Einführung in Wissensbasierte Systeme WS 2020/21, 3.0 VU, 184.737

Exercise Sheet 3 – Answer-Set Programming and Probabilistic Reasoning

Consider the following answer-set programs:

- $P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$
- $ightharpoonup \mathcal{P}_2 := \{ P(b). \ B(a). \}.$
- $ightharpoonup \mathcal{P}_3 := \{B(a). \ \neg P(X) \lor Z(X) \leftarrow B(X), not P(X).\}.$
- $ightharpoonup \mathcal{P}_4 := \{B(a). \ \neg F(a) \leftarrow B(a). \ P(a) \leftarrow F(a).\}.$
- $\blacktriangleright \ \mathcal{P}_5 := \{B(a). \ P(X) \lor F(X) \leftarrow B(X).\}.$
- ▶ $\mathcal{P}_6 := \{F(a). \quad F(X) \leftarrow B(X), not P(X). \quad P(X) \leftarrow B(X), not F(X).\}.$

Classify them based on their syntax. That is, decide whether they are a ground, Horn, normal, non-disjunctive, basic, or merely a collection of facts. Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

Solution.

 $\triangleright \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$

- $ightharpoonup \mathcal{P}_1 := \{P(a) \leftarrow \neg B(a). \quad \neg B(a).\}.$
- ▶ \mathcal{P}_1 has two rules, $P(a) \leftarrow \neg B(a)$. and $\neg B(a)$..

- $ightharpoonup \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$
- ▶ P_1 has two rules, $P(a) \leftarrow \neg B(a)$. and $\neg B(a)$.
- ▶ The rule $\neg B(a)$. is a fact (shorthand for a rule with no body).

- $ightharpoonup \mathcal{P}_1 := \{P(a) \leftarrow \neg B(a). \quad \neg B(a).\}.$
- ▶ \mathcal{P}_1 has two rules, $P(a) \leftarrow \neg B(a)$. and $\neg B(a)$..
- ▶ The rule $\neg B(a)$. is a fact (shorthand for a rule with no body).
- ▶ The literals in \mathcal{P}_1 are P(a) and $\neg B(a)$.

- $ightharpoonup \mathcal{P}_1 := \{P(a) \leftarrow \neg B(a). \quad \neg B(a).\}.$
- ▶ P_1 has two rules, $P(a) \leftarrow \neg B(a)$. and $\neg B(a)$.
- ▶ The rule $\neg B(a)$. is a fact (shorthand for a rule with no body).
- ▶ The literals in \mathcal{P}_1 are P(a) and $\neg B(a)$.
- ▶ The negation ¬ in the literal ¬B(a) is strong negation.

- $\triangleright \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$
- ▶ P_1 has two rules, $P(a) \leftarrow \neg B(a)$. and $\neg B(a)$.
- ▶ The rule $\neg B(a)$. is a fact (shorthand for a rule with no body).
- ▶ The literals in \mathcal{P}_1 are P(a) and $\neg B(a)$.
- ▶ The negation ¬ in the literal ¬B(a) is strong negation.
- ▶ The atoms in \mathcal{P}_1 are P(a) and B(a). P and B are predicates and a is a ground term.

- $P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$
- ▶ P_1 has two rules, $P(a) \leftarrow \neg B(a)$. and $\neg B(a)$.
- ▶ The rule $\neg B(a)$. is a fact (shorthand for a rule with no body).
- ▶ The literals in \mathcal{P}_1 are P(a) and $\neg B(a)$.
- ▶ The negation ¬ in the literal ¬B(a) is strong negation.
- ▶ The atoms in \mathcal{P}_1 are P(a) and B(a). P and B are predicates and a is a ground term.
- ▶ There are no variables in \mathcal{P}_1 .
- ▶ There is no default negation in \mathcal{P}_1 .

Solution.

 $\blacktriangleright \ \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$

Solution.

 $\blacktriangleright \ \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$

	ground	Horn	normal	non-disjunctive	basic	facts
$\overline{\mathcal{P}_1}$						

Solution.

$$\triangleright \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$$

	ground	Horn	normal	non-disjunctive	basic	facts
$\overline{\mathcal{P}_1}$	yes					

A rule is:

ground if: has no variables.

Solution.

$$P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$$

	ground	Horn	normal	non-disjunctive	basic	facts
\mathcal{P}_1	yes			yes		

- ground if: has no variables.
- ▶ non-disjunctive: if no disjunction in head.

Solution.

$$\triangleright \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$$

	ground	Horn	normal	non-disjunctive	basic	facts
\mathcal{P}_1	yes		no	yes		

- ground if: has no variables.
- non-disjunctive: if no disjunction in head.
- normal if: non-disjunctive and no strong negation.

Solution.

$$P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$$

	ground	Horn	normal	non-disjunctive	basic	facts
\mathcal{P}_1	yes		no	yes	yes	

- ground if: has no variables.
- non-disjunctive: if no disjunction in head.
- normal if: non-disjunctive and no strong negation.
- basic: if no default negation and no non-empty head.

Solution.

$$P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$$

	ground	Horn	normal	non-disjunctive	basic	facts
\mathcal{P}_1	yes	no	no	yes	yes	

- ground if: has no variables.
- non-disjunctive: if no disjunction in head.
- normal if: non-disjunctive and no strong negation.
- basic: if no default negation and no non-empty head.
- Horn if: normal and basic.

Solution.

$$P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$$

	ground	Horn	normal	non-disjunctive	basic	facts
\mathcal{P}_1	yes	no	no	yes	yes	no

- ground if: has no variables.
- non-disjunctive: if no disjunction in head.
- normal if: non-disjunctive and no strong negation.
- basic: if no default negation and no non-empty head.
- ► Horn if: normal and basic.

- $ightharpoonup \mathcal{P}_1 := \{P(a) \leftarrow \neg B(a). \quad \neg B(a).\}.$
- $ightharpoonup P_2 := \{ P(b), B(a), \}.$
- $ightharpoonup \mathcal{P}_3 := \{B(a). \ \neg P(X) \lor Z(X) \leftarrow B(X), not P(X).\}.$
- $ightharpoonup \mathcal{P}_4 := \{B(a). \ \neg F(a) \leftarrow B(a). \ P(a) \leftarrow F(a).\}.$
- $\blacktriangleright \ \mathcal{P}_5 := \{B(a). \ P(X) \lor F(X) \leftarrow B(X).\}.$
- ▶ $\mathcal{P}_6 := \{F(a). \quad F(X) \leftarrow B(X), not P(X). \quad P(X) \leftarrow B(X), not F(X).\}.$

	ground	Horn	normal	non-disjunctive	basic	facts
$\overline{\mathcal{P}_1}$	yes	no	no	yes	yes	no
\mathcal{P}_2	yes	yes	yes	yes	yes	yes
\mathcal{P}_3	no	no	no	no	no	no
\mathcal{P}_{4}	yes	no	no	yes	yes	no
\mathcal{P}_{5}	no	no	no	no	yes	no
\mathcal{P}_6	no	no	yes	yes	no	no

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

 $\triangleright \mathcal{P}_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

