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Informal modeling
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» Informal models

« Formal models
- Design by contract



Formal modeling

e Notations and tools are based on math and are precise
e Typically used to describe some aspect of a system

e Formal models enable automatic analysis
e Finding ill-formed examples
e Checking properties



Alloy
e Alloy is a formal modeling language based on set theory
* An Alloy model specifies a collection of constraints describing a set of structures

e The Alloy analyzer reasons about the constraints of a model
e Generates sample structures
e Generates counterexamples for invalid properties
e Visualizes structures



Alloy documentation and download

e https://alloytools.org

e The documentation includes
e Tutorials

» Software Abstractions

e Book by Daniel Jackson



https://alloytools.org/

» Informal models

« Formal models

« Static models

- Analyzing models
- Design by contract



Sighatures

e Asignature declares a set of atoms
e Think of signatures as classes
e Think of atoms as immutable objects
» Different signatures declare disjoint sets

e Extends-clauses declare subset relations
* File and Dir are disjoint subsets of FSObject

sig FSObject {}

sig File extends FSObject {}
sig Dir extends FSObject {}




Operations on sets

e Standard set operators
sig File extends FSObject {}

* + (union) sig Dir extends FSObject {}
e & (intersection)

e - (difference
,( ) #{f: FSObject | f in File + Dir} >= #Dir
* in (subset)

o = (equality)
o # (cardinality) #(File + Dir) >= #Dir

* none (empty set)

* univ (universal set)



More on signatures

e Signatures can be abstract
e Like abstract classes

e Closed-world assumption: the declared set
contains exactly the elements of the declared subsets

abstract sig FSObject {}
sig File extends FSObject {}
sig Dir extends FSObject {}

FSObject = File + Dir

* Signatures may constrain the cardinalities of the declared sets

e one: singleton set
* lone: singleton or empty
* some: non-empty set

one sig Root extends Dir {}
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Fields

e A field declares a relation on atoms

sig A {

e fis a binary relation with domain A and range given by expression e f: e

e Think of fields as associations

* Range expressions may denote multiplicities
e one: singleton set (default)
* lone: singleton or empty set
* some: non-empty set
* set: any set

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject {
contents: set FSObject

}
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Operations on relations

e Standard relation operators
abstract sig FSObject {
* ->(cross product) parent: lone Dir

e . (relational join) }

e ~ (transposition)

_ o contents: set FSObject
o * (reflexive transitive closure) }

e <:(domain restriction)

* >: (range restriction) one sig Root extends Dir {}

* ++ (override)

e iden (identity relation)
e [] (box join: el[e2] = e2.el)

FSObject in Root.*contents




Relational join: Example The. rdod\.omld.om
Root ¥ contents s

e Consider a structure with four FSObject atoms

'R d1,d2: Dir, f: Fil * *en’v.s
° r(.j oot, , I Ir, 1. Flie U‘,d\)
e And contents relation
(d1,82) )

e (rdl) (d1,d2) (d2,f)

Root (2. %) -  (d2)
» The reflexive transitive closure *contentsis  (() (dh ; £) / (f)
* (rd1) (d1,d2) (d2,f) c d9
(d1,f) (r,d2) (r,f) Cc,d )/ ()
(r,r) (d1,d1) (d2,d2) (£) Ce, ¥)
Ce, )

(d dl)
(d2,d2)
(£.¢) X



More on fields

e Fields may range over relations
e Relation declarations may include multiplicities on both sides
* one, lone, some, set (default)

sig University {
enrollment: Student set -> one Program

}

e Range expressions may depend on other fields

sig University {
students: set Student,
enrollment: students set -> one Program

}
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Constraints

* Boolean operators
e | or not (negation)
e && or and (conjunction)
e || oror (disjunction)
e => or implies (implication)
e else (alternative)
e <=> or iff (equivalence)

e Four equivalent constraints

F => G else H

F implies G else H

(F & G) || ((!F) && H)

(F and G) or ((not F) and H)

e Quantified expressions
* some e
e has at least one tuple
°*noe
e has no tuples
* lone e
e has at most one tuple
®* one e
e has exactly one tuple

no Root.parent
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Quantification

* Alloy supports five quantifiers
eallx:e | F
F holds for every xin e
e somex:e | F
F holds for at least one xin e
enox:e|F
F holds fornoxine
°* lonex:e|F
F holds for at most one xin e
eonex:e|F
F holds for exactly one x ine

e Quantifiers may have the following
forms:

eallx:e | F

e allx:el,y:e2 | F
eallx,y:e|F

e alldisjx,y:e | F

e E.g., the contents relation is acyclic

no d: Dir | d in d.”~contents
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Predicates and functions

