
ML - 25 Skriptum

Philipp Schott - 12132552

June 24, 2025

Contents
1 What is Machine learning 2

2 Data Preparation & Performance Evaluation 2
2.1 Data Preparation . 2
2.2 Performance Evaluation . 3

3 Simple Networks 6
3.1 (single-layer) Perceptron . 6
3.2 Linear Regression . 7
3.3 k-NN . 7
3.4 Bayesian Networks . 8

3.4.1 Naive Bayes . 9
3.4.2 Learning Bayesian Networks . 9

4 From Decision Trees to Random Forest 10
4.1 Decision Tree . 10

4.1.1 Popular measures to compute best split: . 10
4.1.2 (Pre-)pruning: . 11

4.2 Random Forest . 11

5 Neural Networks / MLP 12
5.1 Forward pass . 12
5.2 Training . 12

5.2.1 Actual Training . 12
5.2.2 Other approaches of Gradient Descent: . 14

6 Deep Learning 14
6.1 Convolutional neural network (CNN) . 14

6.1.1 Convolutions in detail . 14
6.2 Transfer & Ensemble Learning . 15
6.3 Challenges . 16
6.4 Recurrent Networks . 17

7 Automated Machine Learning (AutoML) 17
7.1 Metalearning . 17
7.2 AutoML . 19

8 Reinforcement Learning 20
8.1 k-armed Bandit Problem . 20
8.2 Markov Decision Processes . 21
8.3 Monte Carlo Methods . 22

1

1 What is Machine learning
There are three di!erent sub-disciplines: Unspervised (data mining, cluster analysis), Supervised and Rein-
forcementlearning, we will fokus on the last two.

Learning Paradigms

vs. Rule-based systems
System that uses rules to make deductions or choices with two
components:
Knowledge base: facts & rules (if → then style)

• Knowledge representation (language)
Inference engine: applies rules to deduce new facts

• Forward chaining: assert new facts
• Backward chaining: start with goal → determine which

facts need to asserted

“A computer program is said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E” (Tom Mitchell)

2 Data Preparation & Performance Evaluation

2.1 Data Preparation

General analytical (data science) process

• Identify problem / question

• Identify & capture the available data

• Prepare your data: clean & transform

• Analyse your data -> actual machine learning

• Create report with results, visualisation, insights

• Embed results into business / decision making

• Plan for better data capturing in the future

Generell Advice

• We decide between qualitative (nominal, ordinal) and quantitative (interval, ratio) Data

• BUT: Some ML algorithms rely on measuring the (numeric) distance between samples

• e.g. Scaling, Normalisation, Standardisation, One-Hot Encode (many impl. already have that)

• Other scalings:

– Min-Max Scaling: zi =
xi→min(X)

max(X)→min(X) (bounds input)

– Z Scaling: zi =
xi→µ
ω

• Missing values: Bad for the algorithm? → deletion of row/column or substitution (e.g. NA-category,
static mean etc. if else to small or di"cult to identify)

• Attention: split first then clean to avoid data leakage

Philipp Schott - 12132552 | 2

Data Augmentation

Def: Increases model invariance to irrelevant variations by transforming training data. Typical transforma-
tions include flipping, rotation, scaling, or color changes — so the model learns to focus on essential features
and ignore superficial di!erences (e.g., in image classification). It also increases the apparent training set
size, improving generalization and reducing overfitting.

Feature Selection

Def: The process of identifying and removing irrelevant or redundant input variables from the dataset by
maximizing relevance to the target variable, in order to improve model e"ciency, interpretability and perfo-
mance.

An exhaustive search over all possible feature subsets is computationally infeasible for large numbers of
features, as there are 2n possible combinations. Therefore, heuristic methods are used to identify useful
subsets, reducing computational cost and improving learning performance.

Common methods include:

• Filter: evaluates features based on statistical properties (e.g., mutual information, correlation). Simple
and fast, but less accurate than wrappers:

• Wrapper: searches for feature subsets by evaluating model performance (e.g. Tabu Search, Hill
Climbing, Genetic Algorithms (metaheuristics), Branch and Bound, Best-first search).

– Greedy strategies: (e"ient and robust against overfitting)

∗ Forward Selection: Iteratively starts with an empty feature set and adds the feature that
most improves model performance (e.g. based on cross-validation error of models trained on
the selected features) until a desired number of features is reached.

∗ Backward Elimination: Starts with all features and iteratively removes the feature whose
exclusion least harms model performance (i.e. that contributes the least), until a target subset
size is reached.

• Embedded approaches: perform selection as part of model training (e.g., Lasso regression, which
penalizes large coe"cients; tree-based with built-in feature importance).

Feature Extraction

Def: The transformation of original input variables into a new set of features — often in a lower-dimensional
space — that captures the most relevant structure in the data.

• PCA (Principal Component Analysis): reduces dimensionality by projecting data onto orthogonal
components.

• Autoencoders: learn compressed representations of input data via neural networks.

• Text features: word embeddings (e.g., Word2Vec, BERT), bag-of-words, or TF-IDF vectors.

• Images: filters, edge detectors, and CNN feature maps.

