions in terms of their preconditions and effects and

• describes the initial and goal states as conjunctions of positive
literals.

ä The ADL language relaxes some of these constraints,

• allowing disjunction, negation, and quantifiers.

23/26

Planning—Summary (ctd.)

ä State-space search can operate in the forward direction
(“progression”) or the backward direction (“regression”).

ä Partial-order planning algorithms explore the space of plans without
committing to a totally ordered sequence of actions.

• They work back from the goal, adding actions to the plan to
achieve each subgoal.

• They are particularly effective on problems amenable to a
divide-and-conquer approach.

24/26

Planning—Summary (ctd.)

Further planning methods:

ä The Graphplan system (Blum and Furst, 1995, 1997) is based on
a graphical data structure, called a planning graph, for extracting
plans.

• A planning graph consists of a sequence of layers that
correspond to time steps in the plan.

• Each layer contains a superset of all the literals or actions that
could occur at that time step and encodes mutual exclusion
relations among literals or actions.

• The Graphplan algorithm allows to extract a plan from the
planning graph.

25/26

Planning—Summary (ctd.)

ä Kautz and Selman (1992) proposed to solve planning problems by
translating them into formulas of propositional logic such that

• the plans of a given planning problem P are given by the
models of the associated formula A.

=⇒ This method is referred to as planning as satisfiability, and the
corresponding algorithm is called SATplan.

ä The planning-as-satisfiability approach was realised in the
Blackbox planner (Kautz and Selman, 1998), incorporating also
ideas from the Graphplan algorithm.

26/26

VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Making Simple Decisions

Decision Theory

ä Decision-theoretic agent:
• combines utility theory with probability theory

• makes rational decisions based on beliefs and desires in
contexts of uncertainty and conflicting goals

• has a continuous measure of outcome quality
å in contrast to goal-based agents that have only a binary

distinction between good (goal) and bad (non-goal) states.

ä Decision theory:

• In its simplest form, deals with choosing among actions based
on the desirability of their immediate outcomes.

• Thereby, the environment is assumed to be episodic, i.e.,
– an agent’s experience can be divided into atomic episodes

such that succeeding episodes do not depend on actions
taken in previous episodes.

å This is in contrast to sequential environments, where
current decisions influence future decisions. 1/21

Outcomes and Utilities

ä We furthermore deal with nondeterministic, partially observable
environments.

• Possible outcome states are represented in terms of random
variables:

– Result(a) denotes a random variable whose values are
the possible outcome states for taking action a.

• The probability of outcome s ′, given evidence observations e, is
written as

P(Result(a) = s ′|a, e),

where a stands for the event that action a is executed.

ä The agent’s preferences are expressed by a utility function U(s)

• assigns a single number to a state to express its desirability

2/21

Expected Utility

ä The expected utility of an action a given evidence e, denoted
EU(a|e), is the average utility value of the outcomes, weighted by
the probability that the outcome occurs:

EU(a|e) =
∑
s′

P(Result(a) = s ′|a, e)U(s ′)

ä Principle of maximum expected utility (MEU):

• a rational agent should choose the action that maximises the
agent’s expected utility:

action = argmax
a

EU(a|e).

3/21

Preferences

ä The MEU principle can be derived from general conditions that a
rational agent should have.

ä We use the following notation to describe an agent’s preferences:

A � B: the agent prefers A over B;
A ∼ B: the agent is indifferent between A and B;
A % B: the agent prefers A over B or is indifferent between

them.

ä What sort of things are A and B?

• States of the world, but: uncertainty about what is really being
offered.

– E.g., if you are an airline passenger and are offered pasta
or chicken, you do not really know what lurks beneath the
tinfoil cover.

å The set of outcomes for each action can be seen as a lottery,
where each action is a ticket.

4/21

Lottery

ä A lottery, L, with possible outcomes S1, . . . ,Sn that occur with
probabilities p1, . . . , pn is written as

L = [p1,S1; p2, S2; . . . ; pn,Sn].

• Each Si is either an atomic state or another lottery.

ä Primary issue of utility theory:

• How do preferences between complex lotteries relate to
preferences between the underlying states in those lotteries?

å To address this issue, we list some conditions that we require that
any reasonable preference relation should obey.

5/21

Axioms of Utility Theory

ä Orderability: Given any two lotteries, a rational agent cannot avoid
deciding which one it prefers, or whether it is indifferent between
them.

Exactly one of (A � B), (B � A), or (A ∼ B) holds.

ä Transitivity:

(A � B) ∧ (B � C)⇒ (A � C).

ä Continuity: If some lottery B is between A and C in preference,
then:

• there is some probability p for which the agent will be
indifferent between getting B for sure and the lottery that
yields A with probability p and C with probability 1− p.

A � B � C ⇒ ∃p [p,A; 1− p,C] ∼ B.

6/21

Axioms of Utility Theory (ctd.)

ä Substitutability: If an agent is indifferent between A and B, then it
is indifferent between two more complex lotteries that are the same
except that B is substituted for A.