- $P_1 := \{ P(a) \leftarrow \neg B(a). \quad \neg B(a). \}.$
- Schema for each rule: rule $a \leftarrow b_1, b_2, \text{not } c_1, \text{not } c_2$. becomes default $\frac{b_1 \wedge b_2 : \neg c_1, \neg c_2}{a}$

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

- $ightharpoonup \mathcal{P}_1 := \{P(a) \leftarrow \neg B(a). \quad \neg B(a).\}.$
- Schema for each rule: rule $a \leftarrow b_1, b_2, \text{not } c_1, \text{not } c_2$. becomes default $\frac{b_1 \wedge b_2 : \neg c_1, \neg c_2}{a}$
- $\delta(\mathcal{P}_1) = \left(\emptyset, \left\{\frac{\neg B(a):\emptyset}{P(a)}, \frac{\top:\emptyset}{\neg B(a)}\right\}\right) \text{ with its only extension being } Cn(\{P(a), \neg B(a)\}).$ which corresponds to the only answer set of \mathcal{P}_1 , i.e. $\{P(a), \neg B(a)\}.$

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

▶ $\mathcal{P}_2 := \{ P(b). \quad B(a). \}.$

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

- $ightharpoonup \mathcal{P}_2 := \{ P(b). \ B(a). \}.$
- Schema for each rule: rule $a \leftarrow b_1, b_2, \text{not } c_1, \text{not } c_2$. becomes default $\frac{b_1 \land b_2 : \neg c_1, \neg c_2}{a}$
- $\delta(\mathcal{P}_2) = \left(\emptyset, \left\{\frac{\top : \emptyset}{P(b)}, \frac{\top : \emptyset}{B(a)}\right\}\right) \text{ with its only extension being } Cn(\{P(b), B(a)\}). \text{ which corresponds to the only answer set of } \mathcal{P}_2, \text{ i.e. } \{P(b), B(a)\}.$

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

$$\blacktriangleright \ \mathcal{P}_3 := \{B(a). \ \neg P(X) \lor Z(X) \leftarrow B(X), \, \mathsf{not} \, P(X).\}.$$

Moreover, use the translation presented in the lecture to transform the given answer-set programs into their corresponding default theories and determine the cases where there is a one-to-one correspondence between the answer sets of the original program and the extensions of its respective translation.

- $P_3 := \{B(a). \neg P(X) \lor Z(X) \leftarrow B(X), not P(X).\}.$
- Schema for each rule: rule $a \leftarrow b_1, b_2, \text{not } c_1, \text{not } c_2$. becomes default $\frac{b_1 \land b_2 : \neg c_1, \neg c_2}{a}$
- $\delta(\mathcal{P}_3) = \left(\emptyset, \left\{\frac{\top : \emptyset}{B(a)}, \frac{B(x) : \neg P(x)}{\neg P(x) \lor Z(X)}\right\}\right)$ with its only extension being $Cn(\{B(a), \neg P(a) \lor Z(a)\})$.

By contrast the two answer sets of \mathcal{P}_3 are $\{B(a), Z(a)\}$ and $\{B(a), \neg P(a)\}$.

- ▶ $\delta(\mathcal{P}_4) = \left(\emptyset, \left\{\frac{\top : \emptyset}{B(a)}, \frac{B(a) : \emptyset}{\neg F(a)}, \frac{F(a) : \emptyset}{P(a)}\right\}\right)$ with its only extension being $Cn(\{B(a), \neg F(a)\})$ which corresponds to the only answer set of \mathcal{P}_4 , i.e. $\{\neg F(a), B(a)\}$.
- $\delta(\mathcal{P}_5) = \left(\emptyset, \left\{\frac{\top : \emptyset}{B(a)}, \frac{B(a) : \emptyset}{P(a) \vee F(a)}\right\}\right) \text{ with its only extension being } Cn(\{B(a), P(a) \vee F(a)\}).$ By contrast the two answer sets of \mathcal{P}_5 are $\{B(a), F(a)\}$ and $\{B(a), P(a)\}$.
- $\delta(\mathcal{P}_6) = \left(\emptyset, \left\{\frac{\top : \emptyset}{B(a)}, \frac{B(x) : \neg P(x)}{F(x)}, \frac{B(x) : \neg F(x)}{P(x)}\right\}\right) \text{ with its extensions being } Cn(\{B(a), F(a)\})$ and $Cn(\{B(a), P(a)\})$ which corresponds to the only answer set of \mathcal{P}_6 : $\{F(a)\}$.

Consider the following disjunctive logic program \mathcal{P} (a, b, c, and d are propositional atoms):

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

- (i) Determine all answer sets of \mathcal{P} . For each proposed answer set S, argue formally that it is indeed an answer set (using the Gelfond-Lifschitz reduct \mathcal{P}^S).
- (ii) Determine which rule, let it be called r, ought to be removed if one intends to reduce the set of answer sets by at least one. That is, determine some $r \in \mathcal{P}$ such that

$$AS(\mathcal{P} \setminus \{r\}) \subset AS(\mathcal{P})$$

holds, where AS(Q) denotes the set of all answer sets of a given logic program Q.

$$\mathcal{P} = \left\{ egin{aligned} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{aligned}
ight\}.$$

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

(i) Propositional atoms $\{a, b, c, d\}$ so any subset of these might be answer set.

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

- (i) Propositional atoms $\{a, b, c, d\}$ so any subset of these might be answer set.
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

- (i) Propositional atoms $\{a, b, c, d\}$ so any subset of these might be answer set.
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.
 - \Rightarrow We try $S_1 = \{a, b\}$ first.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate
 - 2) delete from remaining rules all negative literals.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate 2) delete from remaining rules all negative literals.
- ightharpoonup Candidate $S_1 = \{a, b\}$:

$$\mathcal{P} = egin{cases} b \lor c \leftarrow not d. \ a \lor c \leftarrow not c. \ a \leftarrow not c. \ b \leftarrow not c. \end{cases}.$$

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate 2) delete from remaining rules all negative literals.
- ightharpoonup Candidate $S_1 = \{a, b\}$:

$$\mathcal{P} = egin{cases} b \lor c \leftarrow not d. \ a \lor c \leftarrow not c. \ a \leftarrow not c. \ b \leftarrow not c. \end{cases}.$$

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate 2) delete from remaining rules all negative literals.

$$\mathcal{P} = egin{cases} b \lor c \leftarrow \textit{not } d. \ a \lor c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

d not contained in S₁, first rule is kept.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate 2) delete from remaining rules all negative literals.

$$\mathcal{P} = egin{cases} b \lor c \leftarrow not d. \ a \lor c \leftarrow not c. \ a \leftarrow not c. \ b \leftarrow not c. \end{cases}.$$

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate 2) delete from remaining rules all negative literals.

$$\mathcal{P} = egin{cases} b \lor c \leftarrow not d. \ a \lor c \leftarrow not c. \ a \leftarrow not c. \ b \leftarrow not c. \end{cases}.$$

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - delete all rules where negative body is in conflict with candidate
 delete from remaining rules all negative literals.
- ► Candidate $S_1 = \{a, b\}$:

$$\mathcal{P} = \begin{cases} b \lor c \leftarrow . \\ a \lor c \leftarrow . \\ a \leftarrow . \\ b \leftarrow . \end{cases}.$$

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - delete all rules where negative body is in conflict with candidate
 delete from remaining rules all negative literals.
- ► Candidate $S_1 = \{a, b\}$:

Gelfond-Lifschitz reduct
$$\mathcal{P}^{S_1} = \left\{ egin{array}{l} b \lor c \leftarrow . \\ a \lor c \leftarrow . \\ a \leftarrow . \\ b \leftarrow . \end{array} \right\}$$
.