2.2 Performance Evaluation

E!ectiveness

• quality of classification

• Table of Confusion /Binary classification (also extendable to confusion matrix):

Philipp Schott - 12132552 | 3

• How will model perform on unseen data? ↑ Holdout method: Training 80% vs. Test 20% (randomise
before split & use stratification to equally train all classes but might not reflect the “real world”
scenario)

• k-fold Cross validation: (also uses significance testing etc.)

– vs. Leave-p-out Cross validation: uses
(n
p

)
of all combinations vs. Bootstrapping: sample

of size N with replacement (arbituary times)

• Other evaluation measures:

– Micro average: all classes together - not indicate issues with imbalanced classes (e.g. as above)

– Macro average: e.g. Recall: 1
|C|

∑|C|
i=1

TPi
TPi+FPi

(with |C| = number of classes; so per class then
average)

– Balanced accruacy: TPR+TNR
2 = Recall+Specificity

2 =
TP

TP+FN + TN
TN+FP

2 (important for imbal-
anced classes)

• Cost of misclassification:

– Cost (loss) functions (matrix): Higher weight (e.g. by experts) to classes where errors are more
severe

– Cost function: Total Cost =
∑

i

∑
j C(i, j) ·N(i, j) (elementwise product)

• Model selection: HP-tuning, alorithm, features etc. (test by e.g. 60-20-20 validation split or nested
cross validation after training (randomness))
↑ Any classifier might outperform another on a specific training set

• Significance testing: Null hypothesis – result of two classifiers are samples drawn from the same
distribution with ω = 0.05↓ 0.01

– McNemar’s test (based on ε2-test: ε2 =
∑n

i=1
(Oi→Ei→1)2

Ei
)

– paired t-Test t = XD
↑
n

sD
assumes that the di!erences between paired observations are independent

and normally distributed (e.g. two models on the same data splits)

Philipp Schott - 12132552 | 4

Evaluating Regression Models

For evaluating numeric predictions (regression), standard performance metrics include:

• Root Mean Squared Error (RMSE):
√

1
n

∑n
i=1(yi ↓ ŷi)2 (e.g. MSE, MAE)

• Root Relative Squared Error (RRSE):
√∑n

i=1(pi→ai)2∑n
i=1(ai→ā)2 =

↔
RSE

• Relative Absolute Error (RAE):
∑n

i=1 |pi→ai|∑n
i=1 |ai→ā| (where pi is the prediction, ai is the true value)

• R-squared (R2): proportion of variance explained by the model: R2 = 1↓
∑

(y→ŷ)2∑
(y→ȳ)2

• Pearson Correlation Coe!cient: r =
∑

i(pi→p̄)(ai→ā)
↔∑

i(pi→p̄)2
∑

i(ai→ā)2
= SPA↑

SPSA

Each metric captures di!erent aspects of model performance (e.g., sensitivity to outliers, interpretability).

E"ciency

• computational e"ciency (runtime, memory consumption) of a prediction model (always a Trade-o!)

• Di!erentiate between e"ciency on:

– Training (learning) a model (usually a 1-time e!ort)

– Classification (might require close-to real time speed / no time)

• becomes more relevant if model needs to be (re-)trained frequently

Overfitting & Generalisation

Definition:

• Overfitting: model is trained too specific to learning examples (i.e. to much variance learned)

• Generalisation: ability of model to perform well on the general problem (i.e. the real distribution
that generated the training data)

Trade-o! complexity vs. generalization

Bayes Optimal Classifier: Classification by taking the most likely output value for a given input (i.e. the
highest probability -> Estimate probability densities based on samples (similar to what Naive Bayes does))

Bias & Variance

The actual error is influenced by three parts:

Philipp Schott - 12132552 | 5

• Irreducible error: cannot be reduced regardless of algorithm used (e.g. introduced from the chosen
framing of the problem or: caused by factors like unknown variables that influence the mapping of input
to output, statistical noise, etc..)

• Bias:

– errors from erroneous (simplifying) assumptions in learning algorithm

– the algorithm’s tendency to consistently learn the wrong thing, by not taking into account all
the information in the data (↗ “underfitting”)

– High bias:

∗ more (simplifying) assumptions about the form of target function (e.g. linear models)

∗ Fast to learn and easier to understand

∗ Generally less flexible -> lower predictive performance on complex problems that fail to meet
simplifying assumptions of algorithm’s bias

∗ May underfit - fail to capture important regularities

– Low bias:

∗ models are usually more complex but: less assumptions on target function

∗ Represent the training set more accurately (Might also represent noise / overfit)

∗ (e.g. Decision Trees, k-Nearest Neighbors, . . .)