A ∼ B ⇒ [p,A; 1− p,C] ∼ [p,B; 1− p,C].

This holds for � instead of ∼ as well.

ä Monotonicity: Suppose two lotteries have the same possible
outcomes A and B.

• If an agent prefers A to B, then the agent must prefer precisely
the lottery that has a higher probability for outcome A.

A � B ⇒ (p > q ⇔ [p,A; 1− p,B] � [q,A; 1− q,B]).

7/21

Axioms of Utility Theory (ctd.)

ä Decomposability: Compound lotteries can be reduced to simpler
ones using the laws of probability.

[p,A; 1− p, [q,B; 1− q,C]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C].

This is known as the “no fun in gambling” rule:
• two consecutive lotteries can be compressed into a single

equivalent lottery.

8/21

Axioms of Utility Theory (ctd.)

ä These conditions are known as the axioms of utility theory.

ä Each axiom can be motivated by showing that an agent violating it
will exhibit irrational behaviour.

ä Consider, e.g., an agent with intransitive preferences
A � B � C � A can be induced to give away all his money:

1. If the agent has A, we could offer to
trade C for A plus one cent. The agent
prefers C , so is willing to make the trade.

2. We then offer B for C , extracting another
cent, as the agent prefers B over C .

3. Finally, we trade A for B. We are back to
1 except that the agent gave us 3 cents.

4. We continue until the agent has no
money.

=⇒ Clearly, the agent behaves irrationally.
9/21

Existence of Utility Function

As shown by von Neumann and Morgenstern (1944), the axioms of utility
theory imply the following:

ä Existence of Utility Function: Given an agents preferences that
satisfy the axioms of utility theory, there exists a real-valued
function U such that

U(A) > U(B) ⇔ A � B

U(A) = U(B) ⇔ A ∼ B

ä Expected Utility of a Lottery: The utility of a lottery is the sum of
the probability of each outcome times the utility of that outcome.

U([p1,S1; . . . ; pn, Sn]) =
∑
i

piU(Si).

10/21

Utility Scales and Assessment

The preceding results show that a utility function exists, but they do not
imply that it is unique.

ä It can be shown that an agent’s behaviour does not change if its
utility function U(S) is replaced by

U ′(S) = aU(S) + b,

where a and b are constants and a > 0.

å U is determined up to linear (affine) transformations.

11/21

Utility Scales and Assessment (ctd.)

ä In deterministic environments, where there are states and no
lotteries, the behaviour of an agent is unchanged by an application
of any monotonic transformation.

• For instance, we could apply the square root to all utilities
without changing the priority order of actions.

• One says:

– An agent in a deterministic environment has a value
function or ordinal utility function,

– i.e., such functions just provide a preference ranking on
states—the numbers do not matter.

ä How to work out an agents utility function?

• Present choices to an agent and use observed preferences to pin
down the underlying utility function.

• This process is called preference elicitation.

12/21

Utility Scales

ä As we have seen, there is no absolute scale for utilities but it is
useful to establish some scale for any particular problem.

ä How to establish a scale?

• Fix the utilities of any two particular outcomes.

• Typically, we fix the utility of a “best possible prize” Sb at
U(Sb) = u> and a “worst possible catastrophe” Sw at
U(Sw) = u⊥.

• Normalized utilities use a scale with u⊥ = 0 and u> = 1.

13/21

Utility Scales: Examples

ä Some attempts have been made to find out the value that people
place on their own lives.

ä One common “currency” in medical and safety analysis is the
micromort:
• the event of a one-in-a-million chance of death.

ä If people are asked how much they would pay to avoid a risk of a
one-in-a-million chance of death they will respond with very large
numbers, but their actual behaviour reflects a much lower monetary
value for a micromort.
• E.g., driving in a car for 370 km incurs a risk of one micromort;

for a car with, say 150.000 km, that’s about 400 micromorts.

• People appear to be willing to pay about 10.000 Dollars more
for a safer car that halves the risk of death (i.e., to incur 200
micromorts instead of 400), or about 50 Dollar per micromort.

ä In general, studies on a large number of people showed that one
micromort amounts to ca. 20 Dollars (in 1980s money).

14/21

Utility Scales: Examples (ctd.)

ä Another measure is the QALY (“quality-adjusted life year”), useful
for medical decisions involving substantial risks:

• one QALY equates to one year in perfect health.

ä The QALY is an indicator for the time-trade-off (TTO) to choose
between remaining in a state of ill health for a period of time vs.
being restored to perfect health but having a shorter life expectancy.

• E.g., on average, kidney patients are indifferent between living
two years on a dialysis machine and one year at full health.

15/21

The Utility of Money

ä Money plays a significant role in human utility functions.

ä Usually, an agent exhibits a monotonic preference for more money,
all other things being equal (“ceteris paribus”), i.e., the agent
prefers more money to less.

ä But: this does not mean that money behaves as a utility function,
because it says nothing about preferences between lotteries involving
money.