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - delete all rules where negative body is in conflict with candidate
 delete from remaining rules all negative literals.
- ▶ Candidate $S_1 = \{a, b\}$:

Gelfond-Lifschitz reduct
$$\mathcal{P}^{S_1} = \left\{ \begin{array}{l} b \lor c. \\ a \lor c. \\ a. \\ b. \end{array} \right\}$$
.

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - 1) delete all rules where negative body is in conflict with candidate 2) delete from remaining rules all negative literals.
- $\qquad \qquad \mathsf{Candidate} \ \mathit{S}_{1} = \{\mathit{a},\mathit{b}\}:$

Gelfond-Lifschitz reduct
$$\mathcal{P}^{S_1} = \left\{ \begin{array}{l} b \lor c. \\ a \lor c. \\ a. \\ b. \end{array} \right\}$$
.

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.
- ▶ Is S_1 a minimal model of $\mathcal{P}^{S_1} = \{b \lor c. \ a \lor c. \ a. \ b.\}$?

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - delete all rules where negative body is in conflict with candidate
 delete from remaining rules all negative literals.
- $\qquad \qquad \mathsf{Candidate} \ \mathit{S}_{1} = \{\mathit{a},\mathit{b}\}:$

Gelfond-Lifschitz reduct
$$\mathcal{P}^{S_1} = \begin{cases} b \lor c. \\ a \lor c. \\ a. \\ b. \end{cases}$$
.

- \triangleright d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.
- ▶ Is S_1 a minimal model of $\mathcal{P}^{S_1} = \{b \lor c. \ a \lor c. \ a. \ b.\}$?
- \Rightarrow Yes!

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - delete all rules where negative body is in conflict with candidate
 delete from remaining rules all negative literals.
- ► Candidate $S_1 = \{a, b\}$:

Gelfond-Lifschitz reduct
$$\mathcal{P}^{S_1} = \left\{ \begin{array}{l} b \lor c. \\ a \lor c. \\ a. \\ b. \end{array} \right\}$$
.

- ightharpoonup d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.
- ▶ Is S_1 a minimal model of $\mathcal{P}^{S_1} = \{b \lor c. \ a \lor c. \ a. \ b.\}$?
- \Rightarrow Yes!
- \triangleright S_1 is an answer set.

- \Rightarrow We try $S_1 = \{a, b\}$ first.
- ► Gelfond-Lifschitz reduct: take candidate set,
 - delete all rules where negative body is in conflict with candidate
 delete from remaining rules all negative literals.

Gelfond-Lifschitz reduct
$$\mathcal{P}^{S_1} = \left\{ \begin{array}{l} b \lor c. \\ a \lor c. \\ a. \\ b. \end{array} \right\}$$
.

- \triangleright d not contained in S_1 , first rule is kept.
- ightharpoonup c not contained in S_1 , all other rules kept.
- ▶ Is S_1 a minimal model of $\mathcal{P}^{S_1} = \{b \lor c. \ a \lor c. \ a. \ b.\}$?
- \Rightarrow Yes!
- \triangleright S_1 is an answer set.
- \triangleright No superset of S_1 is an answer-set.

$$\mathcal{P} = \left\{ egin{aligned} b ee c \leftarrow not \ d. \ a ee c \leftarrow not \ c. \ a \leftarrow not \ c. \ b \leftarrow not \ c. \end{aligned}
ight\}.$$

- Other answer-sets?
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

- Other answer-sets?
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.
 - **Observe:** case for c false done, now assume c is true. Intuitively, none of the rules with not c in the body can fire. So, only the first rule might fire with $b \lor c$ in the head.

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

- Other answer-sets?
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.
 - **Observe:** case for c false done, now assume c is true. Intuitively, none of the rules with not c in the body can fire. So, only the first rule might fire with $b \lor c$ in the head.
 - \Rightarrow We try $S_2 = \{c\}$.

$$\mathcal{P} = \left\{ egin{aligned} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{aligned}
ight\}.$$

- Other answer-sets?
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.
 - **Observe:** case for c false done, now assume c is true. Intuitively, none of the rules with not c in the body can fire. So, only the first rule might fire with $b \lor c$ in the head.
 - \Rightarrow We try $S_2 = \{c\}$.
 - ▶ The GL-reduct is $\mathcal{P}^{S_2} = \{b \lor c.\}$.

$$\mathcal{P} = egin{cases} b ee c \leftarrow \textit{not } d. \ a ee c \leftarrow \textit{not } c. \ a \leftarrow \textit{not } c. \ b \leftarrow \textit{not } c. \end{cases}.$$

- (i) Dther answer-sets?
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.
 - Observe: case for c false done, now assume c is true. Intuitively, none of the rules with not c in the body can fire. So, only the first rule might fire with b ∨ c in the head.
 - \Rightarrow We try $S_2 = \{c\}$.
 - ▶ The GL-reduct is $\mathcal{P}^{S_2} = \{b \lor c.\}$.
 - ▶ S_2 is a minimal models of \mathcal{P}^{S_2} .

$$\mathcal{P} = \left\{ \begin{aligned} b \lor c &\leftarrow \mathsf{not} \ d. \\ a \lor c &\leftarrow \mathsf{not} \ c. \\ a &\leftarrow \mathsf{not} \ c. \\ b &\leftarrow \mathsf{not} \ c. \end{aligned} \right\}.$$

- Other answer-sets?
 - ▶ Observe: if c false, then a, b, and $a \lor c$ must hold.
 - **Observe:** case for c false done, now assume c is true. Intuitively, none of the rules with not c in the body can fire. So, only the first rule might fire with $b \lor c$ in the head.
 - \Rightarrow We try $S_2 = \{c\}$.
 - ▶ The GL-reduct is $\mathcal{P}^{S_2} = \{b \lor c.\}$.
 - \triangleright S_2 is a minimal models of \mathcal{P}^{S_2} .
 - \triangleright No superset of $\{c\}$ can be an answer-set.
 - ⇒ We found all answer-sets.

$$\mathcal{P} = \left\{ \begin{aligned} b \lor c \leftarrow not \, d. \\ a \lor c \leftarrow not \, c. \\ a \leftarrow not \, c. \\ b \leftarrow not \, c. \end{aligned} \right\}.$$

(ii) Determine which rule, let it be called r, ought to be removed if one intends to reduce the set of answer sets by at least one. That is, determine some $r \in \mathcal{P}$ such that $AS(\mathcal{P} \setminus \{r\}) \subset AS(\mathcal{P})$

holds, where AS(Q) denotes the set of all answer sets of a given logic program Q.

$$\mathcal{P} = \left\{ \begin{aligned} b \lor c \leftarrow not \, d. \\ a \lor c \leftarrow not \, c. \\ a \leftarrow not \, c. \\ b \leftarrow not \, c. \end{aligned} \right\}.$$

(ii) Determine which rule, let it be called r, ought to be removed if one intends to reduce the set of answer sets by at least one. That is, determine some $r \in \mathcal{P}$ such that $AS(\mathcal{P} \setminus \{r\}) \subset AS(\mathcal{P})$

holds, where AS(Q) denotes the set of all answer sets of a given logic program Q.

