Software Engineering VU

[194.020]

Maria Christakis

TU Wien
https://mariachris.github.io

https://mariachris.github.io/

Summary

Effective and systematic testing

UNIT TESTING LARGER TESTS
\
Sped P catson Pro er{:j-bo.SeCL lr\'\'e.grOd\'oﬁ
test a9 | L esbng tesk ng
Boundory A Mocks ,shub s, \ Sﬂs"m ‘
| ‘ke.s’ﬁ'c\i | ond fotres tessn
| INTELLIGENT TESTING
Struchur ok
testing Mu\k‘(l’h“Onﬂ

\.—e.Sh’nﬂ_J

Integration testing

System testing
Mutation testing
Test code quality
Wrap up

The testing pyramid
More reolk

More cnm‘)lex

AN

System +ests

ln-\-earodﬁon tests

/ ANt tests

Larger tests

e Some parts of the system may require the developer to write larger tests
e |Integration tests

e System tests

* To devise larger tests, the developer uses the same techniques as for unit
testing but looking at larger parts of the software system

When to use larger tests

* You have exercised each class individually, but the overall behavior is composed
of many classes, and you want to see them work together

e E.g., think of a set of classes that calculates the final cost of a shopping cart

e The final cost is calculated by adjusting the delivery costs based on the number of
items, charging extra for certain heavy items, etc.

When to use larger tests

e The class you want to test is a component in a larger plug-and-play architecture
e E.g., think of a plugin in your favorite IDE (Intelli))

* You can develop the logic of the plugin, but many actions will only happen when
Intelli) calls the plugin and passes parameters to it

Integration testing: Definition

Integration testing is the test level we use to test the integration between our
code and external parties

Integration testing: Definition

Integration testing is the test level we use to test the integration between our
code and external parties

| | The tesponsilo s
Closs ? B

ot class C s Yo

—

10

Integration testing: Example

e Consider the CK tool (https://github.com/mauricioaniche/ck)

e Calculates code metrics for Java code, such as coupling between objects (CBO)

e CBO counts the number of other classes that each class depends on

class A {
private B b; A depends on B and C and CBO is 2

public void action() {
new C().method();

¥

https://mazko.github.io/jsjavaparser/

¥

11

https://github.com/mauricioaniche/ck
https://mazko.github.io/jsjavaparser/

Integration testing: Example

e CK relies on Eclipse JDT, a library that is part of the Eclipse IDE
e JDT enables building abstract syntax trees (ASTs)
e CK builds ASTs using JDT

e CK then traverses them to calculate different metrics, like CBO

12

Integration testing: Example

* How can we write tests for the CBO class?
e Start up JDT
e Ask JDT to build an AST out of a small but real Java class
e Use CBO to traverse the AST

e Assert the expected result

13

Integration testing

System testing
Mutation testing
Test code quality
Wrap up

Effective and systematic testing

UNI\T TESTING

SPQCJ e: C—O_H o ?TO Qf{j-basefd*
te st a9 | L esbng
Boundory | Mocks,shub s,
[-ke.sﬁc\i | ond *ockes
[Struchur ok

-'re.sh’ns

LARGER TESTS

ln‘\'e.st‘c}d\“oﬁ
%esﬁns

| o4 srem
testn

INTELLIGENT TESTING

15

System testing: Definition
System testing is testing the system in its entirety, as clients would

We do not care how the system works from the inside; we only care that, given
input X, the system will provide output Y

16

System testing: Example

e Think of a web application for a pet clinic
* Visit a web page that lists all scheduled appointments for today
e Click the New Appointment button
* Fill out the pet and owner name
e Select an available time slot
e Check that we go back to the appointments page

e Check that the page shows the new appointment

17

How to write larger tests

Use the requirement and its boundaries

Use the structure of the code

Use the properties it should uphold

Use everything we used for unit tests when testing larger components

e This means there will be many more tests to engineer

18

When to write larger tests

e Exercise everything at the unit level
e Exercise the most important behavior in larger tests

e Testing mantra: A good test is cheap to write but finds important bugs
» Perform a simple cost/benefit analysis for larger tests
e How much will it cost to write and run?

e What bugs will it catch? Does it cover new functionality, not covered by unit tests?