ä Example:

• Suppose you have won in a game show and are offered a choice:

– either take the $1,000,000 prize or

– gamble it on the flip of a coin: the coin coming up heads
means you end up with nothing, the coin coming up tails
means you get $2,500,000.

• How would you decide?

16/21

The Utility of Money (ctd.)

ä Assuming the coin is fair, i.e., there is a 50:50 chance for coming up
heads or tails, the expected monetary value (EMV) of the gamble is

1

2
· $0 +

1

2
· $2, 500, 000 = $1, 250, 000

=⇒ The EMV is more than the original $1,000,000, but is accepting
the gamble the better decision?

ä Let Sn denote a state of possessing n Dollars, and say your current
wealth is k Dollars.

å The expected utilities of accepting and declining the gamble are

EU(Accept) =
1

2
· U(Sk) +

1

2
· U(Sk+2,500,000)

EU(Decline) = U(Sk+1,000,000).

17/21

The Utility of Money (ctd.)

ä How to define the utility?

• The utility is not directly proportional to monetary value,
because the utility for the first million is very high, but what
about the utility for the next million?

ä Assume you assign a utility of 5 to your current financial status Sk ,
9 to the state Sk+2,500,000, and 8 to the state Sk+1,000,000.

ä Then:

EU(Accept) =
1

2
· U(Sk) +

1

2
· U(Sk+2,500,000) =

5

2
+

9

2
= 7

EU(Decline) = U(Sk+1,000,000) = 8.

=⇒ the rational action would be to decline, because the expected
utility of accepting is 7 and for declining 8.

ä On the other hand, a billionaire would most likely have a utility
function that is locally linear over the range of a few million more,
and thus would accept.

18/21

The Utility of Money (ctd.)

ä In a pioneering study of actual utility functions, Grayson (1960)
found that the utility of money was almost exactly proportional to
the logarithm of the amount.

ä Preferences between different levels of debt can display a reversal of
the concavity associated with positive wealth.
• E.g., someone already $10,000,000 in debt might well accept a

gamble on a fair coin with a gain of $10,000,000 for heads and
a loss of $20,000,000 for tails.
=⇒ This leads to the S-shaped form of the curve.

19/21

Risks

ä For a positive wealth, given a lottery L with expected monetary value
EMV (L), usually U(L) < U(SEMV (L)), where SEMV (L) is the state of
being handed the expected money of the lottery as the sure thing.

å I.e., people are risk-averse—they prefer a sure thing with a
payoff that is less than the expected monetary value of a
gamble.

ä On the other hand, when in large debt, the behaviour is risk-seeking.

ä The value an agent will accept in lieu of a lottery is the certainty
equivalent of the lottery.

• Studies have shown that most people will accept about 400
Dollars in lieu of a gamble that gives 1000 dollars half the time
and 0 Dollar the other half.

• That is, the certainty equivalent of the lottery is 400 Dollars vs.
the EMV of 500 Dollars.
=⇒ The difference is called the insurance premium.

20/21

Risks (ctd.)

ä Risk aversion is the basis for the insurance industry, because it
means that insurance premiums are positive.

ä People would rather pay a small insurance premium than gamble the
price of their house against the chance of a fire.

å The price of a house is small compared with the insurance
company’s total reserves.

å The insurance company’s utility curve is approximately linear
over such a small region, and the gamble costs the company
almost nothing.

ä Note:

• for small changes in wealth compared to the current wealth,
almost any curve will be approximately linear.

å An agent that has a linear curve is said to be risk-neutral.

21/21

VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Human Judgment and Irrationality

ä Decision theory is a normative theory, i.e., it describes how a
rational agent should act.

ä A descriptive theory, on the other hand, describes how agents (e.g.,
humans) really do act.

ä Evidence suggests that these two kinds of theories do not coincide

=⇒ humans appear to be “predictably irrational”.

1/19

Allais Paradox

ä Assume that there is a choice between lotteries A and B and then
between C and D, which have the following prizes:
• A: 80% chance of winning $4000
• B: 100% chance of winning $3000

• C: 20% chance of winning $4000
• D: 25% chance of winning $3000

ä Most people prefer B over A (taking the sure thing), and C over D
(taking the higher EMV).

ä However, the normative analysis yields a different result:
• Assume, without loss of generality, a utility function with

U($0) = 0.

• Then, B � A implies U($3000) > 0.8 · U($4000), and C � D
implies 0.2 · U($4000) > 0.25 · U($3000).

• From the latter we obtain
U($3000) < 0.2

0.25U($4000) = 0.8 · U($4000).

å There is no utility function consistent with theses choices!
2/19

Allais Paradox (ctd.)

ä One possible explanation for the apparent irrational preferences is
the certainty effect, i.e., people are strongly attracted to gains that
are certain.

ä Why is that?

3/19

Allais Paradox (ctd.)
ä Possible answers:

1. People may choose to reduce their computational burden: by
choosing the certain outcomes, there is no need to estimate
probabilities.

2. People may mistrust the legitimacy of the stated probabilities
(in particular, if stated by people with a vested interest in the
outcomes).