• Variance:

– error stems from sensitivity to small fluctuations in training set (e.g. 1-NN: “Models noise”;
“instable”; “Measure for prediction consistency”; “memory capacity”; overfitting: 0-error)

– the algorithm’s tendency to learn random things irrespective of the real signal, by fitting highly
flexible models that follow the error/noise in the data too closely (↗ “overfitting”)

– High variance:

∗ Di!erent training sets lead to (very) di!erent classifiers / decision boundaries

∗ BUT: Classifier able to represent training set well (e.g. Decision Trees)

Good variance: Algorithm good at discovering hidden underlying mapping between inputs and
output, not specific instances

Bias-variance tradeo":
• Accurately captures regularities in training data (low bias)
• Generalises well to unseen data (low variance)
• Typically impossible to do both simultaneously!
→ don’t know true mapping function and its e!ects

3 Simple Networks

3.1 (single-layer) Perceptron

• Linear combination of inputs (contionous X), using weights W : a =
∑n

i=1 wixi

Philipp Schott - 12132552 | 6

• Pass through threshold activation function (Heaviside step function/ activation function!) with
threshold ϑ (often: ϑ = 0) where:

y = f(x) =

{
1 if a ↘ ϑ

0 if a < ϑ

• Training the (basic) model: learning the weights from labelled samples (label: y) with initialise
weights:

– Repeat:

∗ Present training sample x

∗ Predict sample label: y↓ = f(x)

∗ Prediction correct? Compare y and y↓

· if y↓ ≃= y ↑ Compute new weights w↓ as w↓ = w + ω(y ↓ y↓)x

– Until prediction correct (y↓ = y) for all samples

• Extensions:

– Can be extended to multi-class problems using multiple decision boundaries, but only works for
linearly separable data (fails on problems like XOR)

– di!erent stopping criteria for non-ls: iteration or no more improvement

– pocket algorithm: keeps the best solution found so far (e.g. by accuracy) and returns it

– Bias can be introduced: a =
∑n

i=1 wixi + b

– More generel:

∗ In the dual form, the prediction is based on inner products between training examples and
the input: f(x) = sign

(∑N
i=1 ωiyi⇐xi, x⇒

)
(where ωi are coe"cients updated during training)

∗ Using a kernel function K(xi, x) = ⇐ϖ(xi),ϖ(x)⇒, we can generalize to the kernel percep-
tron: f(x) = sign

(∑N
i=1 ωiyiK(xi, x)

)
(allows the perceptron to learn non-linear decision

boundaries without explicitly mapping to a higher-dimensional feature space)

3.2 Linear Regression

The goal is to learn a function that maps a feature vector x ⇑ Rn to a continuous target value y ⇑ R
using a linear model ŷ = w0 + w↔x where we want to find the best parameters (w0, w) by minimizing the
prediction error over a training set.

The most commonly used error function is the Residual Sum of Squares: RSS(w0, w) =
∑m

i=1

(
yi ↓ (w0 + w↔xi)

)2

To minimize the residual sum of squares (RSS), two main approaches are commonly used:

• Gradient Descent (Iterative): wj := wj ↓ ω ·
ε

εwj
RSS(w0, w) (repeated until convergence)

• Normal Equation: w = (X↔X)→1X↔y (less e"cient on large dataset)

3.3 k-NN

• Short for k-nearest neighbour O(Nd) with two important hyperparameters (HP): k and distance-
funktion

• BUT: good values for k vary a lot by data caused by sensetivity to lokal noise

• Examples for distance funktion:

– euklidean distance/ L2

Philipp Schott - 12132552 | 7

– Minkowski for n=1/ L1/ Manhatten (outperformce L2 most of the time)

– exotic ones like: Linfinity (just y-distance) or Cosine

• is a Lazy Learner: no model built beforehand -> computation at classification step (Opposite is called
“eager learning”)

• Extansions:

– majority voting vs. weighted approaches: ((1
x): rank vs. distance weighted) -> Are all equally

important?

– K-d-Tree: yields di!erent predictions but doesn’t always pay of for small sets (bad on high d;
weak learner: slightly better than random guessing)

• k-NN regression: predicts the output of the k nearest neighbors, i.e., ŷ = 1
k

∑k
i=1 yi.

3.4 Bayesian Networks

Generating Rules

Covering algorithms ↑ Problems: overlapping rules; default rule required

• Converting a decision tree into a rule set: easy but rule set gets overly complex (if → and etc.)

• Solution: generate rule set direktly

– generates rules for each class separately (easier to understand, especially in multiclass settings),
starting with a very general rule (e.g. "if true → class X") which covers all instances

– makes the rule more specific by adding one condition at a time, always selecting the condition that
maximizes the rule’s accuracy = correct / total, until accuracy reaches 1 or no further improvement
is possible (e.g. "if ... and ... → then ...")

– after one rule is complete, removes the covered instances and repeats the process for the remaining
instances of the same class

– after all rules for one class are generated, the algorithm moves to the next class

PRSIM (concrete example of a covering algorithm in pseudo code; same as above but more generell)

For each class C:

• Initialize E to the instance set.

• While E contains instances in class C:

– Create a rule R with empty left-hand side predicting class C.

– While R is not perfect (or no attributes left to use):

∗ For each attribute A not mentioned in R, and each value v:

· Consider adding condition A = v to the left-hand side of R.

Philipp Schott - 12132552 | 8

· Select A and v to maximize accuracy p/t. (break ties by choosing largest p).

∗ Add A = v to R.

– Remove instances covered by R from E.