• Answer-sets: $S_1 = \{a, b\}, S_2 = \{c\}.$

$$\mathcal{P} = \left\{ \begin{aligned} b \lor c \leftarrow not \, d. \\ a \lor c \leftarrow not \, c. \\ a \leftarrow not \, c. \\ b \leftarrow not \, c. \end{aligned} \right\}.$$

(ii) Determine which rule, let it be called r, ought to be removed if one intends to reduce the set of answer sets by at least one. That is, determine some $r \in \mathcal{P}$ such that $AS(\mathcal{P} \setminus \{r\}) \subset AS(\mathcal{P})$

holds, where AS(Q) denotes the set of all answer sets of a given logic program Q.

- Answer-sets: $S_1 = \{a, b\}, S_2 = \{c\}.$
- ▶ Remove $r = b \lor c \leftarrow \text{not } d$.
- ▶ Then $P \setminus \{r\}$ has only rules with not c in body, this leads back to S_1 .

- $ightharpoonup \mathcal{P}_1$ has no answer sets,
- $ightharpoonup \mathcal{P}_2$ has only the empty set as answer set, and
- \triangleright \mathcal{P}_3 has at least three answer sets, one of size 1, one of size 2, and one of size 3.

- $ightharpoonup \mathcal{P}_1$ has no answer sets,
- \triangleright \mathcal{P}_2 has only the empty set as answer set, and
- $ightharpoonup \mathcal{P}_3$ has at least three answer sets, one of size 1, one of size 2, and one of size 3.
- ▶ $\mathcal{P}_1 := \{P(a) \leftarrow not P(a).\}$ has no answer sets.

- $ightharpoonup \mathcal{P}_1$ has no answer sets,
- $ightharpoonup \mathcal{P}_2$ has only the empty set as answer set, and
- \triangleright \mathcal{P}_3 has at least three answer sets, one of size 1, one of size 2, and one of size 3.
- ▶ $\mathcal{P}_1 := \{P(a) \leftarrow not P(a).\}$ has no answer sets.
- ► To confirm:
 - ▶ assume $S_1 := \{\}$ is an answer set, then $\mathcal{P}_1^{S_1} = \{P(a).\}$. Minimal model of $\mathcal{P}_1^{S_1}$ is $\{P(a)\} \neq S_1$.

- \triangleright \mathcal{P}_1 has no answer sets,
- $ightharpoonup \mathcal{P}_2$ has only the empty set as answer set, and
- \triangleright \mathcal{P}_3 has at least three answer sets, one of size 1, one of size 2, and one of size 3.
- ▶ $\mathcal{P}_1 := \{P(a) \leftarrow not P(a).\}$ has no answer sets.
- ► To confirm:
 - ▶ assume $S_1 := \{\}$ is an answer set, then $\mathcal{P}_1^{S_1} = \{P(a).\}$. Minimal model of $\mathcal{P}_1^{S_1}$ is $\{P(a)\} \neq S_1$.
 - ▶ assume $S_2 := \{P(a)\}$ is an answer set, then $\mathcal{P}_1^{S_2} = \{\}$. Minimal model of $\mathcal{P}_1^{S_2}$ is $\{\} \neq S_2$.

▶ $P_2 := \{P(a) \leftarrow P(a).\}$ has only empty set as answer set.

- ▶ $\mathcal{P}_2 := \{P(a) \leftarrow P(a).\}$ has only empty set as answer set.
- ► To confirm:
 - lacksquare assume $\mathcal{S}_1 := \{\}$ is an answer set, then

GL-reduct
$$\mathcal{P}_2^{S_1} = \{P(a) \leftarrow P(a).\}.$$

Minimal model of $\mathcal{P}_2^{S_1} = \{\} = S_1$. Answer set!

- $ightharpoonup \mathcal{P}_2 := \{P(a) \leftarrow P(a).\}$ has only empty set as answer set.
- ► To confirm:
 - ▶ assume $S_1 := \{\}$ is an answer set, then GL-reduct $\mathcal{P}_2^{S_1} = \{P(a) \leftarrow P(a).\}$.
 - Minimal model of $\mathcal{P}_2^{S_1} = \{\} = S_1$. Answer set!
 - assume $S_2 = \{P(a)\}$ is an answer set, then GL-reduct $\mathcal{P}_2^{S_2} = \{P(a) \leftarrow P(a).\}$.
 - Minimal model of $\mathcal{P}_2^{\mathcal{S}_2}=\{\}
 eq \mathcal{S}_2.$ No answer set!

▶ For \mathcal{P}_3 we need at least three answer sets, one of size 1, one of size 2, and one of size 3.

- ▶ For \mathcal{P}_3 we need at least three answer sets, one of size 1, one of size 2, and one of size 3.
- Cyclic negation can cause multiple answer sets.

- ▶ For \mathcal{P}_3 we need at least three answer sets, one of size 1, one of size 2, and one of size 3.
- Cyclic negation can cause multiple answer sets.
- ► Take $\mathcal{P}_3 := \{ \textit{O(a)} \leftarrow \textit{not P(a)}, \textit{not Q(a)}.$

$$P(a) \leftarrow not O(a), not Q(a).$$

$$Q(a) \leftarrow not O(a), not P(a).$$

$$A(a) \leftarrow P(a). \ A(a) \leftarrow Q(a). \ B(a) \leftarrow Q(a).$$

- ▶ For \mathcal{P}_3 we need at least three answer sets, one of size 1, one of size 2, and one of size 3.
- Cyclic negation can cause multiple answer sets.
- Take $\mathcal{P}_3 := \{ O(a) \leftarrow not \ P(a), not \ Q(a).$ $P(a) \leftarrow not \ O(a), not \ Q(a).$

$$Q(a) \leftarrow not O(a), not P(a).$$

$$A(a) \leftarrow P(a). \ A(a) \leftarrow Q(a). \ B(a) \leftarrow Q(a).$$

- $\triangleright \mathcal{P}_3$ has the answer sets
 - $ightharpoonup S_1 := \{O(a)\}$
 - \triangleright $S_2 := \{P(a), A(a)\},$
 - $ightharpoonup S_3 := \{Q(a), A(a), B(a)\}.$

- ▶ For \mathcal{P}_3 we need at least three answer sets, one of size 1, one of size 2, and one of size 3.
- Cyclic negation can cause multiple answer sets.