3. People may account their emotional state as well as their
financial state.
– People know they would experience regret if they gave up

a certain reward (B) for an 80% chance of a higher reward
and then lost.

– I.e., in choosing A, there is a 20% chance of getting no
money and feeling like a complete idiot, which is worse
than just getting no money.

å Choosing B over A and C over D may not be irrational: just willing
to give up $200 EMV to avoid a 20% chance of feeling like an idiot.

4/19

Ellsberg Paradox

ä Prizes have an equal value, but probabilities are underconstrained.

ä Payoff depends on the color of a ball chosen from an urn.

ä You are told that the urn contains 1/3 red balls, and 2/3 either
black or yellow balls, but you do not know how many black and how
many yellow.

ä Then, you are asked to choose between A and B, and then between
C and D:
• A: $100 for a red ball

• B: $100 for a black ball

• C: $100 for a red or a yellow ball

• D: $100 for a black or yellow ball

ä If you think there are more red than black balls, you should prefer A
over B and C over D, and the opposite otherwise.

ä But most people prefer A over B and D over C !

å People have ambiguity aversion.
5/19

Ellsberg Paradox (ctd.)

Ambiguity aversion (ctd.):

• A: $100 for a red ball

• B: $100 for a black ball

• C: $100 for a red or a yellow ball

• D: $100 for a black or yellow ball

ä A gives you a 1/3 chance of winning, while B could be anywhere
between 0 and 2/3.

ä Likewise, D gives you a 2/3 chance, while C could be anywhere
between 1/3 and 3/3.

å Most people elect the known probability rather than the unknown
one.

6/19

Decision Networks

ä Decision networks (or influence diagrams) are a general framework
for supporting rational decisions.

ä They contain information about an agent’s current state, its possible
actions, the state that will result from the agent’s action, and the
utility of that state.

ä Example of a decision network for the airport siting problem:

7/19

Decision Networks (ctd.)

Decision network uses three types of nodes:

ä Chance nodes (ovals): represent random variables.

• E.g., the agent is uncertain about construction costs, the level
of air traffic, the potential for litigation.

• There are also the Deaths, Noise, and Cost variables,
depending on the site chosen.

• Chance nodes are associated with a conditional probability
distribution that is indexed by the state of the parent nodes.

ä Decision nodes (rectangles): represent points where a decision
maker has a choice of actions; e.g., the choice of an airport site
influences the cost, noise, etc.

ä Utility nodes (diamonds): represent the agent’s utility function.

• It has as parents all variables describing the outcome that
directly affect utility.

8/19

Evaluating Decision Networks

ä Algorithm for evaluating decision networks:

1. Set the evidence variables for the current state.

2. For each possible value of the decision node:

a) Set the decision node to that value.

b) Calculate the posterior probabilities for the parent nodes of
the utility node, using a standard probabilistic inference
algorithm.

c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.

+ Decision networks are an extension of Bayesian networks, in which
only chance nodes occur.

9/19

The Value of Information

ä In the decision network analysis it is assumed that all relevant
information is available before making a decision.

ä In practice this is hardly ever the case:

+ One of the most important parts of decision making is knowing
what questions to ask.

ä Information value theory enables an agent to choose what
information to acquire.

ä Basic assumption:

• the agent can acquire the value of any observable chance
variables.

ä These observation actions affect only the belief state, not the
external physical state.

ä The value of an observation derives from the potential to affect the
agent’s eventual physical action =⇒ this potential can be estimated
directly from the decision model itself.

10/19

The Value of Information: Example

A simple example:

ä An oil company plans to buy one of n indistinguishable blocks of
ocean-drilling rights.

ä One of the blocks contains oil worth C dollars, while all other are
worthless.

ä The price for each block is C/n Dollars.

ä If the company is risk neutral, then it is indifferent between buying a
block and not buying one.

ä Now assume that the company can buy information (results of a
survey) that says definitively whether block 3 contains oil or not.

ä How much should the company be willing to pay for this
information?

11/19

Example (ctd.)

To answer this question, we examine what the company would do if it
had the information:

ä With probability 1/n, the survey will indicate oil in block 3.

• In this case, the company will buy block 3 for C/n dollars and
make a profit of C − C/n = (n − 1)C/n dollars.

ä With probability (n − 1)/n, the survey will show that block 3
contains no oil, hence the company will buy a different one.

• Now, the probability of finding oil in one of the other blocks
changes from 1/n to 1/(n − 1), so the expected profit is

C
(n−1) −

C
n = C

n(n−1) Dollars.

ä Then, the resulting expected profit, given the survey information is

1

n
· (n − 1)C

n
+

n − 1

n
· C

n(n − 1)
=

C

n
.

å The company should be willing to pay up to C/n Dollars
=⇒ the information is worth as much as the block itself!

12/19

Remarks

ä The value of information derives from the fact that with the
information, one’s course of action can be changed to suit the actual
situation.

ä One can discriminate according to the situation:

• without the information, one has to do what is best on average
over the possible situations.