3.4.1 Naive Bayes

• Opposite of (1R) rule learning: use all attributes at once

• Two assumptions:

– attributes are equally important

– attributes are conditionally independent given the class: P (A ⇓B | C) = P (A | C) · P (B | C)

Computation:

• Let C = class label of prediction and E = (E1, E2, . . . , En) = observed attributes (the evidence)

• We want to compute: P (C | E) = P (E|C)·P (C)
P (E) where P (C) = count(C)

total

• Since P (E) is the same for all classes (constant), we only need to calculate: P (E | C) · P (C)

• With the independence assumption: P (E | C) =
∏

i P (Ei | C) ("Yes" for this evidence / total)

• Thus, for classification, we select the class that maximizes: P (C) ·
∏

i P (Ei | C)

What if P (Ei | C) = 0 ? (NA in training not included, in classification obtained by probability)
↑ Generalized Laplace correction: P (Ei | C) = count(Ei,C)+µ·pi

count(C)+µ (or simply "add 1" (µ = k))

For numeric attributes: we assume there density function: P (Ei = x | C) = 1↑
2ϑωC

exp
(
↓

(x→µC)2

2ω2
C

)

with µC = 1
NC

∑NC

i=1 xi and ϱC =
√

1
NC→1

∑NC

i=1(xi ↓ µC)2 and P
(
x↓

ϖ
2 ⇔ X ⇔ x+ ϖ

2

)
↖ ς · f(x)

Notes on Naive Bayes:

• may not produce accurate probabilities, but correct class ranking is su"cient for classification

• adding redundant or highly correlated attributes can harm performance

3.4.2 Learning Bayesian Networks

Def: BN is probabilistic graphical models that captures dependencies via structure of a directed acyclic
graph (DAG) where Nodes = ’random variables’ and Edges = ’dependencies’ and each node has a conditional
probability table (CPT) that specifies the probability of the variable given its parents: P (Variable | Parents)

Where the joint probability distribution is: P (X1, . . . , Xn) =
∏n

i=1 P (Xi | Parents(Xi)) ("Chain rule")

Learning a Bayesian Network: Two tasks:

• Structure learning: learn the graph structure (NP-complete, if not given)

– trade-o! between fit to data and model complexity (maximize: logP (D | M)↓ ω ·#M)

– Initialize a BN and do Structure search to explore the space of possible networks by generating
neighborhood solutions (e.g. Tabu Search, Simulated Annealing etc.)

• Parameter learning: estimate conditional probabilities (CPTs) from data, usually by counting and
applying smoothing ("easy" e.g. Laplace, like in Naive Bayes)

– Goodness of fit: product over all data points and all variables

– Log-likelihood: sum instead of product (log of goodness of fit)

Inference: How do we compute probabilities from a Bayesian Network once it is built?

Philipp Schott - 12132552 | 9

• Maximum a posteriori probability (MAP): argmaxq P (Q = q | E = e)

– is the most likely assignment for the query variables given the evidence and solves the general
inference task by maximizing the posterior probability.

• Inference via marginalization: summing out variables that you are not interested in, to get a
distribution over the variables you care about (determined by the BN structure)

– We want to compute: P (Q | E) = P (Q,E)
P (E)

– with P (Q,E) =
∑

H

∏
i P (Xi | Parents(Xi)) and P (E) =

∑
Q

∑
H

∏
i P (Xi | Parents(Xi))

– Enumeration: sum over all possible combinations of hidden variables (simple but computation-
ally expensive)

– Variable Elimination: smarter summing by eliminating hidden variables one by one and com-
bining intermediate factors to avoid redundant computations

D (dependency)-Separation: Tells whether two variables are conditionally independent given a set of
observed variables. A path is blocked (i.e., no information flow) if any of the following conditions apply:

• Chain: A → B → C or A ↙ B ↙ C — the path is blocked if B is observed.

• Fork: A ↙ B → C — the path is blocked if B is observed.

• Collider: A → B ↙ C — the path is blocked if B is not observed, and no descendant of B is observed.
Observing B or its descendants opens the path.

If all paths between two nodes are blocked, they are conditionally independent (d-separated) given the
observed variables.

4 From Decision Trees to Random Forest

4.1 Decision Tree

• Simplest versions: 1R (One Rule; Decision Stump): just one (root) node or: ZeroR, Zero Rule:
Always return the majority class (both build baseline)

• Training: (Rules by experts or) splits data consecutively into (two or more) sub-spaces until stopping
criterion (e.g (number of unique values) – 1)

• Classification: traverse through tree from root node (by majority vote/ binning) - can also do regres-
sion by average in the leaf nodes

• some di"culties e.g. French, Italian, Thai vs. French, others (binary vs. n-ary)

• Regression Trees: Tree-based models that recursively split the feature space and predict a continuous
value (e.g., mean of training samples) in each leaf node which results in a piecewise constant function.
Splits are chosen to minimize variance or squared error within nodes.

• Model Trees: An extension of regression trees where each leaf contains a linear regression model
instead of a constant value.