* Predicates are named, parameterized formulas

pred p[xl:el,..,xn:en]{F}

pred isLeaf[f:FSObject] {
f in File || no f.contents returns bool

}

* Functions are named, parameterized expressions

fun f[xl:el,..,xn:en]: e {E}

fun leaves[f:FSObject]: set FSObject {
{x: f.*contents | isLeaf[x]}

}

returns e
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Kippi
returns bool

Kippi
returns e
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Exploring the model

e The Alloy analyzer can search for structures that satisfy the constraints M in a

model

e Find instance of a predicate
e Asolutionto M && some x1:el,...,xn:en | F

e Find instance of a function
e A solution to M && some x1:el,...,xn:en, res:e

res=E

pred p[xl:el,..,xn:en]{F}

run p

fun f[xl:el,..,xn:en]: e {E}

run f
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Exploring the model: Scopes

* The existence of a structure that satisfies the constraints in a model is in general
undecidable

e The Alloy analyzer searches exhaustively for structures up to a given size
e The problem becomes finite, and thus, decidable

run islLeaf

run isLeaf for 5

run islLeaf for 5 Dir, 2 File

run isLeaf for exactly 5 Dir

run islLeaf for 5 but 3 Dir

run isLeaf for 5 but exactly 3 Dir




Exploring the model: Example

abstract sig FSObject {
parent: lone Dir

}

sig File extends FSObject {}

sig Dir extends FSObject {
contents: set FSObject

}

one sig Root extends Dir {}

o d.icedor\’
should net esntonn

\ el t
contents: 4 Dir0 Dcontents
parent: 3
‘ | contents ond

7 pocent
fSVNDuLLfl be
\wWesse
Root felaNons
contents
Rook \pare
Should not |
Nowe oo

?wm’f Dir1 D parent
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Adding constraints

* Facts add constraints that always hold
* run searches for solutions that satisfy all constraints

* Facts express value and structural invariants of the model
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Adding constraints: Example

o &iredom’
shouldd not (entoan
‘ et
contents: 4 Dir0 )contents
parent: 3
: contents ond
par nt7 po..ren*:
ntent Shhoudd be
\wecsse
Root felaNons
contents
Rook pare
Should not ontenhts
howe oo
Pod'ef\\' Dir1 )parent

// The contents path is acyclic

fact { no d: Dir | d in d.”~contents }

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent

=d }

// Root is the root
fact { no Root.parent }
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Checking the model

* Exploring models by manually inspecting instances is cumbersome

* The Alloy analyzer can search for structures that violate a given property
* |t can find counterexamples to an assertion
e The search is complete for a given scope

e For a model with constraints M, find a solution to M && !F

assert a { F }

check a scope
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Checking the model: Example

* Finding a counterexample

pred islLeaf[f: FSObject] {
f in File || no f.contents

}

assert nonEmptyRoot { !isLeaf[Root] }
check nonEmptyRoot for 3

e Proving a property

assert acyclic { no d: Dir | d in d.”~contents }
check acyclic for 5

Root

Vo.hd(d:\/ 3 checked
oNnly WO A The aiven
Y 3!

Sc.opg,

Executing "Check acyclic for 5"

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
imary vars. 2423 clau
No counterexample found. Assertion may be valid} Oms.
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Under and over-constrained models

e Missing or weak facts under-constrain the model

e They permit undesired structures

e Under-constrained models are typically easy to detect during model exploration
(using run) and assertion checking (using check)

e Unnecessary facts over-constrain the model
e They exclude desired structures

e Inconsistencies are an extreme case of over-constraining

e They preclude the existence of any structure
e All assertion checks will succeed!