Take
$$\mathcal{P}_3:=\{O(a)\leftarrow not\ P(a), not\ Q(a).$$
 $P(a)\leftarrow not\ O(a), not\ Q(a).$ $Q(a)\leftarrow not\ O(a), not\ P(a).$

$$A(a) \leftarrow P(a). \ A(a) \leftarrow Q(a). \ B(a) \leftarrow Q(a).$$

- $\triangleright \mathcal{P}_3$ has the answer sets
 - $\triangleright S_1 := \{O(a)\}$
 - $\mathcal{P}_3^{S_1} = \{ O(a), A(a) \leftarrow P(a), A(a) \leftarrow Q(a), B(a) \leftarrow Q(a), \} \text{ with minimal model } S_1.$ $\mathcal{S}_2 := \{ P(a), A(a) \}.$
 - $\mathcal{P}_3^{S_2} = \{P(a). \ A(a) \leftarrow P(a). \ A(a) \leftarrow Q(a). \ B(a) \leftarrow Q(a). \}$ with minimal model S_2 .
 - $\triangleright S_3 := \{Q(a), A(a), B(a)\}.$
 - $\mathcal{P}_3^{S_2} = \{Q(a). \ A(a) \leftarrow P(a). \ A(a) \leftarrow Q(a). \ B(a) \leftarrow Q(a). \}$ with minimal model S_3 .

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} . What about $M_1 \cup M_2$?

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} . What about $M_1 \cup M_2$?

- ▶ Horn logic program: rules have no negation (neither strong nor weak), exactly one atom in head (no disjunction).
- Classical model: satisfies every rule of program.
- ▶ Rule (classically) satisfied if body false or head true.

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} .

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} .

▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} .

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} .

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \dots, b_n$.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \ldots, b_n$.
- Case distinction:
 - ▶ if for any b_i with $i \in \{1, ..., n\}$ holds $b_i \notin M_1$ or $b_i \notin M_2$, then $b_i \notin M_1 \cap M_2$, so r is satisfied by $M_1 \cap M_2$.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \ldots, b_n$.
- Case distinction:
 - ▶ if for any b_i with $i \in \{1, ..., n\}$ holds $b_i \notin M_1$ or $b_i \notin M_2$, then $b_i \notin M_1 \cap M_2$, so r is satisfied by $M_1 \cap M_2$.
 - Consider the other case, that is: for every b_i holds $b_i \in M_1$ and b_i in M_2 .
 - ▶ This means the body of r is true under M_1 and since M_1 satisfies r, its head a must be true, therefore $a \in M_1$.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \dots, b_n$.
- Case distinction:
 - ▶ if for any b_i with $i \in \{1, ..., n\}$ holds $b_i \notin M_1$ or $b_i \notin M_2$, then $b_i \notin M_1 \cap M_2$, so r is satisfied by $M_1 \cap M_2$.
 - Consider the other case, that is: for every b_i holds $b_i \in M_1$ and b_i in M_2 .
 - ▶ This means the body of r is true under M_1 and since M_1 satisfies r, its head a must be true, therefore $a \in M_1$.
 - ▶ The same holds for M_2 . Since M_2 also satisfies r it holds that $a \in M_2$.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \ldots, b_n$.
- Case distinction:
 - ▶ if for any b_i with $i \in \{1, ..., n\}$ holds $b_i \notin M_1$ or $b_i \notin M_2$, then $b_i \notin M_1 \cap M_2$, so r is satisfied by $M_1 \cap M_2$.
 - ▶ Consider the other case, that is: for every b_i holds $b_i \in M_1$ and b_i in M_2 .
 - ▶ This means the body of r is true under M_1 and since M_1 satisfies r, its head a must be true, therefore $a \in M_1$.
 - ▶ The same holds for M_2 . Since M_2 also satisfies r it holds that $a \in M_2$.
 - From $a \in M_1$ and $a \in M_2$ follows $a \in M_1 \cap M_2$.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \ldots, b_n$.
- Case distinction:
 - ▶ if for any b_i with $i \in \{1, ..., n\}$ holds $b_i \notin M_1$ or $b_i \notin M_2$, then $b_i \notin M_1 \cap M_2$, so r is satisfied by $M_1 \cap M_2$.
 - Consider the other case, that is: for every b_i holds $b_i \in M_1$ and b_i in M_2 .
 - ▶ This means the body of r is true under M_1 and since M_1 satisfies r, its head a must be true, therefore $a \in M_1$.
 - ▶ The same holds for M_2 . Since M_2 also satisfies r it holds that $a \in M_2$.
 - From $a \in M_1$ and $a \in M_2$ follows $a \in M_1 \cap M_2$.
 - ▶ Therefore, r is satisfied in $M_1 \cap M_2$ in this case, too.

- ▶ Assume M_1 classical model of \mathcal{P} and M_2 classical model of \mathcal{P} .
- ▶ We have to show that $M_1 \cap M_2$ is a classical model of \mathcal{P} .
- ▶ Since M_1 is classical model of \mathcal{P} , it holds for every rule $r \in \mathcal{P}$ that M_1 satisfies r.
- ▶ The same holds for M_2 , that is, M_2 satisfies every $r \in \mathcal{P}$.
- ▶ Wlog. (Without loss of generality) let $r \in \mathcal{P}$ be of the form $a \leftarrow b_1, \ldots, b_n$.
- Case distinction:
 - ▶ if for any b_i with $i \in \{1, ..., n\}$ holds $b_i \notin M_1$ or $b_i \notin M_2$, then $b_i \notin M_1 \cap M_2$, so r is satisfied by $M_1 \cap M_2$.
 - Consider the other case, that is: for every b_i holds $b_i \in M_1$ and b_i in M_2 .
 - This means the body of r is true under M_1 and since M_1 satisfies r, its head a must be true, therefore $a \in M_1$.
 - ▶ The same holds for M_2 . Since M_2 also satisfies r it holds that $a \in M_2$.
 - From a ∈ M₁ and a ∈ M₂ follows a ∈ M₁ ∩ M₂.
 Therefore, r is satisfied in M₁ ∩ M₂ in this case, too.
- ▶ In both cases r is satisfied in $M_1 \cap M_2$ and because r was picked arbitrarily from \mathcal{P} , it follows that $M_1 \cap M_2$ satisfies every $r \in \mathcal{P}$, that is, $M_1 \cap M_2$ is a classical model of \mathcal{P} .

Let \mathcal{P} be a Horn logic program and $M_1, M_2 \subseteq HB(\mathcal{P})$ classical models of \mathcal{P} . Prove that $M_1 \cap M_2$ is also a classical model of \mathcal{P} . What about $M_1 \cup M_2$?

▶ We show: the union of two classical models may be no classical model.

- ▶ We show: the union of two classical models may be no classical model.
- ▶ Consider program $P = \{a \leftarrow b, c\}$.

- ▶ We show: the union of two classical models may be no classical model.
- ▶ Consider program $P = \{a \leftarrow b, c\}$.
- ▶ Let $M_1 = \{b\}$ and $M_2 = \{c\}$.
- ▶ M_1 and M_2 are classical models of P.