4.1.1 Popular measures to compute best split:

• Generell: evaluate each attribute and possible split (numerical vs. categorical) then: chooses best
split

• Error rate:

– Absolute error rate: number of classification errors for each split (vs. relative error: in relation to
total number of samples (0..1); (usage not further explained))

Philipp Schott - 12132552 | 10

• Information Gain (best):

– measure (lokal) for the “impurity”/ uncertainty of a set (High Entropy -> bad for prediction)

– Entropy: H(X) = E(I(X)) =
∑n

i=1 p(xi)I(xi) = ↓
∑n

i=1 p(xi) log2 p(xi)

– (with I(X): information content of X; for H(X): Only relative frequencies matter!; if equal H(X)=1;
log2 for yes/no)

– Information Gain: IG(X1, . . . , Xm) = H(X)↓
∑m

j=1 p(xj)H(Xj) (want to maximize)

– Information Gain Ratio: V (X) =
∑N

i=1
|Ti|
|T | · log

(
|Ti|
|T |

)

– (IG favours features with many possible outcomes -> puts this into perspective)

– “Normalises” Information gain V: R(X) = G(X)
V (X)

• Gini impurity (Gini index):

– Inequality among values of a distribution (Value range: 0 (only one class) to 1 (total inequality))

– IG(p) =
∑|C|

i=1 pi(1↓ pi) =
∑|C|

i=1(pi ↓ p2i) =
∑|C|

i=1 pi ↓
∑|C|

i=1 p
2
i = 1↓

∑|C|
i=1 p

2
i

4.1.2 (Pre-)pruning:

• To overcome overfitting:

• Prepruning: Stop splitting a node (e.g. max depth, min IG/Entropy etc. -> HP)

• Pruning: ’Cut back’ complicated trees (more e!ort but mostly better)

– Least contributing nodes are removed - sometimes remodelled (or selection out of candidates)

– Simple bottom-up approach: reduced error pruning

∗ remove sub-tree and eplace it with the majority class then evaluate performance → keep tree
if e!ectiveness is not decreased (too much) and repeat

– Cost complexity pruning: (Bottom up) generates a list of canidate trees and takes best (vs.
Top down: evaluate relevance of node/subtree)

4.2 Random Forest

• Combination of Decision Tree and Bootstrapping concepts (robust; less overfitting)

• For each tree: use bootstrap sample → grow → repeat tens to hundreds times → aggregate predictions
by majority voting (bagging)

• Spacial evaluation: out-of-bag (OOB) error / estimate (OOB): holdout of bootstrap sample

Philipp Schott - 12132552 | 11

5 Neural Networks / MLP

5.1 Forward pass

• Multi-Layer Perceptron: (feed-forward neural networks/ fully connected (directed) graph)

h(0) = x

For all layers l = 1, 2, . . . , L:
z(l) = W (l)h(l→1) + b(l)

h(l) = ϱ(l)(z(l)) (di!erent for l=L)

where Rnl→1
W (l)

↓↓↓→ Rnl (with rules of thumb: nl ↖ (0.7↓ 0.9) · nl→1; nl < 2 · nl→1; nl ↭ log2(#classes))

The final output is ŷ = h(L).

• Activation function: (for piece-wise combination of decision boundaries)

– non-linear:

∗ sigmoid: ϱ(x) = 1
1+e→x with ϱ↓(x) = ϱ(x) · (1↓ ϱ(x)) (small slope → wg)

∗ tanh(x) = ex→e→x

ex+e→x with tanh↓(x) = 1↓ tanh2(x) (wg → LReLU)

∗ ReLU(x) = max(0, x) (avoids vanishing gradient)

– probabilistic: (maps the output scores (logits) into a probability distribution over C classes)

∗ Softmax: softmax(z)i = ezi∑C
j=1 ezj

with εL
εzi

= softmax(z)i ↓ yi (simplified)

∗ One-vs-All (OvA): Train C independent binary classifiers (e.g. logistic regression), each
distinguishing one class from the rest (vs. all others). Final prediction is the class whose
classifier gives the highest score. Does not jointly normalize over all classes (unlike softmax).

5.2 Training

Main Idea: Start at a random solution. Compute the gradients of the loss function with respect to the
network’s weights and biases by recursively applying the chain rule from the output layer back to the input
layer, in order to determine how each parameter influences the loss and to update both weights and biases
in the direction that minimizes the error.

5.2.1 Actual Training

• Compute the Loss: how well the neural network’s predictions ŷ match the true target values y for
a batch of size N (Batch GD)? (for N=1: SGD; N-random: Mini-Batch GD)

– MSE: (reg) L(ŷ, y) = 1
N

∑N
i=1(ŷi ↓ yi)2 with εL

εŷi
= 2

N (ŷi ↓ yi)

– MAE: (reg) L(ŷ, y) = 1
N

∑N
i=1 |ŷi ↓ yi| with εL

εŷi
= 1

N · sign(ŷi ↓ yi)

– Binary Cross-Entropy: L(ŷ, y) = ↓
1
N

∑N
i=1 [yi log(ŷi) + (1↓ yi) log(1↓ ŷi)] with εL

εŷi
= 1

N

(
↓

yi

ŷi
+ 1→yi

1→ŷi

)

Philipp Schott - 12132552 | 12

– Categorical Cross-Entropy: L(ŷ, y) = ↓
∑C

i=1 yi log(ŷi)

∗ with εL
εŷi

= ↓
yi

ŷi

∗ Note: In practice, for numerical stability, the combination of Binary Cross-Entropy with
Sigmoid activation often simplifies the gradient to εL