// The contents path is acyclic
fact acyclic { no d: Dir | d in d.*contents }

assert nonsense { @ = 1} V
check nonsense
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Guidelines to avoid over-constraining

e Simulate model to check consistency
* Use run to ensure that structures exist

// The contents path 1s acyclic Executing "Run show"

fact acyclic { no d: Dir | d in d."contents } |"g, e =gat4j Bitwidth=0 MaxSeq=0 SkolemDepth=4 Symmetry=20
0 vars. 0 primary vars. 0 clauses. 16ms.

pred show {} No instance found. Predicate may be inconsistent. Oms.

run show

e Prefer assertions over facts

* When in doubt, check whether the current model already ensures a desired property
before adding it as a fact

27



» Informal models

« Formal models
- Static models

* Analyzing models

- Design by contract



Consistency and validity

* An Alloy model specifies a collection of constraints C that describe a set of
structures

e Consistency:

A formula F is consistent (satisfiable) if it evaluates to true in at least one of these
structures

Qs Ccs) A F(s)

e Validity:
A formula F is valid if it evaluates to true in all these structures

M5 Cs) => Feo)
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Analyzing models within a scope

* Validity and consistency checking for Alloy is undecidable

e The Alloy analyzer sidesteps this problem by checking validity and consistency
within a given scope

e A scope gives a finite bound on the sizes of the sets in the model (which makes
everything else in the model also finite)

e Naive algorithm: enumerate all structures of a model within the bounds and check
the formula for each of them

30
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Translation into Boolean formula

e Internally, Alloy represents all data types as relations

* Arelation is a set of tuples
next 15 o blho.n, celodion

sig Node { n Node x “Ode_

next: lone Node

}

e Constraints and formulas in the model are represented as formulas over
relations

Nnext
fact { /*“‘Cn'n)% e
all n: Node | n != n.next

}




Translation into Boolean formula

e A relation is translated into Boolean variables

* Introduce one Boolean variable for each tuple that is potentially contained in the
relation

next 15 o bkho.m, celodion
sig Node { ‘
next: lone Node \n Node x “Ode.
l}”‘e" show {} Nog>rNes nOl‘n\o » My ﬁl?.)nlo SACTELAPTY
run show for 3

\\ For tne 8\“% ScoPQ , next mmd coNtoun
9 difewrent NP\%

Constraints and formulas are translated into Boolean formulas over these

variables g ANg) A i(ngg A N AT Che\’\nog_) A

fact { | AN AR D NACN ANINICA AN YA
all n: Node n != n.next

: TN N ) AV O, AN AN, AN YA

i Noo AN Ny A r\fISL 33



Check for satisfying assignments

o Satisfiability of formulas over Boolean variables is a well understood problem

* Find a satisfying assignment if one exists and return UNSAT otherwise
e The problem is NP-complete

e In practice, SAT solvers are extremely efficient

N A NGY A lngg AN ) ATOng AN ) A
TN AR NANNANS AN AN (A NN
TN e N ) AVCn, AN AT, AN YA




Translation back to model

e A satisfying assignment can be translated back to relations

and then visualized

next - i(&.,‘l) , Cl\i—)i

Node1

]n ext

Node2

NodeO

35



Interpretation of UNSAT

* |f a Boolean formula has no satisfying assignment, the SAT solver returns UNSAT

* The Boolean formula encodes an Alloy model within a given scope
e There are no structures within this scope, but larger structures may exist
e The model may be, but is not necessarily inconsistent

sig Node { Executing "Run show for 3"
next: lone Node

} Solver=sat4) Bitwidth=0 MaxSeqg=0 SkolemDepth=1 Symmetry=20
0 vars. 0 primary vars. 0 clauses. Oms.

fact { #Node = 4 } R ry
pred show {} [ No instance found. Predicate may be inconsistent.lOms.
run show for 3
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Validity and invalidity checking

e Aformula Fis valid if it evaluates to true in all structures that satisfy the
constraints C of the model

¥s. C(s) =€)

e Enumerating all structures within a given scope is possible but too slow

* Instead of checking validity, the Alloy analyzer checks for invalidity, that is, it
looks for counterexamples

- (34'5- Ces) = CCS\) = 3s. C) AT F(S)

‘H,\,{s 'S Q) UOQSCS-\-Q:\&\/
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Validity checking
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Interpretation of UNSAT

e Validity checking searches for a counterexample within a given scope
e There are no structures within this scope, but larger structures may exist
e The model may be, but is not necessarily valid

sig Node { next: Node }

assert demo { all n: Node | some m: Node | m.next = n }

Node1

check demo for 1 check demo for 2 ‘next: 2 ‘

Executing "Check demo for 1" ($demo_n)
Solver=sat4j Bitwidth=0 MaxSeqg=0 SkolemDepth=1 Symmetry=20
14 vars. 3 primary vars. 18 clauses. 9ms.