19

The testing pyramid
More reolk

More cnm‘)lex

AN

System +ests

ln-\-earodﬁon tests

/ ANt tests

Integration testing

System testing
Mutation testing
Test code quality
Wrap up

Effective and systematic testing

UNIT TESTING

LARGER TESTS

\
Speo e: caon ?ro er\:j—bo.Se,d ln*e.grod\“oﬁ
test g | eshng .’ -ke_sﬁns
Boundory A Mocks ,shub s, SdSN'QM i
| ‘ke.s’ﬁ'c\i | ond ftokes tessn
_ INTELLIGENT TESTING
Struchur ol

"re.SHﬁs

22

Mutation testing: Definition

e We insert a bug in the code and check whether the test suite breaks
e The buggy version is called a mutant of the original version of the code

o If it breaks, great!
e We say that the test suite kills the mutant

 If it does not break, we have found something to improve in our test suite
e We say that the mutant survives

e A test suite achieves 100% mutation coverage if it kills all possible mutants

e Mutation testing measures the fault detection capability of a test suite

23

Mutation testing: Assumptions

e The competent programmer hypothesis assumes that the program is written by
a competent programmer and that the implemented version is either correct or
differs from the correct program by a combination of simple errors

e The coupling effect says that a complex bug is caused by a combination of small
bugs, so if your test suite can catch simple bugs, it will also catch complex ones

24

Mutation testing tool for Java

e Check out Pitest: https://pitest.org/

* Mutation operations: https://pitest.org/quickstart/mutators/

* Small example: https://pitest.org/quickstart/basic concepts/

e Reports:
https://codesoapbox.dev/wp-content/uploads/2022/06/image-1.png

https://codesoapbox.dev/wp-content/uploads/2022/06/image-5.png

25

https://pitest.org/
https://pitest.org/quickstart/mutators/
https://pitest.org/quickstart/basic_concepts/
https://codesoapbox.dev/wp-content/uploads/2022/06/image-1.png
https://codesoapbox.dev/wp-content/uploads/2022/06/image-5.png

Mutation testing: Pros and Cons

Highly beneficial in revealing additional weaknesses in the test suite, e.g.,
compared to branch coverage

Very costly — it requires generating many mutants and executing the whole test
suite with each one

Tip:
Apply mutation testing in smaller, more sensitive parts of the system; it may give
valuable insights about what else to test

26

Integration testing

System testing
Mutation testing
Test code quality
Wrap up

Principles of maintainable test code

e Tests should be fast
e Slower test suites force us to run them less often
e Use stubs or mocks to replace slow test components
* Redesign the production code so slower code can be tested separately

* Move slower tests to a different test suite that can run less often, e.g., when you
modify production code that has a slow test tied to it, or before committing

28

Principles of maintainable test code

e Tests should be cohesive, independent, and isolated
e A test should test a single functionality of the system
e Complex test code reduces understanding and makes maintenance more difficult
* A test should not depend on others to succeed, e.g., by setting up the state for it

e Each test should set up the state it needs and then clean it up

29

Principles of maintainable test code

» Tests should have a reason to exist
e Tests should either help find bugs or document behavior
* You don’t want tests that only increase code coverage
* You must maintain all your tests

e The perfect test suite is the one that can detect all the bugs with the minimum
number of tests

30

Principles of maintainable test code

» Tests should be repeatable and not flaky
* A repeatable tests gives the same result no matter how many times it is executed

e |tis hard to know whether a flaky test is failing because the behavior is buggy or
because it is flaky

* Developers may lose their trust in the test suite and deploy their system even though
the tests fail

31

Principles of maintainable test code

» Tests should be repeatable and not flaky

* A test can become flaky for many reasons

Because it depends on external or shared resources — e.g., it depends on a database that
might not be available, may contain data that the test does not expect, may be shared
with another developer running the test suite

Due to improper time-outs — e.g., when testing a web application, the web service might
be slower than normal, and the test might fail if it doesn’t wait long enough

Because of a hidden interaction between test methods — e.g., when a test does not clean
its state well enough