ä In general, the value of a given piece of information is defined to be
the difference in expected value between the best actions before and
after an information is obtained.

13/19

The Value of Perfect Information

ä Assumption:
• Exact evidence about the value of a random variable Ej can be

obtained (i.e., we learn Ej = ej).

å We use the phrase value of perfect information (VPI).

ä Given initial evidence e, the value of the current best action α is
defined by

EU(α|e) = max
a

EU(a|e) = max
a

∑
s′

P(Result(a) = s ′|a, e)U(s ′).

ä The value of the new best action αej after evidence Ej = ej is
obtained is

EU(αej |e, ej) = max
a

∑
s′

P(Result(a) = s ′|a, e, ej)U(s ′).

ä But the value of Ej is currently unknown, so to determine the value
of discovering Ej , given current information e, we average over all
possible values ejk that might be discovered for Ej :

VPIe(Ej) = (
∑
k

P(Ej = ejk |e)EU(αejk
|e,Ej = ejk))− EU(α|e).

14/19

Some Properties of the VPI

ä The expected value of information is nonnegative:

VPIe(Ej) ≥ 0, for all e and all Ej .

ä VPI is nonadditive:

in general, VPIe(Ej ,Ek) 6= VPIe(Ej) + VPIe(Ek).
ä VPI is order independent:

VPIe(Ej ,Ek) = VPIe(Ek ,Ej).

15/19

Decision-theoretic Expert Systems

ä Decision analysis (evolved in the 1950s and 1960s) studies the
application of decision theory to actual decision problems.

ä Traditionally, there are two roles in decision analysis:

• the decision maker, stating preferences between outcomes; and

• the decision analyst, who enumerates possible actions and
outcomes, and elicits preferences to determine the best course
of action.

ä Early expert system research concentrated on answering questions
rather than on making decisions.

ä The addition of decision networks allows expert systems to
recommend optimal decisions, reflecting preferences as well as
available evidence.

16/19

Decision-theoretic Expert Systems (ctd.)

The process of creating a decision-theoretic expert system, e.g., for
selecting a medical treatment for congenital heart disease (aortic
coarctation) in children:

1. create a causal model (e.g., determine symptoms, treatments,
disorders, outcomes, etc.);

2. simplify to a qualitative decision model;

3. assign probabilities (e.g., from patient databases, literature studies,
experts subjective assessments, etc.);

4. assign utilities (e.g., create a scale from best to worst outcome and
give each a numeric value);

5. verify and refine the model, evaluate the system against correct
input-output-pairs, a so called gold standard;

6. perform sensitivity analysis, i.e., check whether the best decision is
sensitive to small changes in the assigned probabilities and utilities.

17/19

Influence Diagram Example

Influence diagram for aortic coarctation:

18/19

Summary

ä Decision theory puts probability theory and utility theory together to
describe what an agent should do.

ä A rational agent makes decisions by considering all possible actions
and choosing the one that leads to the best expected outcome.

ä An agent whose preferences are consistent with a set of simple
axioms possesses a utility function; furthermore, it selects actions as
if maximising expected utility.

ä The value of information is defined as expected improvement in
utility compared with making a decision without the information.

ä Expert systems that incorporate utility information are more
powerful than pure inference systems:
• they are able to make decisions and use the value of

information to decide whether to acquire it, and

• they can calculate their sensitivity to small changes in
probability and utility assessments.

19/19

VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Philosophical Foundations of AI

Introduction

Can machines act intelligently in the way that humans do, and if so,
would they have real conscious minds?

Android Data (right) in “The Measure of a Man” of “Star Trek: The
Next Generation” (Episode 9, Season 2, 1989)

1/37

Introduction (ctd.)

Two different hypothesis:

ä Weak AI hypothesis

• assertion that machines could act as if they were intelligent

ä Strong AI hypothesis

• assertion that machines that do so are actually thinking (not
just simulating thinking)

2/37

Weak AI

Is artificial intelligence possible?

ä Answer depends on the definition of AI.

ä One possible definition: AI is the quest for the best agent program
on a given architecture.

• Then, AI is possible by definition: given a digital architecture
with k bits program storage, there exist 2k agent programs.

• Enumerate and test them all to find the best agent program.

ä This definition works well (in theory) for the engineering problem of
finding a good agent, given an architecture.

ä But philosophers are interested in comparing two different
architectures: humans and machines.

3/37

Can Machines think?

“The question whether machines can think [. . .]
is about as relevant as the question whether
submarines can swim” (Edsger Dijkstra, 1984)

Edsger Dijkstra

ä Question of usage of words in a language:

• E.g., definition of “swim” in American Heritage Dictionary:

– To move through water by means of the limbs, fins, or tail.

• In other languages ships do swim . . .

• . . . and airplanes fly in English:

– to fly = move through the air by means of wings or
wing-like parts.

ä Does think require “a brain” or just “brain-like” parts?

4/37

Turing Test

ä Proposed by Alan Turing in his famous paper
Computing Machinery and Intelligence (1950)
as the “Imitation Game”.