No counterexample found. Assertion may be valid. Oms. next

NodeO D next
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Analyzing models: Summary

e Consistency checking
* Performed by run command within a scope
» Positive answers are definite (structures)

* Validity checking
e Performed by check command within a scope
* Negative answers are definite (counterexamples)

e Small model hypothesis

Most interesting errors are found by looking at small instances

40



» Informal models

- Formal models
- Static models
- Analyzing models

« Design by contract



Design by contract
* Pioneered by Bertrand Meyer in the Eiffel language

* Defining formal, precise, and verifiable interface specifications for software
components, with preconditions, postconditions, and invariants

e Three key questions that the designer must repeatedly ask:
e What does this code expect?
e What does it guarantee?
e What does in maintain?

42



Preconditions

* Preconditions express requirements on the input state (parameters, heap) of a
method

e Semantics
e Condition must be true at the entry of the method

// requires 6 <= index < size
public int getElemAtIndex(int index) {
return elems[index];

}

43



Checking preconditions

e Approach 1: Return error value

// requires 0 <= index < size
public int getElemAtIndex(int index) {

if (index < @ || index >= size) {
return -1;

} else {
return elems[index];

}

}

44



Checking preconditions

e Approach 2: Throw exception

// requires 0 <= index < size
public int getElemAtIndex(int index) {
if (index < @ || index >= size) {
throw new IndexOutOfBoundsException(index);
} else {
return elems[index];

}
}
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Checking preconditions

e Approach 3: Use assertions

e An assertion is a logical statement that can be made at a particular program point
and is expected to be true

* In Java, assertions can be enabled (they are off by default)

// requires 6 <= 1index < size

public int getElemAtIndex(int index) {
assert (0 <= index && index < size) : “index must be within bounds”;
return elems[index];

}
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Postconditions

* Postconditions express guarantees about the result and output state (out-
parameters, heap) of a method

e Semantics

e Condition must be true at the normal exit of the method

// requires 0 <= capacity

// ensures capacity <= elems.length

public int ensureCapacity(int capacity) {
while (capacity > elems.length) {

elems = Arrays.copyOf(elems, 2*elems.length);
}

}
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Checking postconditions

e Use assertions

// requires 0 <= capacity
// ensures capacity <= elems.length
public int ensureCapacity(int capacity) {
while (capacity > elems.length) {
elems = Arrays.copyOf(elems, 2*elems.length);
}

assert (capacity <= elems.length) : “elems does not have enough capacity”;

}

48



Pre- and postconditions: Methods and callers
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Dafny

e There are many languages that natively support design by contact

e Dafny is a such a programming language that comes with a program verifier for
automatically checking the specifications

e Dafny compiles to mainstream languages, such as Java, C#, Go, etc.

e Check it out: https://dafny.org/
e Tutorials, examples, documentation, ... Daf‘ny



https://dafny.org/

Dafny
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Inheritance and contracts: Example
Tox Caduulotor
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Inheritance and contracts: Example

e Suppose the client class receives a TaxCalculator in its constructor and uses it in
its methods

e Due to polymorphism, any of the child classes can also be passed to the client

* Since the client does not know which tax calculator was given to it, it can only
assume that whatever class it received will respect the pre- and post-conditions
of the base class (the only class the client knows)
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Inheritance and contracts: Example
Tox Caduulotor
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Inheritance and contracts: Example
Tox Caduulotor
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Inheritance and contracts: Example
Tox Caduulotor
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Inheritance and contracts: Rules

Whenever a subclass S (e.g., TaxCalculatorBrazil) inherits from a base class B (e.g.,
TaxCalculator):

1. The pre-conditions of subclass S should be the same as or weaker (accept
more values) than the pre-conditions of base class B

2. The post-conditions of subclass S should be the same as or stronger (return
fewer values) than the post-conditions of base class B

Liskov substitution principle (LSP): The idea that a subclass may be used as a
substitution for a base class without breaking the system’s expected behavior
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Weak or strong pre-conditions?

* An important design decision when modeling contracts is whether to use strong
or weak contracts: it’s a trade-off!

e Weak pre-condition
e E.g., the method accepts any input value, including null

e It's easy to use for clients: any call to it will work and the method will never throw an
exception related to a pre-condition being violated

e This puts an extra burden on the method, as it must handle any invalid inputs
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Weak or strong pre-conditions?

* An important design decision when modeling contracts is whether to use strong
or weak contracts: it’s a trade-off!

e Strong pre-condition
e E.g., the method only accepts positive numbers and does not accept null

e This puts an extra burden on the client, as it must make sure it does not violate the
pre-conditions of the method

e The method implementation is easier, as it may assume that inputs are always valid

59



Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche
- Section4.3.1
- Section4.5.1
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