
Software Engineering & Projektmanagement VO
(188.410)

Felix Rinker
felix.rinker@qse.ifs.tuwien.ac.at

23.05.2018 | Software Patterns

mailto:felix.rinker@qse.ifs.tuwien.ac.at

�2

Agenda

▪ Industrial Use Case
– Software Engineering Integration for Flexible Automation Systems

▪ Complex Systems and Complexity Management
▪ Motivation for Software Patterns
▪ Software Pattern Categories
▪ Practical Examples

– Engineering Service Bus
▪ Conclusion

�3

Industrial Scenario

▪ Large-scale engineering project
– e.g.steel-mill, manufacturing

plant engineering, car
manufacturing plants, hydro
power plants

▪ Cooperation of different
engineering disciplines  
required

▪ Disciplines have specific
engineering tools

▪ Manual effort needed at for tool
data exchange  

– High risks

�4

Complex Systems

▪ Magnitude
– Number of Elements in the system
– Number of possible states of elements
– Difference between number of possible and usable solutions

▪ Diversity
– Magnitude of heterogeneity of elements

▪ Connectivity, structural complexity
– Number of potential connections between elements

▪ Literature defines systems as complex if
– … they consists of a large number of interacting components,
– … simple linear modelling is insufficient for understanding,
– but requires sophisticated dynamic approaches (e.g., simulations).

�5

Managing Complexity

▪ Abstraction
– simplification of a scenario

▪ Decoupling
– identify the separation of system components that should not depend on each

other
▪ Decomposition

– KISS - Keep It Simple, Stupid
– components that are easier to understand, manage, or maintain
– problem of reassembling

▪ Classification
– system parts with similar properties

�6

Managing Complexity

▪ Standardization
– benefit of a structured and non-dynamic environment

▪ Modeling
– generating an abstract and simplified view

▪ Transformation
– transformation of the given problem to a domain with proven solution approach

▪ Experience
– documented experiences from experienced contributors

�7

Industrial Scenario

▪ Complexity-drivers
– Technical heterogeneity

“Engineering Polynesia”
– Semantic heterogeneity

“Engineering Babylon”
– Process heterogeneity

“Engineering Chaos”

▪ Engineering Service Bus 
(https://github.com/openengsb)

▪ Operating Numbers
▪ 184 repositories
▪ 5508 Issues
▪ 170k LOC
▪ 74k LOConf
▪ 314 Project Dependencies

�8

Pattern Definitions

▪ „…a solution to a problem in a context…“

▪ „A pattern is the abstraction from a concrete form which keeps recurring in specific
non-arbitrary contexts”

▪ „Pattern“ has been defined as „an idea that has been useful in one practical
context and will probably be useful in others.“

�9

Elements of a Pattern

▪ A meaningful name
– Aliases, classifications

▪ Motivation and problem statement
▪ Context

�10

Elements of a Pattern

▪ A meaningful name
– Aliases, classifications

▪ Motivation and problem statement
▪ Context
▪ Solution

– Structure
– Participants
– Collaboration
– Consequences
– Implementation
– Examples

�11

Advantages for Software Development

▪ Common vocabulary saves discussions
▪ Help manage complex systems

– Patterns explicitly capture expert knowledge and design tradeoffs
• therefore make this expertise more widely available

– Combination of patterns
▪ Facilitates non-functional requirements

– Reusability, adaptability, extendability
▪ Minimizes development time and costs
▪ Improves documentation

�12

Experience

�13

Drawbacks of Patterns

▪ Patterns do not lead to direct code reuse
▪ Patterns are deceptively simple
▪ Teams may suffer from pattern overload
▪ Patterns are validated by experience and discussion

– rather than by automated testing
– http://clean-code-developer.de/

�14

Classification of Patterns

▪ Architectural Patterns
– Structure of software systems
– Subsystems, dependencies, communication

▪ Design Patterns
– Describes the structure and relations at the level of classes