• Involves three players: player A is a man,
player B is a woman, and player C is the
interrogator.

• Player C is unable to see either player A
or player B (and knows them only as X
and Y), and can communicate with them
only through written notes.

ä By asking questions, C tries to determine which of the two is the
man and which is the woman.

ä The role of A is to trick the interrogator into making the wrong
decision, while player B attempts to assist the interrogator in
making the right one.

5/37

Turing Test (ctd.)

ä Turing asks:

“What will happen when a machine takes the part of A in this
game?”

ä He conjectures that

“in about fifty years’ time it will be possible, to programme
computers [. . .] to make them play the imitation game so well
that an average interrogator will not have more than 70 per
cent chance of making the right identification after five minutes
of questioning”.

ä Early internet chatbots (around 1989) could fool people into
believing talking to a real person (e.g., MGONZ, NATACHATA, or
CYBERLOVER).

6/37

Turing Test (ctd.)

ä Does ChatGPT pass the Turing test?

• I asked it (June 1, 2023)!

ä Here is the conversion:

Q: “Have you passed the Turing test?”

A: “As an AI language model, I do not have personal experiences
or awareness, so I cannot “pass” the Turing test in the
traditional sense. The Turing test is a subjective test designed
to determine whether a machine can exhibit intelligent behavior
indistinguishable from that of a human. However, I have been
trained on a vast amount of data and can engage in
conversations that simulate human-like responses. While I strive
to provide useful and coherent information, I am still an AI and
may not always meet the criteria of passing the Turing test.”

7/37

Turing Test (ctd.)

Q: “But as an AI language model, would you not be well suited for
the imitation game?”

A: “Yes, as an AI language model, I am well suited for the
imitation game, also known as the Turing test. The imitation
game involves a human judge engaging in a conversation with
both a human and a machine, without knowing which is which.
The judge’s goal is to determine which entity is the machine
based solely on the responses given.
As an AI language model, I have been designed to generate
human-like responses to various prompts and questions. While I
may not always provide perfect responses or convincingly
imitate a human in every scenario, my purpose is to simulate
human conversation to the best of my abilities. So, in the
context of the imitation game, I can certainly participate and
attempt to convince the judge that I am the human
counterpart.”

8/37

Turing Test (ctd.)

Q: “So, have you been subject to the imitation game?”

A: “As an AI language model, I don’t have direct knowledge of
whether I have been subject to the imitation game or specific
instances where I have been tested in that manner. My purpose
is to provide information and assist users with their queries to
the best of my abilities. OpenAI, the organization behind
ChatGPT, has conducted various tests and evaluations to
assess the capabilities of AI models like mine, including
comparisons with human performance on certain tasks.
However, the specific details and methodologies of those
evaluations are not something I have access to.”

Q: “I see. Thank you!”

A: “You’re welcome! If you have any more questions, feel free to
ask. I’m here to help!”

9/37

Turing Test (ctd.)

10/37

Turing Test (ctd.)

ä Turing himself examined different possible objections to the
possibility of intelligent machines,

• including almost all of those that have been discussed after the
publication of his famous paper.

å We will look at some of them in what follows.

11/37

Argument from Disability

ä The argument from disability makes the claim that “a machine can
never do X ”, for some property X .

ä Examples for X listed by Turing:

• be kind, resourceful, friendly

• have a sense of humor, tell right from wrong, make mistakes

• fall in love, make someone fall in love with it

• learn from experience, be the subject of its own thoughts

• enjoy strawberries and ice cream

• use words properly

• do something really new

12/37

Argument from Disability (ctd.)

ä However, it is clear that computers can do many things as well as or
better than humans, including things that people believe require
great human insight and understanding.

ä Examples:

• Statistical learning algorithms predict the success of students in
training programs or the recidivism of a criminal better than
experts.

• The Graduate Management Admission Test (GMAT) is a
computer-based assessment for predicting the success in the
first year of graduate management education.

å The program agrees with human graders in 97% of the
time, this is about the same level as two human graders
agree.

• Computers have made small but significant discoveries in
astronomy, mathematics, chemistry, etc. Each of these required
performance at the level of a human expert.

13/37

Fall in Love with Machines?

However, some persons (mostly men arguably) do occasionally fall in love
with some machines . . .

14/37

Fall in Love with Machines? (Ctd.)

From the movie “Her”, by Spike Jonze (2013)

15/37

Fall in Love with each Other?

From the movie “WALL-E”, by Andrew Stanton (2008)

16/37

The Mathematical Objection

ä In view of the work of Turing (1936) and Gödel (1931), certain
mathematical questions are in principle unanswerable by particular
formal systems.

ä In particular, Gödel’s incompleteness theorem (1931) is the most
famous example of this.

• For any axiomatic system F powerful enough to do arithmetic,
it is possible to construct a Gödel sentence G (F) with the
following properties:

– G (F) is a sentence of F , but cannot be proved within F ;

– if F is consistent, then G (F) is true.

