
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/

Summary

Effective testing during development

3

Testing

• Specification-based and boundary testing

• Structural testing

• Control flow coverage

Effective and systematic testing

5

Specification-based testing: Definition

Specification-based testing uses the program requirements as testing input

Once in testing mode, it is recommended to use this technique first

It is a 7-step approach to systematically derive tests based on a specification

6

Specification-based testing: Approach

8

Example

Method: substringsBetween

Searches a string for substrings delimited by a start and end tag, returning all
matching substrings in an array

 str – The string containing the substrings; null/empty returns null/empty

 open – The string identifying the start of the substring; empty returns null

 close – The string identifying the end of the substring; empty returns null

The program returns a string array of substrings, or null if there is no match
9

Example

Method: substringsBetween

Searches a string for substrings delimited by a start and end tag, returning all
matching substrings in an array

If str = “axcaycazc”, open = “a”, and close = “c”, the output should be an
array containing [“x”, “y”, “z”]

10

Understand the requirement

 What should the program do?

 What should it not do?

 Does it handle specific corner cases?

 What are the inputs?

 Their types and their domain

 What are the outputs?

 Their type and their domain

11

Explore the program

 Play with the program to increase your understanding (if you didn’t write it)

 Call the program with different inputs and see what it produces as output

 Stop when you have a clear mental model of how the program works

 This is not yet testing

12

Explore the program

 Play with the program to increase your understanding (if you didn’t write it)

 Call the program with different inputs and see what it produces as output

 Stop when you have a clear mental model of how the program works

 This is not yet testing

 str = “abcd”, open = “a”, close = “d”

 Return [“bc”]

 str = “abcdabcdab”, open = “a”, close = “d”

 Return [“bc”, “bc”]

 str = “aabcddaabfddaab”, open = “aa”, close = “dd”

 Return [“bc”, “bf”]
13

Identify the partitions

 The input “abcd” with open tag “a” and close tag “d”, which makes the
program return “bc”, makes the program behave in the same way as the input
“xyzw” with open tag “x” and close tag “w”, which makes the program return
“yz”

 We changed the letters but expect the program to do the same thing for both inputs

 Each of these cases represents the same class or partition of inputs

 We say that these two inputs are equivalent

14

Identify the partitions

 A systematic way to identify the partitions is the following:

 Look at each input variable individually, and explore its type and the range of values
it can receive

 Look at how each variable may interact with another as variables often have
dependencies or put constraints on each other

 Look at all possible types of outputs

15

Identify the partitions

Looking at each input variable individually:

 str

 null string

 empty string

 String of length 1

 String of length > 1

 Same for open

 Same for close

16

Identify the partitions

Looking at combinations of input variables:

 str contains neither open nor close

 str contains open but not close

 str contains close but not open

 str contains both open and close

 str contains both open and close multiple times

17

Identify the partitions

Looking at possible outputs:

 Array of strings

 Null array

 Empty array

 Single item

 Multiple items

 Each individual string

 Empty string

 Single character

 Multiple characters

18

Analyze the boundaries

 Boundary testing

 Making the program behave correctly when inputs are near a boundary

 Think of mistakes with using > instead of >=

 Identify boundaries and test what happens to the program when inputs go from
one boundary to the other

 For each boundary, test the following points: the on point, which is on the boundary,
and one or more off points, which are points closest to the boundary and belong to
partitions the on point does not belong to

19

Analyze the boundaries

Consider the case where open and close are in str:

 str contains both open and close with no characters between them

 str contains both open and close with characters between them

20

Devise tests

 The idea is to combine all partitions we devised for each of the inputs

 4 x 4 x 4 x 5 = 320 tests

 Pragmatically decide which partitions should be combined

 A common strategy is to test exceptional behavior only once and not combine it
with other partitions

 E.g., consider the null string partition – what would we gain from combining the null
string with open being null, empty, length = 1 and length > 1 and so on?

21

Automate tests

 Write automated tests for all test cases that we just devised

 Identify concrete input values (sometimes there are values we do not care about)

 Have a clear expectation of what the program should do (the output)

 Ensure the tests are easily identifiable in case one fails

22

Augment test suite

 Develop interesting variations, if necessary

 Try strings with spaces?

 Try open and close tags with spaces?