- ▶ We show: the union of two classical models may be no classical model.
- ▶ Consider program $P = \{a \leftarrow b, c\}$.
- ▶ Let $M_1 = \{b\}$ and $M_2 = \{c\}$.
- $ightharpoonup M_1$ and M_2 are classical models of P.
- ▶ But $M_1 \cup M_2 \not\models P$ as $a \notin M_1 \cup M_2$.

The n queens puzzle is defined as follows:

Given an $n \times n$ chessboard, place n queens on the board such that

- (i) no queens share the same row;
- (ii) no queens share the same column; and
- (iii) no queens are on the same diagonal.

- a) Define all required predicates, rules, and constraints to represent the problem as an answer-set program ${\cal P}$ such that
 - \triangleright each row *i* of the board is denoted by a fact row(i),
 - **each** column j is denoted by a fact col(j),
 - ightharpoonup queen(i, i) denotes that a queen is placed on row i and column i, and
 - \triangleright each answer set of \mathcal{P} represents a valid solution of the *n* queens puzzle.
- b) Find all solutions for a 4×4 chessboard.
- c) How many solutions does a 2×2 chessboard have?

a) Create board: row(1..n). col(1..n). Guess: $queen(I, J) \lor \neg queen(I, J) \leftarrow row(I), col(J).$ Check: $atLeastOne(I) \leftarrow queen(I, J)$. $\leftarrow \text{row}(I), not atLeastOne}(I).$ At least 1 queen per row: $\leftarrow \text{queen}(I, J_1), \text{queen}(I, J_2), J_1 \neq J_2.$ No two queens per row: $\leftarrow \operatorname{queen}(I_1, J), \operatorname{queen}(I_2, J), I_1 \neq I_2.$ No two queens per column: \leftarrow queen (I_1, J_1) , queen (I_2, J_2) , No two queens per diagonal: $(I_1, J_1) \neq (I_2, J_2), I_1 + J_1 = I_2 + J_2.$ \leftarrow queen (I_1, J_1) , queen (I_2, J_2) , $(I_1, J_1) \neq (I_2, J_2), I_1 - J_1 = I_2 - J_2.$

a) Create board: row(1..n). col(1..n). Guess: $queen(I, J) \lor \neg queen(I, J) \leftarrow row(I), col(J).$ $atLeastOne(I) \leftarrow queen(I, J)$. Check. $\leftarrow \text{row}(I), not atLeastOne}(I).$ At least 1 queen per row: $\leftarrow \text{queen}(I, J_1), \text{queen}(I, J_2), J_1 \neq J_2.$ No two queens per row: No two queens per column: \leftarrow queen (I_1, J) , queen (I_2, J) , $I_1 \neq I_2$. \leftarrow queen (I_1, J_1) , queen (I_2, J_2) , No two queens per diagonal: $(I_1, J_1) \neq (I_2, J_2), I_1 + J_1 = I_2 + J_2.$ \leftarrow queen(I_1, J_1), queen(I_2, J_2). $(I_1, J_1) \neq (I_2, J_2), I_1 - J_1 = I_2 - J_2.$

b) Solutions for a 4×4 chessboard: {queen(3,1)queen(1,2)queen(4,3)queen(2,4)}, {queen(2,1)queen(4,2)queen(1,3)queen(3,4)}

a) Create board: row(1..n). col(1..n). Guess: $queen(I, J) \lor \neg queen(I, J) \leftarrow row(I), col(J).$ $atLeastOne(I) \leftarrow queen(I, J)$. Check. $\leftarrow \text{row}(I), not atLeastOne}(I).$ At least 1 queen per row: $\leftarrow \text{queen}(I, J_1), \text{queen}(I, J_2), J_1 \neq J_2.$ No two queens per row: No two queens per column: \leftarrow queen (I_1, J) , queen (I_2, J) , $I_1 \neq I_2$. \leftarrow queen (I_1, J_1) , queen (I_2, J_2) , No two queens per diagonal: $(I_1, J_1) \neq (I_2, J_2), I_1 + J_1 = I_2 + J_2.$ \leftarrow queen(I_1, J_1), queen(I_2, J_2). $(I_1, J_1) \neq (I_2, J_2), I_1 - J_1 = I_2 - J_2.$

- b) Solutions for a 4 × 4 chessboard: {queen(3,1)queen(1,2)queen(4,3)queen(2,4)}, {queen(2,1)queen(4,2)queen(1,3)queen(3,4)}
- c) For a 2×2 chessboard there are 0 solutions, since both queens are at same row, colum, or diagonal.

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

Use the random variable J to express that a sheet produced a paper jam, and X_{P_i} , for $i \in \{1, 2, 3\}$, expressing that a printed paper is from printer P_i .

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

Use the random variable J to express that a sheet produced a paper jam, and X_{P_i} , for $i \in \{1, 2, 3\}$, expressing that a printed paper is from printer P_i .

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

Use the random variable J to express that a sheet produced a paper jam, and X_{P_i} , for $i \in \{1, 2, 3\}$, expressing that a printed paper is from printer P_i .

• Overall number of sheets: 4500 + 400 + 100 = 5000.

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

Use the random variable J to express that a sheet produced a paper jam, and X_{P_i} , for $i \in \{1, 2, 3\}$, expressing that a printed paper is from printer P_i .

- Overall number of sheets: 4500 + 400 + 100 = 5000.
- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

Use the random variable J to express that a sheet produced a paper jam, and X_{P_i} , for $i \in \{1, 2, 3\}$, expressing that a printed paper is from printer P_i .

- Overall number of sheets: 4500 + 400 + 100 = 5000.
- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ▶ How to compute P(J)?

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ▶ How to compute P(J)?

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ightharpoonup How to compute P(J)?
- From marginalisation we know: $P(J) = P(J, X_{P_1}) + P(J, X_{P_2}) + P(J, X_{P_3})$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ightharpoonup How to compute P(J)?
- From marginalisation we know: $P(J) = P(J, X_{P_1}) + P(J, X_{P_2}) + P(J, X_{P_3})$
- ► From conditional probability we know: $P(J|X_{P_i}) = \frac{P(J,X_{P_i})}{P(X_{P_i})}$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ightharpoonup How to compute P(J)?
- From marginalisation we know: $P(J) = P(J, X_{P_1}) + P(J, X_{P_2}) + P(J, X_{P_3})$
- ► From conditional probability we know: $P(J|X_{P_i}) = \frac{P(J,X_{P_i})}{P(X_{P_i})}$
- $\Rightarrow P(J, X_{P_i}) = P(J|X_{P_i})P(X_{P_i}) \text{ for } i \in \{1, 2, 3\}.$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ightharpoonup How to compute P(J)?
- From marginalisation we know: $P(J) = P(J, X_{P_1}) + P(J, X_{P_2}) + P(J, X_{P_3})$
- From conditional probability we know: $P(J|X_{P_i}) = \frac{P(J,X_{P_i})}{P(X_{P_i})}$
- $\Rightarrow P(J, X_{P_i}) = P(J|X_{P_i})P(X_{P_i}) \text{ for } i \in \{1, 2, 3\}.$
- Combining these we get:

$$P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- ightharpoonup How to compute P(J)?
- From marginalisation we know: $P(J) = P(J, X_{P_1}) + P(J, X_{P_2}) + P(J, X_{P_3})$
- From conditional probability we know: $P(J|X_{P_i}) = \frac{P(J,X_{P_i})}{P(X_{P_i})}$
- $\Rightarrow P(J, X_{P_i}) = P(J|X_{P_i})P(X_{P_i}) \text{ for } i \in \{1, 2, 3\}.$
- Combining these we get:

$$P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$$

▶ How to get $P(J|X_{P_i})$ for $i \in \{1, 2, 3\}$?