ä Philosophers like J.R. Lucas (1961) claimed that this theorem shows
that machines are mentally inferior to humans.

• Reason: machines are formal systems and thus they are limited
by the incompleteness theorem, while humans have no such
limitation.

17/37

The Mathematical Objection (ctd.)

Problems with this claim:

ä Gödel’s incompleteness theorem applies only to particular formal
systems, including Turing machines.

• Claim is based on the assertion that computers are Turing
machines.

• However, Turing machines are infinite while computers are
finite.

• So, computers can be described as a (very large) system in
propositional logic =⇒ not subject to incompleteness theorem.

ä On the other hand, it seems to be impossible to prove that humans
are not subject of Gödel’s incompleteness theorem.

• Any rigorous proof would require a formalisation of the claimed
unformalisable human talent, which would be a contradiction.

å We are left with an appeal to intuition that humans can
perform some feat a computer cannot.

18/37

The Mathematical Objection (ctd.)

ä This appeal is often expressed with arguments such as

“we must assume our own consistency, if thought is to be
possible at all” (Lucas, 1976).

ä However, if anything, humans are known to be inconsistent . . .
. . . but some computers too . . .

HAL9000 in “2001: A Space Odyssey” by Stanley Kubrick (1968)

19/37

Argument from Informality

ä Raised by Turing as the “argument from informality of behaviour”.

ä This is the claim that human behaviour is too complex to be
captured by a set of rules.

å Because computers can do no more than follow a set rules, they
cannot generate behaviour as intelligent as that of humans.

+ The inability to capture everything in a set of logical rules is the
qualification problem in AI.

20/37

Argument from Informality (ctd.)

ä Principle proponent of this view:

• philosopher Hubert Dreyfus, who wrote a series of critiques
(1972, 1992), and also together with his brother Stuart (1986).

ä The position they criticise is “Good Old-Fashioned AI” (or GOFAI).

• GOFAI is supposed to claim that all intelligent behaviour can
be captured by a system that reasons logically from a set of
facts and rules.

å Corresponds to the simplest logical agent.

å Dreyfus critique thus is not addressed against computers per se,
rather against AI based on sets of facts and rules.

21/37

Argument from Informality (ctd.)

ä One of Dreyfus’ strongest arguments is for situated agents rather
than disembodied logical inference engines.

ä An agent whose understanding of “dog” comes only from a limited
set of logical sentences such as

Dog(x)→ Mammal(x)

is at a disadvantage compared to an agent that has watched dogs
run, has played with them, etc.

ä According to philosopher Andy Clark (1998):
“Biological brains are first and foremost the control systems for
biological bodies. Biological bodies move and act in rich
real-world surroundings.”

ä To understand human intelligence, we have to consider the whole
agent, not just the agent program.

ä Claim of the embodied cognition approach: it makes no sense to
consider the brain separately =⇒ we need to study the system as a
whole.

22/37

Strong AI

Can machines really think?

ä Claim of many philosophers:

• a machine that passes the Turing test would still not be
actually thinking, but would be only a simulation of thinking.

ä Turing has foreseen this objection, he called it the argument of
consciousness.

• Machines have to be aware of their own mental states and
actions
=⇒ machines need actually feel emotions.

• Marvin Minsky (“The Society of Mind”, 1985):

“The question is not whether intelligent machines can
have any emotions, but whether machines can be
intelligent without emotions.”

23/37

Strong AI (ctd.)

ä Turing maintains that the question whether machines can think is
ill-defined:

• In ordinary life, we never have any direct evidence about the
internal mental states of other humans.

• Turing:

“Instead of arguing continually over this point, it is usual
to have the polite convention that everyone thinks.”

ä Turing’s answer suggests that the issue will eventually go away by
itself once machines reach a certain level of sophistication.
=⇒ Dissolves the difference between weak and strong AI.

ä However, there may be a factual issue at stake: humans do have
real minds, and machines might or might not.

ä For this, the mind-body problem of philosophy is relevant.

24/37

Mind-Body Problem

ä Already considered by ancient Greek philosophers and various
schools of Hindu thought.

ä First analysed in depth by René Descartes in Meditations on First
Philosophy (1641).

• Considered the mind’s activity of thinking and the physical
processes of the body.

• Concludes that the two must exist in separate realms
=⇒ dualist theory.

• Famous quote: “cogito ergo sum” (Principles of Philosophy,
1644).

ä Main question of dualist theory: How can the mind control the body
if the two really separate?

• Descartes: they might interact through the pineal gland.

• But how does the mind control the pineal gland?

25/37

Mind-Body Problem (ctd.)

ä The monist theory of mind, often called physicalism, avoids this
problem.

ä Claim:

• mind is not separated from the body; mental states are physical
states.

ä But:

• how can physical states simultaneously be mental states?

26/37

Functionalism

ä The theory of functionalism says that a mental state is any
intermediate causal condition between input and output.

ä Hence, any two systems with isomorphic causal processes would
have the same mental states.

• So, a program could have the same mental states as a person.

