
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/

Summary

Effective and systematic testing

3

Testing

• Integration testing

• System testing

• Mutation testing

• Test code quality

• Wrap up

The testing pyramid

5

Larger tests

 Some parts of the system may require the developer to write larger tests

 Integration tests

 System tests

 To devise larger tests, the developer uses the same techniques as for unit
testing but looking at larger parts of the software system

6

When to use larger tests

 You have exercised each class individually, but the overall behavior is composed
of many classes, and you want to see them work together

 E.g., think of a set of classes that calculates the final cost of a shopping cart

 The final cost is calculated by adjusting the delivery costs based on the number of
items, charging extra for certain heavy items, etc.

7

When to use larger tests

 The class you want to test is a component in a larger plug-and-play architecture

 E.g., think of a plugin in your favorite IDE (IntelliJ)

 You can develop the logic of the plugin, but many actions will only happen when
IntelliJ calls the plugin and passes parameters to it

8

Integration testing: Definition

Integration testing is the test level we use to test the integration between our
code and external parties

9

Integration testing: Definition

Integration testing is the test level we use to test the integration between our
code and external parties

10

Integration testing: Example

 Consider the CK tool (https://github.com/mauricioaniche/ck)

 Calculates code metrics for Java code, such as coupling between objects (CBO)

 CBO counts the number of other classes that each class depends on

11

class A {
 private B b;

 public void action() {
 new C().method();
 }
}

A depends on B and C and CBO is 2

https://mazko.github.io/jsjavaparser/

https://github.com/mauricioaniche/ck
https://mazko.github.io/jsjavaparser/

Integration testing: Example

 CK relies on Eclipse JDT, a library that is part of the Eclipse IDE

 JDT enables building abstract syntax trees (ASTs)

 CK builds ASTs using JDT

 CK then traverses them to calculate different metrics, like CBO

12

Integration testing: Example

 How can we write tests for the CBO class?

 Start up JDT

 Ask JDT to build an AST out of a small but real Java class

 Use CBO to traverse the AST

 Assert the expected result

13

Testing

• Integration testing

• System testing

• Mutation testing

• Test code quality

• Wrap up

Effective and systematic testing

15

System testing: Definition

System testing is testing the system in its entirety, as clients would

We do not care how the system works from the inside; we only care that, given
input X, the system will provide output Y

16

System testing: Example

 Think of a web application for a pet clinic

 Visit a web page that lists all scheduled appointments for today

 Click the New Appointment button

 Fill out the pet and owner name

 Select an available time slot

 Check that we go back to the appointments page

 Check that the page shows the new appointment
17

How to write larger tests

 Use the requirement and its boundaries

 Use the structure of the code

 Use the properties it should uphold

 Use everything we used for unit tests when testing larger components

 This means there will be many more tests to engineer

18

When to write larger tests

 Exercise everything at the unit level

 Exercise the most important behavior in larger tests

 Testing mantra: A good test is cheap to write but finds important bugs

 Perform a simple cost/benefit analysis for larger tests

 How much will it cost to write and run?

 What bugs will it catch? Does it cover new functionality, not covered by unit tests?

19

The testing pyramid

20

Testing

• Integration testing

• System testing

• Mutation testing

• Test code quality

• Wrap up

Effective and systematic testing

22

Mutation testing: Definition

 We insert a bug in the code and check whether the test suite breaks

 The buggy version is called a mutant of the original version of the code

 If it breaks, great!

 We say that the test suite kills the mutant

 If it does not break, we have found something to improve in our test suite

 We say that the mutant survives

 A test suite achieves 100% mutation coverage if it kills all possible mutants

 Mutation testing measures the fault detection capability of a test suite
23

Mutation testing: Assumptions

 The competent programmer hypothesis assumes that the program is written by
a competent programmer and that the implemented version is either correct or
differs from the correct program by a combination of simple errors

 The coupling effect says that a complex bug is caused by a combination of small
bugs, so if your test suite can catch simple bugs, it will also catch complex ones

24

Mutation testing tool for Java

 Check out Pitest: https://pitest.org/

 Mutation operations: https://pitest.org/quickstart/mutators/

 Small example: https://pitest.org/quickstart/basic_concepts/

 Reports:

https://codesoapbox.dev/wp-content/uploads/2022/06/image-1.png

https://codesoapbox.dev/wp-content/uploads/2022/06/image-5.png

25

https://pitest.org/
https://pitest.org/quickstart/mutators/
https://pitest.org/quickstart/basic_concepts/
https://codesoapbox.dev/wp-content/uploads/2022/06/image-1.png
https://codesoapbox.dev/wp-content/uploads/2022/06/image-5.png

Mutation testing: Pros and Cons

Highly beneficial in revealing additional weaknesses in the test suite, e.g.,
compared to branch coverage

Very costly – it requires generating many mutants and executing the whole test
suite with each one

Tip:

Apply mutation testing in smaller, more sensitive parts of the system; it may give
valuable insights about what else to test

26

Testing

• Integration testing

• System testing

• Mutation testing

• Test code quality

• Wrap up

Principles of maintainable test code

 Tests should be fast

 Slower test suites force us to run them less often

 Use stubs or mocks to replace slow test components

 Redesign the production code so slower code can be tested separately

 Move slower tests to a different test suite that can run less often, e.g., when you
modify production code that has a slow test tied to it, or before committing