▪ Idioms
– Focus on low-level details
– Programming language specific

▪ Protopatterns
– Particular case
– A new, understandable solution to be used in larger scale

▪ Antipatterns
– Commonly used but ineffective techniques

�15

When to use Patterns

▪ Solutions to problems that recur with variations
– No need for reuse if the problem only arises in one context

▪ Solutions that require several steps
– Patterns can be overkill if solution is simple linear set of instructions

▪ Solutions where the solver is more interested in the existence of the solution than
its complete derivation
– Patterns leave out too much to be useful to someone who really wants to

understand

�16

Most popular Patterns

▪ The most popular design pattern is the Interface pattern

http://dilbert.com/strips/comic/1994-06-10/

▪ The second most popular design pattern is Proxy Pattern

▪ The third most popular design pattern is "Big Ball of Mud"

�17

Types of Patterns

▪ Fundamental patterns
- Deal with essential concepts of software architecture

▪ Creational patterns
– Deal with initializing and configuring classes and objects

▪ Structural patterns
– Deal with decoupling interface and implementation of classes and objects

▪ Behavioral patterns
– Deal with dynamic interactions among objects

�18

Fundamental Patterns - Overview

▪ Interface
– Separation of interface description and implementation

▪ Delegation
– Extension of functionality without inheritance

▪ Immutable
– Provides unchangeable object after initialization

▪ Marker / Annotation
– Enhances objects with metadata

�19

Fundamental Pattern - Interface

▪ defines the signature operations of an entity
▪ should be stable - in comparison to implementation
▪ implementations can be added / changed easily

Issue: Separate Interface description and concrete implementation

�20

Fundamental Pattern - Interface

Code Example

�21

Fundamental Pattern - Delegation

Issue: Class needs additional functionality

�22

Fundamental Pattern - Delegation

Inheritance

Issue: Class needs additional functionality

�23

Fundamental Pattern - Delegation

Delegation
Outsource functionality into third class and use its instance via delegation

Issue: Class needs additional functionality

�24

Fundamental Pattern - Delegation

Code Example

�25

Fundamental Pattern - Immutable

▪ Several threads accessing same object
▪ Configuration object properties

Issue: Object instance should be immutable

▪ Initialize variables in constructor
▪ Provide readable only access via Getter-Methods

Immutable Object

�26

Fundamental Pattern - Immutable

Code Example

�27

Creational Patterns - Overview

▪ Singleton
– Provision of a single instance only

▪ Factory
– Method in a derived class creates associates

▪ Abstract Factory
– Factory for building related objects without specifying their concrete classes

▪ Builder
– Factory for building complex objects in different variants

▪ Prototype
– Factory for cloning new instances from a prototypical instance

�28

Creational Pattern - Singleton

▪ Database access
▪ Id generator
▪ Logger
▪ Communication with hardware

Issue: Only one object instance should exist

�29

Creational Pattern - Singleton

Threadsafe??

Issue: Only one object instance should exist

Singelton

�30

Creational Pattern - Singleton

Code Example

�31

Creational Pattern - Factory

▪ Initialization of additional sub-instances required
▪ Complex configuration process steps

Issue: Object creation depends on complex requirements

Helps decoupling as only interface is known!

�32

Creational Pattern - Factory

Code Example

▪ Abstract Factory
– a group of individual factories that have a common theme

▪ Two hierarchies
– various abstractions client is interested in
– abstract AbstractFactory class provides interface

• for each class that is responsible for creating the members of a particular family
▪ Client only knows abstract interface

– Family may grow independently of the client

�33

Creational Pattern – Abstract Factory
Issue: Achieving higher abstraction by grouping individual factories with a common theme

�34

Structural Patterns - Overview

▪ Facade
– Facade simplifies the interface for a subsystem

▪ Adapter
– Translator adapts a server interface for a client

▪ Proxy
– One object approximates another

▪ Bridge
– Abstraction for binding one of many implementations

▪ Composite
– Treats individual objects and compositions uniformly

▪ Flyweight
– Many fine-grained objects shared efficiently

�35

Structural Pattern - Facet

▪ Provides a simplified, higher-level interface of a subsystem
– easier to use, understand, and test subsystem
– balance between simple but restricted and rich but complex