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- ▶ How to get $P(J|X_{P_i})$ for $i \in \{1, 2, 3\}$?

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- ▶ How to get $P(J|X_{P_i})$ for $i \in \{1, 2, 3\}$?
- For printer P₁ there are 4490 pages printed without jam, and 4500 printed total, so 10 out of 4500 are jammed.

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- ▶ How to get $P(J|X_{P_i})$ for $i \in \{1, 2, 3\}$?
- For printer P_1 there are 4490 pages printed without jam, and 4500 printed total, so 10 out of 4500 are jammed.
- $P(J|X_{P_1}) := \frac{4500 4490}{4500} = 0.002;$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- ▶ How to get $P(J|X_{P_i})$ for $i \in \{1, 2, 3\}$?
- ► For printer *P*₁ there are 4490 pages printed without jam, and 4500 printed total, so 10 out of 4500 are jammed.
- $P(J|X_{P_1}) := \frac{4500 4490}{4500} = 0.002;$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125;$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- ▶ How to get $P(J|X_{P_i})$ for $i \in \{1, 2, 3\}$?
- ► For printer *P*₁ there are 4490 pages printed without jam, and 4500 printed total, so 10 out of 4500 are jammed.
- $P(J|X_{P_1}) := \frac{4500 4490}{4500} = 0.002;$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125;$
- $P(J|X_{P_3}) := \frac{100-50}{100} = 0.5;$

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- $P(J|X_{P_1}) := \frac{4500 4490}{4500} = 0.002;$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125;$
- $P(J|X_{P_3}) := \frac{100-50}{100} = 0.5;$
- Putting it all together:

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- $P(J|X_{P_1}) := \frac{4500 4490}{4500} = 0.002;$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125;$
- $P(J|X_{P_3}) := \frac{100-50}{100} = 0.5;$
- Putting it all together:

$$P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$$

= 0.00\dot{2}\cdot 0.9 + 0.0125 \cdot 0.08 + 0.5 \cdot 0.02 = 0.013 = 1.3 \%

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

- $P(X_{P_1}) := \frac{4500}{5000} = 0.9;$
- $P(X_{P_2}) := \frac{400}{5000} = 0.08;$
- $P(X_{P_3}) := \frac{100}{5000} = 0.02;$
- $P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$
- $P(J|X_{P_1}) := \frac{4500-4490}{4500} = 0.002;$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125;$
- $P(J|X_{P_3}) := \frac{100-50}{100} = 0.5;$
- Putting it all together:

$$P(J) = P(J|X_{P_1})P(X_{P_1}) + P(J|X_{P_2})P(X_{P_2}) + P(J|X_{P_3})P(X_{P_3})$$

= 0.00\dot{2}\cdot 0.9 + 0.0125 \cdot 0.08 + 0.5 \cdot 0.02 = 0.013 = 1.3\%

▶ Probability of not jamming: 1 - P(J) = 0.987 = 98.7%

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

Need to compute $P(X_{P_2}|J)$.

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

- ▶ Need to compute $P(X_{P_2}|J)$.
- Bayes' rule states:

$$P(X_{P_2}|J) = \frac{P(J|X_{P_2})P(X_{P_2})}{P(J)}$$

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

- ▶ Need to compute $P(X_{P_2}|J)$.
- Bayes' rule states:

$$P(X_{P_2}|J) = \frac{P(J|X_{P_2})P(X_{P_2})}{P(J)}$$

- We have those numbers already.
- $P(X_{P_2}) := \frac{400}{5000} = 0.08$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125$
- P(J) = 0.013

A company has three printers. On average, the first printer, P_1 , produces 4500 sheets, the second printer, P_2 , 400, and the third, P_3 , 100 sheets a month. Moreover, usually only 4490 prints from P_1 , 395 prints from P_2 , and 50 prints from P_3 are printed without paper jam. If you choose a random print, what is the probability that it was printed without producing a paper jam? Moreover, what is the probability that, given a print that produced a paper jam, it comes from P_2 ?

- ▶ Need to compute $P(X_{P_2}|J)$.
- Bayes' rule states:

$$P(X_{P_2}|J) = \frac{P(J|X_{P_2})P(X_{P_2})}{P(J)}$$

- We have those numbers already.
- $P(X_{P_2}) := \frac{400}{5000} = 0.08$
- $P(J|X_{P_2}) := \frac{400-395}{400} = 0.0125$
- P(J) = 0.013

$$P(X_{P_2}|J) = \frac{P(J|X_{P_2})P(X_{P_2})}{P(J)} = \frac{0.0125 \cdot 0.08}{0.013} = 0.076923 \approx 0.0769 = 7.69\%$$

Prove that conditional independence in a Bayesian network is symmetric, i.e., show that, for each node X, Y, and Z of the network,

if
$$P(X|Y,Z) = P(X|Z)$$
, then $P(Y|X,Z) = P(Y|Z)$.

Prove that conditional independence in a Bayesian network is symmetric, i.e., show that, for each node X, Y, and Z of the network,

if
$$P(X|Y,Z) = P(X|Z)$$
, then $P(Y|X,Z) = P(Y|Z)$.

Hint: Use a generalised version of the Bayes' rule, P(Y|X,Z) = P(X,Z|Y)P(Y)/P(X,Z), as well as the product rule P(X,Y) = P(X|Y)P(Y).

Use Bayes's rule $P(Y|X,Z) = \frac{P(X,Z|Y)P(Y)}{P(X,Z)}$

Prove that conditional independence in a Bayesian network is symmetric, i.e., show that, for each node X, Y, and Z of the network,

if
$$P(X|Y,Z) = P(X|Z)$$
, then $P(Y|X,Z) = P(Y|Z)$.

- Use Bayes's rule $P(Y|X,Z) = \frac{P(X,Z|Y)P(Y)}{P(X,Z)}$
- Use Product rule $\frac{P(X,Z|Y)P(Y)}{P(X,Z)} = \frac{P(X|Z,Y)P(Z|Y)P(Y)}{P(X|Z)P(Z)}$

Prove that conditional independence in a Bayesian network is symmetric, i.e., show that, for each node X, Y, and Z of the network,

if
$$P(X|Y,Z) = P(X|Z)$$
, then $P(Y|X,Z) = P(Y|Z)$.