23

Testing

• Specification-based and boundary testing

• Structural testing

• Control flow coverage

Effective and systematic testing

25

Structural testing: Definition

Using the structure of the source code to guide testing is called structural testing

Structural testing complements the test suite devised with specification-based
and boundary testing

With code coverage tools, structural testing identifies the parts of the code that
are not already covered by the existing test suite (example coverage report)

Understanding structural testing means understanding coverage criteria

26

https://www.jacoco.org/jacoco/trunk/coverage/org.jacoco.agent.rt/org.jacoco.agent.rt.internal.output/FileOutput.java.html#L75

Structural testing: Approach

27

Coverage criteria

29

Basic blocks

 A basic block is a sequence of instructions such that the code in a basic block:

 Has one entry point – no code within the basic block is the destination of a jump
instruction in the program

 Has one exit point – only the last instruction may cause the program to execute code
in a different basic block

 When the first instruction in a basic block is run, the rest of the instructions
necessarily run once

30

Basic blocks – Example

33

public void SortAscending(int[] a) {
 if (a == null || a.length < 2)
 return;
 int i;
 for (i = 0; i < a.length – 1; i++) {
 if (a[i] < a[i + 1])
 break;
 }
 if (i >= a.length – 1)
 return;
 QSort(a, 0, a.length);
}

Is this method correct?

Basic blocks – Example

34

public void SortAscending(int[] a) {
 if (a == null || a.length < 2)
 return;
 int i;
 for (i = 0; i < a.length – 1; i++) {
 if (a[i] < a[i + 1])
 break;
 }
 if (i >= a.length – 1)
 return;
 QSort(a, 0, a.length);
}

Intraprocedural control flow graph

 An intraprocedural control flow graph of a procedure p is a graph (N, E) where:

 N is the set of basic blocks in p plus entry / exit blocks

 E contains

 An edge from a to b with condition c if the execution of basic block a is succeeded by
block b when c holds

 An edge (entry, a, true) if a is the first basic block of p

 Edges (b, exit, true) for each basic block b that ends with a possibly implicit return
statement

35

Control flow graph (CFG) – Example

36

b1 = (a == null || a.length < 2);

entry

i = 0;

b2 = (i < a.length – 1);

b3 = (a[i] < a[i + 1]);

i++; break;

b4 = (i >= a.length – 1);

QSort(a, 0, a.length); return;

exit

return;

!b1 b1

!b2
b2

!b3 b3

!b4 b4

Test coverage

37

b1 = (a == null || a.length < 2);

entry

i = 0;

b2 = (i < a.length – 1);

b3 = (a[i] < a[i + 1]);

i++; break;

b4 = (i >= a.length – 1);

QSort(a, 0, a.length); return;

exit

return;

!b1 b1

!b2
b2

!b3 b3

!b4 b4

 The CFG can serve as a coverage (or
adequacy) criterion for test cases

 The more executed parts, the higher
the chance to uncover a bug

 “Parts” can be nodes, edges, paths,
etc.

Test coverage – Example

39

b1 = (a == null || a.length < 2);

entry

i = 0;

b2 = (i < a.length – 1);

b3 = (a[i] < a[i + 1]);

i++; break;

b4 = (i >= a.length – 1);

QSort(a, 0, a.length); return;

exit

return;

!b1 b1

!b2
b2

!b3 b3

!b4 b4

 Consider the input

a = {3, 7, 5}

Statement coverage

Statement coverage =
Number of executed statements

Total number of statements
× 100%

 Can also be defined in basic blocks or lines

40

Basic-block coverage – Example

42

b1 = (a == null || a.length < 2);

entry

i = 0;

b2 = (i < a.length – 1);

b3 = (a[i] < a[i + 1]);

i++; break;

b4 = (i >= a.length – 1);

QSort(a, 0, a.length); return;

exit

return;

!b1 b1

!b2
b2

!b3 b3

!b4 b4

 Consider the input

a = {3, 7, 5}

 What is the basic-block coverage?

a) 30% b) 90% c) 70%

 A single test covers 7 / 10 basic
blocks

Basic-block coverage – Example

44

 How many test cases are needed to
achieve 100% basic-block coverage?

a) 2 b) 3 c) 4

 Three tests achieve 100% basic-block
coverage

a = {1}

a = {5, 7}

a = {7, 5}

b1 = (a == null || a.length < 2);

entry

i = 0;

b2 = (i < a.length – 1);

b3 = (a[i] < a[i + 1]);

i++; break;

b4 = (i >= a.length – 1);

QSort(a, 0, a.length); return;

exit

return;

!b1 b1

!b2
b2

!b3 b3

!b4 b4

Basic-block coverage – Discussion

47

boolean Contains(int[] a, int x) {
 if (a == null) return false;
 boolean found = false;
 for (int i = 0; i <= a.length; i++) {
 if (a[i] == x) {
 found = true;
 break;
 }
 }
 return found;
}

Is this method correct?