▪ May help creating a layered architecture

Issue: Need simplified access to a complex subsystem

�36

Structural Pattern - Facet

Code Example

�37

Structural Pattern - Adapter

▪ wrapper pattern or simply a wrapper
▪ provides access to external functionality

– e.g., access to external libraries, (proprietary) systems
– typically no direct access because of incompatible interfaces

Issue: Need to integrate incompatible external functionality

▪ translates an external interface
into a compatible interface
– Perform data transformations

into appropriate forms

�38

Structural Pattern - Adapter

OESB Example

�39

Structural Pattern - Proxy

▪ Extends concept of the delegation pattern
▪ Enriches interface functionality

– Implements interface and acts as a representative of the „original“ implementation
▪ Cascading Proxies

Issue: Need to integrate further actions before intended method call

▪ Use cases
- security
- logging
- caching

�40

Structural Pattern - Proxy

Issue: Need to integrate further actions before intended method call

Use case: Access control

�41

Remote Connectors

Code Example

�42

Behavioral Patterns - Overview

▪ Observer
– Dependents update automatically when a subject changes

▪ Decorator
– Decorator extends an object transparently

▪ State
– Object whose behavior depends on its state

▪ Strategy
– Vary algorithms independently

▪ Chain of Responsibility
– Request delegated to the responsible service provider

▪ Iterator
– Aggregate elements are accessed sequentially

▪ Command
– Object represents all the information needed to call a method at a later time

▪ Mediator
– Mediator coordinates interactions between its associates

▪ Memento
– Snapshot captures and restores object states

�43

Behavioral Pattern - Observer

▪ in case of changes of the instance‘s state execute specific action(s)
– e.g., notification of instances interested in change
– one-to-many dependency

Issue: Need to react to object state changes

�44

Behavioral Pattern - Decorator

▪ Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

Issue: Need to extend object functionality during runtime

▪ Elements
– Interface Component
– Implemented by concrete components
– Abstract decorator class

• Implements interface
• and keeps reference to interface  

to forward functionality
– Concrete decorator 

implementations
▪ Drawback

– Testing
– proxy

�45

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: Cake

�46

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: Cake

�47

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: GUI toolkit

�48

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: Stream

�49

Behavioral Pattern - State

▪ Allow an object to update its behavior when its internal state changes
– Makes state transitions explicit
– May result in lots of subclasses

Issue: Need to change object behavior based on current state

�50

Behavioral Pattern - State

Issue: Need to change object behavior based on current state

http://sourcemaking.com/design_patterns/state

�51

Behavioral Pattern - Strategy

Issue: Need to extend strategies at runtime

▪ Dynamically add new algorithms
– context choose algorithm to use

�52

Behavioral Pattern - Strategy

▪ Currently close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

Issue: Need to extend strategies at runtime

Example: Notification strategy

�53

Behavioral Pattern - Strategy

Issue: Need to extend strategies at runtime

Example: Notification strategy

▪ Context object decides which strategy to use

�54

Behavioral Pattern - Strategy

Code Example

�55

Behavioral Pattern - Chain of Responsibility

▪ Chain of Objects
– a source of command objects
– a series of processing objects with logic capable of handling specific command objects

Issue: Improve loose coupling between a series of processing logic

�56

Behavioral Pattern - Chain of Responsibility

▪ Chain of Objects
– a source of command objects
– a series of processing objects with logic capable of handling specific command objects

�57

Behavioral Pattern - Chain of Responsibility
Example: Remote service request

Json encoded request

�58

Behavioral Pattern - Chain of Responsibility
Example: Remote service request

�59

Example: Remote service request

�60

Summary

▪ Industrial Use Case
▪ Engineering Service Bus
▪ Design patterns provide a structure in which problems can be solved.