28

Principles of maintainable test code

 Tests should be cohesive, independent, and isolated

 A test should test a single functionality of the system

 Complex test code reduces understanding and makes maintenance more difficult

 A test should not depend on others to succeed, e.g., by setting up the state for it

 Each test should set up the state it needs and then clean it up

29

Principles of maintainable test code

 Tests should have a reason to exist

 Tests should either help find bugs or document behavior

 You don’t want tests that only increase code coverage

 You must maintain all your tests

 The perfect test suite is the one that can detect all the bugs with the minimum
number of tests

30

Principles of maintainable test code

 Tests should be repeatable and not flaky

 A repeatable tests gives the same result no matter how many times it is executed

 It is hard to know whether a flaky test is failing because the behavior is buggy or
because it is flaky

 Developers may lose their trust in the test suite and deploy their system even though
the tests fail

31

Principles of maintainable test code

 Tests should be repeatable and not flaky

 A test can become flaky for many reasons

 Because it depends on external or shared resources – e.g., it depends on a database that
might not be available, may contain data that the test does not expect, may be shared
with another developer running the test suite

 Due to improper time-outs – e.g., when testing a web application, the web service might
be slower than normal, and the test might fail if it doesn’t wait long enough

 Because of a hidden interaction between test methods – e.g., when a test does not clean
its state well enough

32

Principles of maintainable test code

 Test should have strong assertions

 Assertions should be as strong as possible to fully validate the behavior and break if
there is any slight change in the output

 E.g., think of a method calculatePrice() in a ShoppingCart that changes two
properties, finalPrice and taxPaid

 If your tests only ensure the value of the finalPrice property, a bug may happen in
the way taxPaid is set, and the tests will not notice it

33

Principles of maintainable test code

 Tests should break if the behavior changes

 If you break the behavior and the test suite is still green, something is wrong with it

 This may happen because of weak or missing assertions

 The TDD cycle allows developers to always see their tests break

34

Principles of maintainable test code

 Tests should have a single and clear reason to fail

 Your test code should help you understand what causes a bug

 A test should exercise only one behavior of the system

 It should have a name that indicates this behavior

 Anyone should be able to understand the input values and variable names

 The assertions and expected values should be clear

35

Principles of maintainable test code

 Tests should be easy to write

 If tests are hard to write, you will give up

 Writing unit tests is easy most of the time

 It gets complicated when the code under test requires too much infrastructure, e.g.,
a database

 Invest time and effort in writing good test infrastructure

36

Principles of maintainable test code

 Tests should be easy to change and evolve

 Production code will change, which will force the tests to change

 When implementing tests, we should make sure that changing them is not too
painful

 E.g., if you see the same code snippet in 10 different test methods, consider
extracting it

 The more your tests know about how the production code works, the harder it is to
change them

37

Testing

• Integration testing

• System testing

• Mutation testing

• Test code quality

• Wrap up

Effective testing during development

39

Wrap up

 Although the flow for effective and systematic testing looks linear, it is an
iterative process

 The more you test your code using different techniques, the greater the
chances of revealing new bugs

 Bugs will still happen – the software systems of today are very complex with
dozens of different components working together

 Intelligent testing is the way to go, that is, having computers explore software
systems for us

 Taught in detail in Advanced Software Engineering
40

Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche
• Sections 9.1, 9.1.2

• Introduction of Section 9.3

• Sections 9.4.1, 9.4.2

• Section 3.11

• Section 10.1

• Sections 11.1, 11.2

	Slide 1: Software Engineering VU [194.020]
	Slide 2: Summary
	Slide 3: Effective and systematic testing
	Slide 4: Testing
	Slide 5: The testing pyramid
	Slide 6: Larger tests
	Slide 7: When to use larger tests
	Slide 8: When to use larger tests
	Slide 9: Integration testing: Definition
	Slide 10: Integration testing: Definition
	Slide 11: Integration testing: Example
	Slide 12: Integration testing: Example
	Slide 13: Integration testing: Example
	Slide 14: Testing
	Slide 15: Effective and systematic testing
	Slide 16: System testing: Definition
	Slide 17: System testing: Example
	Slide 18: How to write larger tests
	Slide 19: When to write larger tests
	Slide 20: The testing pyramid
	Slide 21: Testing
	Slide 22: Effective and systematic testing
	Slide 23: Mutation testing: Definition
	Slide 24: Mutation testing: Assumptions
	Slide 25: Mutation testing tool for Java
	Slide 26: Mutation testing: Pros and Cons
	Slide 27: Testing
	Slide 28: Principles of maintainable test code
	Slide 29: Principles of maintainable test code
	Slide 30: Principles of maintainable test code
	Slide 31: Principles of maintainable test code
	Slide 32: Principles of maintainable test code
	Slide 33: Principles of maintainable test code
	Slide 34: Principles of maintainable test code
	Slide 35: Principles of maintainable test code
	Slide 36: Principles of maintainable test code
	Slide 37: Principles of maintainable test code
	Slide 38: Testing
	Slide 39: Effective testing during development
	Slide 40: Wrap up
	Slide 41: Suggested reading