Basic-block coverage – Discussion

 Two tests achieve 100% basic-block
coverage

a = null

a = {1, 2}, x = 2

 The test cases do not detect the bug

 More thorough testing is necessary

49

b1 = (a == null);

entry

found = false;
i = 0;

b2 = (i <= a.length);

b3 = (a[i] == x);

i++;

exit

return
false;

!b1 b1

!b2
b2

!b3 b3
found = true;

break;

return found;

Branch coverage

Branch coverage =
Number of executed branches

Total number of branches
× 100%

 An edge (m, n, c) in a CFG is a branch when there is another edge (m, n’, c’) in
the CFG with n ≠ n’

 Coverage is defined to be 100% if there are no branches

50

Branch coverage – Example

52

b1 = (a == null || a.length < 2);

entry

i = 0;

b2 = (i < a.length – 1);

b3 = (a[i] < a[i + 1]);

i++; break;

b4 = (i >= a.length – 1);

QSort(a, 0, a.length); return;

exit

return;

!b1 b1

!b2
b2

!b3 b3

!b4 b4

 Consider the input

a = {3, 7, 5}

 What is the branch coverage?

a) 30% b) 50% c) 70%

 The test covers 4 / 8 branches

Branch coverage – Example

 Two tests achieve 83% branch coverage

a = null

a = {1, 2}, x = 2

 The test cases execute 5 / 6 branches

 The bug is not detected

53

b1 = (a == null);

entry

found = false;
i = 0;

b2 = (i <= a.length);

b3 = (a[i] == x);

i++;

exit

return
false;

!b1 b1

!b2
b2

!b3 b3
found = true;

break;

return found;

Branch coverage – Example

 Achieving 100% coverage requires a test
that runs the loop to the end

a = null

a = {1}, x = 1

a = {1}, x = 3

 The last test case detects the bug

54

b1 = (a == null);

entry

found = false;
i = 0;

b2 = (i <= a.length);

b3 = (a[i] == x);

i++;

exit

return
false;

!b1 b1

!b2
b2

!b3 b3
found = true;

break;

return found;

Branch coverage – Discussion

 Branch coverage leads to more thorough testing than statement coverage

 Complete branch coverage implies complete statement coverage

 But “at least n% branch coverage” does not generally imply “at least n% statement
coverage”

 Most widely used coverage criterion in industry

55

Branch coverage – Discussion

58

int[] Reverse(int[] a) {
 int j = a.length – 1;
 int[] res = new int[a.length];
 for (int i = 0; i < a.length; i++) {
 res[j] = a[i];
 }
 return res;
}

Is this method correct?

Branch coverage – Discussion

 One test achieves 100% branch
coverage

a = {1}

 The test case does not detect the bug

 More thorough testing is necessary

60

j = a.length – 1;
res = new int[a.length];

i = 0;

entry

b1 = (i < a.length);

res[j] = a[i];
i++;

exit

b1 !b1

return res;

Branch coverage – Discussion

63

int Foo(boolean a, boolean b) {
 int x = 1;
 int y = 1;
 if (a)
 x = 0;
 else
 y = 0;
 if (b)
 return 5 / x;
 else
 return 5 / y;
}

Is this method correct?

Branch coverage – Discussion

 Two tests achieve 100% branch
coverage

a = true, b = false

a = false, b = true

 The test cases do not detect the bug

 More thorough testing is necessary

65

y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0;

exit

b1 !b1

return
5 / y;

b2 = b;

return
5 / x;

b2 !b2

Path coverage

Path coverage =
Number of executed paths

Total number of paths
× 100%

 A path is a sequence of nodes n1, …, nk such that

 n1 = entry

 nk = exit

 There is an edge (ni, ni+1, c) in the CFG

66

Path coverage – Example

 Consider the inputs

a = true, b = false

a = false, b = true

 What is the path coverage?

a) 50% b) 70% c) 100%

 The tests cover 2 / 4 paths

68

y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0;

exit

b1 !b1

return
5 / y;

b2 = b;

return
5 / x;

b2 !b2

Path coverage – Example

 Achieving 100% coverage requires
four test cases

a = true, b = false

a = false, b = true

a = true, b = true

a = false, b = false

 The last two tests detect the bugs

69

y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0;

exit

b1 !b1

return
5 / y;

b2 = b;

return
5 / x;

b2 !b2

Path coverage – Example

70

b1 = (a == null);

entry

found = false;
i = 0;

b2 = (i <= a.length);

b3 = (a[i] == x);

i++;

exit

return
false;