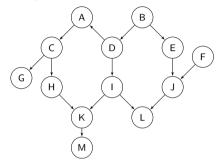
- Use Bayes's rule $P(Y|X,Z) = \frac{P(X,Z|Y)P(Y)}{P(X,Z)}$
- Use Product rule $\frac{P(X,Z|Y)P(Y)}{P(X,Z)} = \frac{P(X|Z,Y)P(Z|Y)P(Y)}{P(X|Z)P(Z)}$
- Use assumption $\frac{P(X|Z,Y)P(Z|Y)P(Y)}{P(X|Z)P(Z)} = \frac{P(X|Z)P(Z|Y)P(Y)}{P(X|Z)P(Z)} = \frac{P(Z|Y)P(Y)}{P(Z)}$

Prove that conditional independence in a Bayesian network is symmetric, i.e., show that, for each node X, Y, and Z of the network,

if
$$P(X|Y,Z) = P(X|Z)$$
, then $P(Y|X,Z) = P(Y|Z)$.

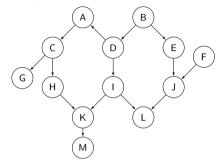
- Use Bayes's rule $P(Y|X,Z) = \frac{P(X,Z|Y)P(Y)}{P(X,Z)}$
- Use Product rule $\frac{P(X,Z|Y)P(Y)}{P(X,Z)} = \frac{P(X|Z,Y)P(Z|Y)P(Y)}{P(X|Z)P(Z)}$
- Use assumption $\frac{P(X|Z,Y)P(Z|Y)P(Y)}{P(X|Z)P(Z)} = \frac{P(X|Z)P(Z|Y)P(Y)}{P(X|Z)P(Z)} = \frac{P(Z|Y)P(Y)}{P(Z)}$
- Use Bayes's rule again $\frac{P(Z|Y)P(Y)}{P(Z)} = P(Y|Z)$

Consider the following graph of a Bayesian network:



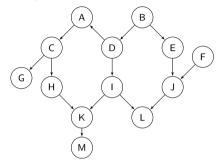
- (i) Is A conditionally independent of J?
- (ii) Is A conditionally independent of J given evidence M?
- (iii) Which subset-minimal evidence would be sufficient such that F is conditionally independent of M given this evidence?
- (iv) Which subset-minimal evidence would be sufficient such that A is conditionally independent of J given this evidence?

Consider the following graph of a Bayesian network:



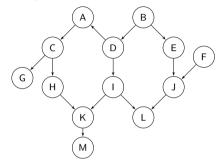
X and Y are conditionally independent given evidence E \Leftrightarrow each undirected path between X and Y is blocked by E.

Consider the following graph of a Bayesian network:



X and Y are conditionally independent given evidence E \Leftrightarrow each undirected path between X and Y is blocked by E. Path P between X and Y is blocked by E if there is $Z \in P$ with

Consider the following graph of a Bayesian network:

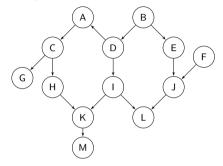


X and Y are conditionally independent given evidence E \Leftrightarrow each undirected path between X and Y is blocked by E.

Path P between X and Y is blocked by $\textbf{\textit{E}}$ if there is $Z \in P$ with

 $ightharpoonup Z \in \mathbf{E}$ has incoming and outgoing edge,

Consider the following graph of a Bayesian network:



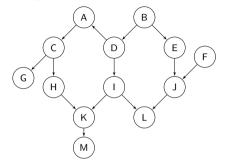
X and Y are conditionally independent given evidence E

 \Leftrightarrow each undirected path between X and Y is blocked by E.

Path P between X and Y is blocked by $\textbf{\textit{E}}$ if there is $Z \in P$ with

- $ightharpoonup Z \in \mathbf{E}$ has incoming and outgoing edge,
- $ightharpoonup Z \in \mathbf{E}$ has two outgoing edges, or

Consider the following graph of a Bayesian network:



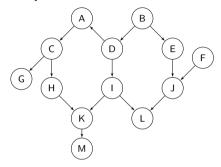
X and Y are conditionally independent given evidence E

 \Leftrightarrow each undirected path between X and Y is blocked by E.

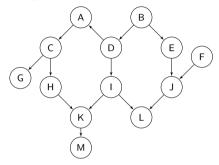
Path P between X and Y is blocked by $\textbf{\textit{E}}$ if there is $Z \in P$ with

- $ightharpoonup Z \in \mathbf{E}$ has incoming and outgoing edge,
- $ightharpoonup Z \in \mathbf{E}$ has two outgoing edges, or
- ▶ neither Z nor its descendants in **E** and both edges are incoming.

Consider the following graph of a Bayesian network:



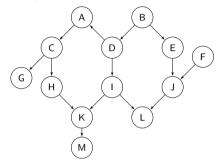
Consider the following graph of a Bayesian network:



Answer the following questions and give an explanation of your answer.

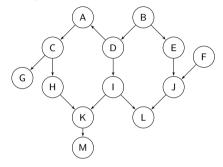
(i) Is A conditionally independent of J?

Consider the following graph of a Bayesian network:



- (i) Is A conditionally independent of J?
 - \Rightarrow No. Since Path $A \to D \to B \to E \to J$ in the undirected path of the network is not blocked, A is not conditionally independent of J.

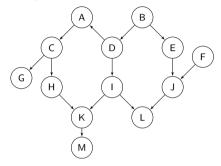
Consider the following graph of a Bayesian network:



Answer the following questions and give an explanation of your answer.

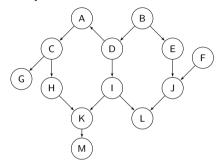
(ii) Is A conditionally independent of J given evidence M?

Consider the following graph of a Bayesian network:



- (ii) Is A conditionally independent of J given evidence M?
 - \Rightarrow Still No. Since Path A, D, B, E, J in the undirected path of the network is not blocked, A and J are not blocked.

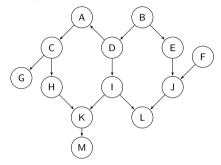
Consider the following graph of a Bayesian network:



Answer the following questions and give an explanation of your answer.

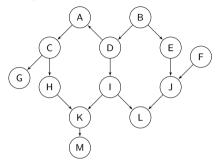
(iii) Which subset-minimal evidence would be sufficient such that *F* is conditionally independent of *M* given this evidence?

Consider the following graph of a Bayesian network:



- (iii) Which subset-minimal evidence would be sufficient such that F is conditionally independent of M given this evidence?
 - \Rightarrow The empty set, because all paths are blocked.

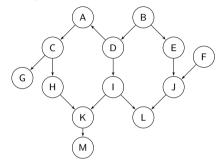
Consider the following graph of a Bayesian network:



Answer the following questions and give an explanation of your answer.

(iv) Which subset-minimal evidence would be sufficient such that A is conditionally independent of J given this evidence?

Consider the following graph of a Bayesian network:



- (iv) Which subset-minimal evidence would be sufficient such that A is conditionally independent of J given this evidence?
 - \Rightarrow Since all non-blocked paths from A to J use D, B and E, it is sufficient to give evidence either to B, D or E.