• Meaning of isomorphic: assumption of a level of abstraction
below which the specific implementation does not matter.

ä Functionalism is illustrated by the brain replacement experiment:

• Introduced by philosopher Clark Glymour and discussed by John
Searle (1980), most commonly associated with roboticist Hans
Moravec (1988).

27/37

Brain Replacement Experiment

ä Basic idea:

• replace all the neurons in someone’s head with electronic
devices.

ä Assumption:

• neurophysiology has developed so far that the input-output
behaviour and connectivity of all neurons in the human brain
are perfectly understood, and

• we can build microscopic devices that mimic this behaviour.

ä The subject’s external behaviour must remain unchanged compared
with what would be observed if the operation were not carried out.

ä But what about the internal experience of the subject?
=⇒ Diverging views!

28/37

Brain Replacement Experiment (ctd.)

ä Moravec, as a robotics researcher and
functionalist, was convinced his consciousness
would remain unaffected.

ä Searle, a philosopher and biological naturalist,
was equally convinced his consciousness would
vanish.

ä Formally, by replication of the functionalities
of normal human brains, the experiment
concludes that consciousness is a product of
the electronic brain that appeals only to the
functional properties of the neurons.

ä This explanation must also apply to the real
brain which has the same functional
properties.

29/37

Biological Naturalism

ä A strong challenge to functionalism was proposed by John Searle’s
(1980) biological naturalism.

• According to this theory, mental states are high-level emergent
features that are caused by low-level physical processes in the
neurons

• and it is the (unspecified) properties of the neurons that matter.

ä Thus, mental states cannot be duplicated just on the basis of some
program having the same functional structure.

å We would require that the program be running on an
architecture with the same causal power as neurons.

ä To support this, Searle describes a hypothetical system that is
running a program and passes the Turing test, but that does not
understand anything of its inputs and outputs (the “Chinese
Room”).

å Running the right program does not necessarily generate
understanding. 30/37

Epilogue: Ethics and Risks of AI

Some points for discussion:

ä People might lose their jobs to automation.

ä People might have too much (or too little) leisure time.

ä People might lose their sense of being unique.

ä AI systems might be used towards undesirable ends.

ä The use of AI systems might result in a loss of accountability.

ä The success of AI might mean the end of the human race (“AI
singularity”).

31/37

Take over the world?

Supercomputer V.I.K.I. in “I, Robot” (book by Isaac Asimov, 1950, film by Alex
Proyas, 2004)

32/37

Take over the world?

Supercomputer V.I.K.I. in “I, Robot” (book by Isaac Asimov, 1950, film by Alex
Proyas, 2004)

33/37

Take over the world? (Ctd.)

The Terminator franchise (starting with the 1984 movie “The Terminator”

34/37

Take over the world? (Ctd.)

Colossus: The Forbin Project (1970); based on the 1966 science fiction novel
“Colossus” by Dennis Feltham Jones

35/37

Take over the world? (Ctd.)

Further recommended movies about AI systems resulting in undesired
outcomes:

ä Dr. Strangelove or: How I Learned to Stop Worrying and Love the
Bomb (1964; Stanley Kubrick);

ä 2001: A Space Odyssey (1968; Stanley Kubrick).

36/37

Postscriptum: Leibniz’s Dream

“Indignum enim est excellentium virorum horas servii calculandi
labore perire, qui Machina adhibita vilissimo cuique secure transcribi
posset.”

“Eines geistig hochstehenden Mannes ist es unwürdig, seine Zeit mit
sklavischer Rechenarbeit zu vergeuden, denn mit einer Maschine
könnte auch der Allerdümmste die Rechnung sicher ausführen.”

“It is beneath the dignity of intellectually superior men to waste their
time with slavish calculations when even the most witless of all could
do the work just as accurately with the aid of a machine.”

37/37

	What is AI?
	Terminology
	Strong AI
	Weak AI

	History of AI
	AI prehistory
	Potted history of AI
	Landmark Achievements

	State of the Art
	Shortcomings and Issues
	Conclusion
	Agents and Environments
	Rationality
	PEAS: Performance measure, Environment, Actuators, Sensors
	Environment Types
	Agent Types
	Conclusion
	Introduction
	Problem Formulation
	Definition
	Examples

	Basic Search Algorithms
	Tree Search
	Graph Search

	Search Strategies
	Uninformed Search Strategies
	Breadth-First Search
	Uniform Cost Search
	Depth First Search
	Iterative Deepening Search

	Conclusion
	Heuristic Search
	Greedy Search
	A*-search

	Admissible Heuristics
	Dominance
	Relaxed Problems

	Local Search
	Hill Climbing
	Simulated annealing
	Local beam search
	Genetic algorithms

	Conclusion
	Learning
	Learning Agents
	Representation and Modes

	Inductive Learning
	Decision Tree Learning
	Choosing an Attribute
	Problems and Generalizations

	Measuring Learning Performance
	Conclusion
	Brains
	Neural Networks
	Perceptrons
	Multi-Layer Perceptrons
	Learning
	Applications
	Conclusion