εŷi
= ŷi ↓ yi

– often uses +ω∝W∝
2 as regularization/ penalty

∗ with Ridge (L2): ∝W∝2 =
√∑p

j=1 W
2
j

∗ with Lasso (L1): ∝W∝1 =
∑p

j=1 |Wj |

∗ High ω: reduces variance (risk of underfitting), Low ω: reduces bias (risk of overfitting)

• Backpropagation:

– 1. Compute error at output layer:

φ(L) =
↼L

↼h(L)
′ ϱ(L) ↑

(z(L))

Using chain rule explicitly:
↼L

↼W (L)
=

↼L

↼h(L)
·
↼h(L)

↼z(L)
·
↼z(L)

↼W (L)

where:
↼h(L)

↼z(L)
= ϱ(L) ↑

(z(L)),
↼z(L)

↼W (L)
= h(L→1)

so that:
↼L

↼W (L)
= φ(L)

· (h(L→1))T

(to prevent vanishing or blow up: Wij ↗ N

(
0, 2

nin+nout

)
(Xavier (Glorot) for tanh and sigmoid)

or Wij ↗ N

(
0, 2

nin

)
(for ReLU)

– 2. Compute error for hidden layers:
For all l = L↓ 1, L↓ 2, . . . , 1:

φ(l) =
(
W (l+1)T φ(l+1)

)
′ ϱ(l) ↑

(z(l))

Using chain rule:
↼L

↼W (l)
=

↼L

↼h(l)
·
↼h(l)

↼z(l)
·
↼z(l)

↼W (l)

with:
↼h(l)

↼z(l)
= ϱ(l) ↑

(z(l)),
↼z(l)

↼W (l)
= h(l→1)

so again:
↼L

↼W (l)
= φ(l) · (h(l→1))T

– 3. Compute gradients:

↼L

↼W (l)
=

1

N

N∑

i=1

φ(l)i · (h(l→1)
i)T (maybe : +ωW (l))

↼L

↼b(l)
=

1

N

N∑

i=1

φ(l)i

Philipp Schott - 12132552 | 13

– 4. Parameter update:

W (l)
↙ W (l)

↓ ↽
↼L

↼W (l)

b(l) ↙ b(l) ↓ ↽
↼L

↼b(l)

(where Time decay: ↽
·
= ωt =

ϱ0
t or Exponential decay: ↽

·
= ωt = ω0 · exp(↓t · k) can be used)

• Repeated until loss is minimised / other stopping criterion

5.2.2 Other approaches of Gradient Descent:

• Stochastic Gradient Descent (SGD) with Momentum:

– v = ⇀v ↓ ωεL
ες where ϑt+1 = ϑt ↓ v

– Intuition: Ball rolling downhill (along the cost function)

– Issues: Often results in oscillations and instability in high-curvature regions

• Adaptive Moment Estimation (Adam):

– Optimization methods that adapt the learning rate for each parameter

– as above + second moment estimate: exponential moving average over past gradient magnitudes

– Intuition: counter notoriously small gradients by upscaling, and large gradients by downscaling
– Separately for each weight

6 Deep Learning
Definition: NN with with at least two hidden layers (2 ⇔ L-1) ↑ DNN
→ (with enough units DNN can approximate any continuous function arbitrarily well)

6.1 Convolutional neural network (CNN)

Combines three types of layers:

• Convolutional layer: performs 2D convolution of 2D input with multiple learned 2D kernels/ filters
to extract spatial features

• Subsampling layer: reduces spatial dimensions by aggregating values within local regions

• Fully-connected layer: computes weighted sums of its input with learned coe"cients (MLP)

6.1.1 Convolutions in detail

Instead of f(x; ϑ) = WTx as above we are using: (vs. Image processing were W is defined:)

• f(x; ϑ) = x ∞W =
∑k→1

u=0

∑k→1
v=0 x(i+ u, j + v) ·W (u, v)

• where W ⇑ Rf↗f is the filter/ kernel so W: Rn↗n
→ R∈

n+2p→f
s +1∋↗∈n+2p→f

s +1∋

• where p is the padding (adding zeros) with p = f→1
2 and f odd by convention and s the stride/ step size

Philipp Schott - 12132552 | 14

Interpretation of the learned rules:

Mostly hard because layers show intermediate result vs. Fully-connected layer:

• as output is a local feature extraction by convolved sum of weights (cause filter is applied across the
entire input image by sliding (shifting) the filter over di!erent regions) ↑ order (spatial arrange-
ment) does not matter!