!b1 b1

!b2
b2

!b3 b3
found = true;

break;

return found;

boolean Contains(int[] a, int x) {
 if (a == null) return false;
 boolean found = false;
 for (int i = 0; i <= a.length; i++) {
 if (a[i] == x) {
 found = true;
 break;
 }
 }
 return found;
}

Path coverage – Example

71

b1 = (a == null);

entry

found = false;
i = 0;

b2 = (i <= a.length);

b3 = (a[i] == x);

i++;

exit

return
false;

!b1 b1

!b2
b2

!b3 b3
found = true;

break;

return found;

 The number of loop iterations is not
known statically (depends on input)

 An arbitrarily large number of test cases
is needed for complete path coverage

Path coverage – Discussion

 Path coverage leads to more thorough testing than both statement and branch
coverage

 Complete path coverage implies complete statement and branch coverage

 But “at least n% path coverage” does not typically imply “at least n% statement
coverage” or “at least n% branch coverage”

 Complete path coverage is not feasible for input-dependent loops (unbounded
number of paths)

72

Branch coverage – Discussion

73

int[] Reverse(int[] a) {
 int j = a.length – 1;
 int[] res = new int[a.length];
 for (int i = 0; i < a.length; i++) {
 res[j] = a[i];
 }
 return res;
}

Is this method correct?

Branch coverage – Discussion

 One test achieves 100% branch
coverage

a = {1}

 The test case does not detect the bug

 More thorough testing is necessary

74

j = a.length – 1;
res = new int[a.length];

i = 0;

entry

b1 = (i < a.length);

res[j] = a[i];
i++;

exit

b1 !b1

return res;

Loop coverage

Loop coverage =

Number of executed loops
with 0, 1, and more than 1 iterations

Total number of loops × 3
× 100%

 Loop coverage is typically combined with other coverage criteria such as
statement or branch coverage

75

Loop coverage – Example

 Consider the input

a = {1}

 What is the loop coverage?

a) 33% b) 66% c) 99%

 The test executes 1 / 3 possible cases
for the loop

77

j = a.length – 1;
res = new int[a.length];

i = 0;

entry

b1 = (i < a.length);

res[j] = a[i];
i++;

exit

b1 !b1

return res;

Loop coverage – Example

 Three tests achieve 100% loop
coverage

a = {}

a = {1}

a = {1, 2}

 The last test case detects the bug

78

j = a.length – 1;
res = new int[a.length];

i = 0;

entry

b1 = (i < a.length);

res[j] = a[i];
i++;

exit

b1 !b1

return res;

Coverage criteria

79

Condition + Branch coverage

C + B coverage =
Number of executed branches + condition values

Total number of branches + condition values
× 100%

 Coverage is 100% when each individual condition evaluates to true and false at
least once and each corresponding branch statement also evaluates to true and
false at least one

80

Condition + Branch coverage – Example

84

MC/DC

 MC/DC stands for modified condition / decision coverage

 It is used to test complex conditions more efficiently than testing all possible
condition combinations

 It exercises each condition so that it can, independently of the other conditions,
affect the outcome of the entire decision

85

MC/DC – Example

Assume if (A && (B || C)), where A, B, and C evaluate to Booleans

 For condition A

 There must be one test case where A = true (say, T1)

 There must be one test case where A = false (say, T2)

 T1 and T2 (which we call independence pairs) must have different outcomes (e.g., T1
makes the entire decision true and T2 makes it false)

 B and C in T1 must have the same truth values in T1 and T2

 Entire example

86

https://www.youtube.com/watch?v=HzmnCVaICQ4

Criteria subsumption

88

Measuring control flow coverage

 Coverage information is collected while the tests execute

 Typically using code instrumentation to count executed basic blocks, branches, etc.

91

int Foo(boolean a, boolean b) {
 int x = 1;
 int y = 1;
 if (a)
 branchCovered[0] = true;
 x = 0;
 else
 branchCovered[1] = true;
 y = 0;
 if (b)
 branchCovered[2] = true;
 return 5 / x;
 else
 branchCovered[3] = true;
 return 5 / y;
}

Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche

• Section 2.1

• Section 2.2

Reading about structural coverage from the book might be confusing