– Review different applications of one pattern
– Gain experience
– "code smells"

▪ Offering Topics
– http://qse.ifs.tuwien.ac.at/topics.htm
– felix.rinker@qse.ifs.tuwien.ac.at

mailto:felix.rinker@qse.ifs.tuwien.ac.at

�61

How to gain experience

▪ Participate in open source projects, e.g.
- OPS4J https://github.com/ops4j
- Apache Projects https://projects.apache.org/projects.html
- Google Summer of Code https://developers.google.com/open-source/gsoc/
- …

▪ Build up your own technology radar
- Martin Fowler: Catalog of Patterns of Enterprise Application Architecture  

https://martinfowler.com/eaaCatalog/
- study Stack Overflow design pattern topics  

https://stackoverflow.com/questions/tagged/design-patterns

https://github.com/ops4j
https://developers.google.com/open-source/gsoc/
https://martinfowler.com/eaaCatalog/
https://stackoverflow.com/questions/tagged/design-patterns

�62

References

▪ Shannon C. E. A Mathematical Theory of Communication. Bell Syst. Techn. J., 1948.
▪ McDermid, J.A. Complexity: Concept, Causes and Control. in 6th IEEE Int. Conference on

Complex Computer Systems. 2000: IEEE Computer
▪ Society..
▪ Norman D. O. and M. L. Kuras. Engineering Complex Systems. Technical Report, the MITRE

Corporation, 2004.
▪ Developer.com, A Survey of Common Design Patterns, 2002, http://www.developer.com/design/article.php/

1502691/A-Survey-of-Common-Design-Patterns.htm
▪ Anand, R. and H.C. Roy, What is the complexity of a distributed computing system? Complexity,

2007. 12(6): p. 37-45.
▪ Bob, C., Complexity in Design. IEEE Computer, 2005. 38(10): p. 10-12.
▪ Dirk Riehle and Heinz Zullighoven. 1996. Understanding and using patterns in software

development. Theor. Pract. Object Syst. 2, 1 (November 1996)
▪ Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software AW, ’94
▪ Pattern Languages of Program Design series by AW, ’95-’99.
▪ Siemens & Schmidt, Pattern-Oriented Software Architecture, Wiley, volumes ’96 & ’00
▪ http://sourcemaking.com/design_patterns

�63

EngSB - Patterns

▪ Interface Pattern: https://github.com/openengsb/openengsb-domain-notification/blob/
master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java
– email: https://github.com/openengsb/openengsb-connector-email/blob/master/src/

main/java/org/openengsb/connector/email/internal/EmailNotifier.java
– facebook: https://github.com/openengsb/openengsb-connector-facebook/blob/master/

src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java
▪ Delegation pattern: https://github.com/openengsb/openengsb-framework/blob/master/

components/common/src/main/java/org/openengsb/core/common/events/
ForwardHandler.java

▪ Immutable pattern: https://github.com/openengsb/openengsb-framework/blob/master/
components/ekb/src/main/java/org/openengsb/core/ekb/internal/
ConnectorInformation.java

https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java
https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java
https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java

�64

EngSB - Patterns

▪ Singleton pattern: https://github.com/openengsb/openengsb-framework/blob/master/
components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java

▪ Factory pattern: https://github.com/openengsb/openengsb-framework/blob/master/
components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java

▪ Proxy pattern:
– https://github.com/openengsb/openengsb-framework/blob/master/components/

services/src/main/java/org/openengsb/core/services/internal/virtual/
ProxyConnector.java

– https://github.com/openengsb/openengsb-framework/blob/master/components/
common/src/main/java/org/openengsb/core/common/virtual/
InvokeAllIgnoreResultStrategy.java

▪ Chain of responsibility pattern: https://github.com/openengsb/openengsb-framework/blob/
master/components/common/src/main/java/org/openengsb/core/common/remote/

https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/