• But we want the machine to learn the same concepts that we know Solution:

– Connect each neuron to small part of the input image only so share weights between neurons
applied to di!erent parts of the input image (e.g. three 3x3 have less weights then 7x7 or di!erent
sizes)

• BUT: to provide local translation invariance (still needed to learn)
↑ Subsampling (e.g. max pooling (max across a region), average-, or other pooling methods)

Dropout: (e.g. 10-50 %) prevents co-adaptation / overfitting of feature detectors (they cannot rely on all
inputs and neighbours being present)

Batch Normalisation: stabilizes and accelerates training by normalizing layer activations to zero mean
and unit variance within each mini-batch, followed by a learnable scaling and shifting (↑ reduces sensitivity
to weight initialization, mitigates exploding or vanishing gradients and adds a slight regularization e!ect by
introducing noise)

6.2 Transfer & Ensemble Learning

Transfer Learning

Main idea: Pre-trained models are available → Can transfer learned representations from a related task
→ Same domain, di!erent task – Di!erent domain, same task

• “O"-the-shelf“ Transfer Learning: Network trained on di!erent (but similar) task → Use output
of one/more layers as generic feature detectors → train shallow model on these features → Fine-tune
network with (small set of) labels for target domain

• or freeze: not update - target task labels are scarce, want to avoid overfitting or mix up (e.g. less
fine-tuning for earlier layers as higher layers are more task specific; less transferable)

Ensemble Learning

Main idea: combine several classifier predictions (no model selection) – Goal: improved performance (e.g.
Random Forest is Homogenous (vs. Heterogeneous))

Di!erent voting types:

• Majority voting:

– estimated accuracy computed by binomial model (mostly increased)

Philipp Schott - 12132552 | 15

– in extreme cases: can decrease correctness compared to best single one cause no identical accuracy

• ↑ Weighted majority voting:

–
∑L

i=1 bidi,k = maxcj=1

∑L
i=1 bidi,j

– The predicted class is selected by summing the weighted votes for each class and choosing the
class with the highest total weighted vote. Each classifier contributes to the vote according to its
weight bi, which reflects its reliability or accuracy.

Important: Types of classifier outputs: More informative outputs → more flexible ensemble methods
(Type 1: label < Type 2: rank < Type 3: probability)

• Bagging (Bootstrap AGGregatING): builds ensembles by training classifiers on di!erent bootstrap
samples of the data to reduce variance by averaging predictions from independent models. It works best
for unstable, high-variance classifiers and aims to create independent models (classifiers are learned in
parallel)

• Boosting: combines weak learners sequentially, where each learner focuses on the errors of its prede-
cessors, reducing bias and improving overall performance (e.g. AdaBoost:)

– initializes all training samples with uniform weight wi =
1
N and iteratively increases the weights

of misclassified samples to focus on harder cases

– final classifier after T iterations: H(x) = sign
(∑T

t=1 ωtht(x)
)

– vs. Gradient Boosting:

∗ starts with a simple initial prediction F0(x) (e.g. ’zero-rule’ e.g. mean for regression/ log
odds), then iteratively fits weak learners to the residuals of the current model and adds them
to improve predictions

∗ in each iteration, compute residuals ri = yi ↓ Ft→1(xi) ((pseudo) residual)

∗ fit weak learner ht(x) to residuals, add correction: Ft(x) = Ft→1(x) + ⇁tht(x)

∗ residuals correspond to negative gradients of the loss function L; hence: gradient boosting

∗ final model after T iterations: F (x) =
∑T

t=1 ⇁tht(x)

6.3 Challenges

Generell problems of AI

• Minimal perturbation t of input x leads to misclassification ↑ Greedy search for decision boundary by
changing pixels (etc.)

• Model transparency vs. algorithmic transparency (Ex-ante, Intrinsic, Post-hoc etc.)

• Data Privacy: quasi-identifiers (QI) → Input & Output perturbation etc.

• White box attack:

– uses loss function to maximize model prediction error

– Compute g = △xL(f(x), y) and applies xadv = x+ ε · sign(g)

• Backdoor Attacks: attacks embed hidden patterns (triggers) into the training data so that the model
behaves normally on clean inputs but misclassifies inputs containing the trigger

Philipp Schott - 12132552 | 16

6.4 Recurrent Networks

Definition: process sequential data by passing information through feedback
connections, allowing them to maintain a state (memory) of previous inputs and
handle variable-length input sequences (e.g. sequential / time series data)
Other Architectures: Auto-Encoder: Learn a lower dimentional encoding for a
data set

Architecture

• Forward Pass:

– Compute network input at time t: ah(t) = Ux(t) +Ws(t↓ 1)
(combines current input x(t) with the previous hidden state s(t ↓ 1) (this introduces the recur-
rence))

– Activation of input at time t: s(t) = fh(ah(t))

– Compute pre-activation of output at time t: A0(t) = V s(t)
(where V is the output weight matrix that maps the hidden state into the output space to obtain
output pre-activation)

– final output at time t: O(t) = f0(a0(t))

• for Backpropagation:

– Cyclic graph (can be more complex) unfold into an acyclic one (BPT(hrough)T(ime))

– as consists of long sequences ↑ exploding/vanishing gradients → gradient clipping (e.g. norm of
max 1) or:

LSTM (Long Short-Term Memory) → units / blocks (or: GRU: Gated Recurrent Units)

• Long-term memory (LTM): scalar, vector updated element-wise (not transformed by weights directly)

• Short-term memory (STM): / hidden state: vector passed to next step and output, multiplied by weight

• Steps: (di!erent weights for each gate)

– Forget gate: computes how much of LTM to keep.

– Input gate: decides how to update the memory (Computes new potential LTM - multiplies by
percentage of potential to keep (control))

– Output gate: decides on new STM and output.