32

Principles of maintainable test code

e Test should have strong assertions

e Assertions should be as strong as possible to fully validate the behavior and break if
there is any slight change in the output

e E.g., think of a method calculatePrice() in a ShoppingCart that changes two
properties, finalPrice and taxPaid

e |f your tests only ensure the value of the finalPrice property, a bug may happen in
the way taxPaid is set, and the tests will not notice it

33

Principles of maintainable test code

» Tests should break if the behavior changes
e If you break the behavior and the test suite is still green, something is wrong with it
e This may happen because of weak or missing assertions

e The TDD cycle allows developers to always see their tests break

34

Principles of maintainable test code

» Tests should have a single and clear reason to fail
* Your test code should help you understand what causes a bug
* A test should exercise only one behavior of the system
e |t should have a name that indicates this behavior
* Anyone should be able to understand the input values and variable names

e The assertions and expected values should be clear

35

Principles of maintainable test code

e Tests should be easy to write
e |f tests are hard to write, you will give up
e Writing unit tests is easy most of the time

e |t gets complicated when the code under test requires too much infrastructure, e.g.,
a database

* Invest time and effort in writing good test infrastructure

36

Principles of maintainable test code

* Tests should be easy to change and evolve
* Production code will change, which will force the tests to change

e When implementing tests, we should make sure that changing them is not too
painful

e E.g., if you see the same code snippet in 10 different test methods, consider
extracting it

* The more your tests know about how the production code works, the harder it is to
change them

37

Integration testing

System testing
Mutation testing
Test code quality
Wrap up

e cSve

Effective testing during development ond systemodsc
TeS‘HﬂS 3wd€_ o 6eveAC>FMQr\\‘ kes’\\'hs
| - A

;de\,e,\o‘:)nne_r\{- L ;3‘. P S '3

Descﬁn €or

Locger
\! owilds o- cstobb M | rests
featule — E— —>
QQ»q\AJN‘ emenfSJ Oes \"8(\ bj < ——_\ & ln*e\\'\se,(\’\-
~ Controcks oustromoled [ieskia
N O S'S s
lﬁ ‘ ‘ t+est swite

39

Wrap up

e Although the flow for effective and systematic testing looks linear, it is an
iterative process

* The more you test your code using different techniques, the greater the
chances of revealing new bugs

e Bugs will still happen — the software systems of today are very complex with
dozens of different components working together

e Intelligent testing is the way to go, that is, having computers explore software
systems for us

e Taught in detail in Advanced Software Engineering

40

Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche
- Sections 9.1, 9.1.2

¢ Introduction of Section 9.3
- Sections 9.4.1,9.4.2

- Section 3.11

- Section 10.1

- Sections 11.1, 11.2

	Slide 1: Software Engineering VU [194.020]
	Slide 2: Summary
	Slide 3: Effective and systematic testing
	Slide 4: Testing
	Slide 5: The testing pyramid
	Slide 6: Larger tests
	Slide 7: When to use larger tests
	Slide 8: When to use larger tests
	Slide 9: Integration testing: Definition
	Slide 10: Integration testing: Definition
	Slide 11: Integration testing: Example
	Slide 12: Integration testing: Example
	Slide 13: Integration testing: Example
	Slide 14: Testing
	Slide 15: Effective and systematic testing
	Slide 16: System testing: Definition
	Slide 17: System testing: Example
	Slide 18: How to write larger tests
	Slide 19: When to write larger tests
	Slide 20: The testing pyramid
	Slide 21: Testing
	Slide 22: Effective and systematic testing
	Slide 23: Mutation testing: Definition
	Slide 24: Mutation testing: Assumptions
	Slide 25: Mutation testing tool for Java
	Slide 26: Mutation testing: Pros and Cons
	Slide 27: Testing
	Slide 28: Principles of maintainable test code
	Slide 29: Principles of maintainable test code
	Slide 30: Principles of maintainable test code
	Slide 31: Principles of maintainable test code
	Slide 32: Principles of maintainable test code
	Slide 33: Principles of maintainable test code
	Slide 34: Principles of maintainable test code
	Slide 35: Principles of maintainable test code
	Slide 36: Principles of maintainable test code
	Slide 37: Principles of maintainable test code
	Slide 38: Testing
	Slide 39: Effective testing during development
	Slide 40: Wrap up
	Slide 41: Suggested reading