7 Automated Machine Learning (AutoML)
Motivation: Manual selection and configuration of machine learning algorithms is time-consuming and
inflexible, leading to the algorithm selection and configuration problem.

7.1 Metalearning

Def: means learning about learning by accumulating experience on the performance of machine learning
algorithms across multiple applications, enabling dynamic model selection and method combination. vs.
Learning: accumulates experience on a specific learning task.

NFL Theorem:

Philipp Schott - 12132552 | 17

• “...for any algorithm, any elevated performance over one class of problems is o!set by performance over
another class.”

• “any two algorithms are equivalent when their performance is averaged across all possible problems.”

• Implications:

– Closed Classification World Assumption (CCWA)

∗ assumes that classification tasks in real applications form a structured subset of all possible
problems, allowing algorithms to be selected based on good performance within that subset

– Open Classification World Assumption (OCWA)

∗ assumes there is no inherent structure in real-world classification tasks, so the applicability of
an algorithm is (only after observing its performance) well characterized

– In practice (CCWA is favored):

∗ Algorithms are compared on benchmark datasets (e.g., UCI), assuming they represent relevant
real-world tasks (which is hard to characterize)

∗ New algorithms are proposed to address known limitations and evaluated empirically (Gener-
alization to unseen tasks often remains unclear)

Rice Framework for Algorithm Selection (vs. running parallel)

Formal Problem Definition:
• Problem space P : set of classification tasks; if too small, it

can be augmented with artificially generated problems
• Feature space F : space of meta-feature vectors f(x) ⇑ Rd

▽

F , where f is a feature extraction function applied to classifica-
tion tasks x ⇑ P ; each vector describes dataset-level character-
istics

• Algorithm space A: set of candidate machine learning algo-
rithms

• Performance space Y : performance values y(a, x) for applying
algorithm a ⇑ A to task x ⇑ P

• Meta-training set: {⇐f(x), t(x)⇒ : x ⇑ P ↓
▽ P} with t(x) = argmaxa↘A y(a, x)

• Selection model S: a meta-learner trained on the meta-training set, which predicts the best algorithm
a ⇑ A for a task based on its meta-features f(x), i.e., S(f(x)) = a

Goal: Given a classification task x ⇑ P , with meta-features f(x) ⇑ F , find a selection mapping S(f(x)) →
a ⇑ A that maximizes performance y(a, x) ⇑ Y to select the best algorithm for each individual task (local
selection) or to find a single algorithm that performs well across tasks (global selection).

• AS is inherently incremental, as (single) new tasks continuously extend the meta-knowledge base.

• In practice, the success depends on how f , S, and y are selected — S is itself a learning algorithm, and
practical success depends on training data quality, algorithm set A, and computational cost.

– Feature space F : meta-features should provide informative and predictive signals for selecting
appropriate algorithms; should be inexpensive to compute, i.e., cost(f(x)) ̸ cost(t(x)).

∗ Statistical / information-theoretic: global dataset properties (e.g., number of features
or classes, class entropy, feature-label correlation), based on the assumption that learning
algorithms are sensitive to the structure of the dataset.

Philipp Schott - 12132552 | 18

∗ Model-based: properties of hypotheses induced on a particular problem are used as an
indirect form of characterization (e.g., number of nodes per feature, tree depth, imbalance).

∗ Landmarking: characterizes tasks using the performance of simple learners (landmarkers),
locating them in an expertise space and inferring task similarity based on shared areas of
learner competence; landmarkers serve as e"cient indicators for task similarity and learner
suitability and should be computationally e"cient.

– Algorithm space A: should consist of the smallest set of complementary base learners with
diverse inductive biases, ideally covering di!erent model classes and their hyperparameter config-
urations.

– Performance space Y : typically defined via accuracy, but may include other measures (e.g.,
complexity, compactness); algorithms can also be ranked per task.

– Selection model S: Induction cost: depends on the chosen meta-learning regime;
Prediction cost: typically negligible and not problematic

vs. Model Combination: (e.g., ensemble methods) merges multiple algorithms into a single system to
reduce misclassification, metalearning for algorithm selection aims to choose the best algorithm for a given
problem based on meta-features.

7.2 AutoML

Def: The process of automating the configuration steps in supervised machine learning tasks on a dataset
– including hyperparameter optimization, algorithm selection, and feature selection or preprocessing. Algo-
rithm selection and preprocessing steps (e.g., data normalization) can be treated as nominal hyperparameters.

Hyperparameter Optimization: (special case of model selection)

• Given a machine learning algorithm A with hyperparameters ω = (λ1, . . . ,λn) ⇑ ! = !1 × · · · × !n,
and k training/validation splits D(i)

train, D
(i)
valid, the goal is to minimize the average validation loss over

k-fold cross-validation:

f(ω) =
1

k

k∑

i=1

L(Aω, D
(i)
train, D

(i)
valid)

• black-box optimization problem with expensive evaluations and no gradient information
→ Search problem:

– Grid search: search over a discretized parameter grid; simple but ine"cient in high dimensions

– Randomized search: randomly samples configurations from the search space according to a
distribution; can be more e!ective when only few parameters strongly a!ect performance as it
produces diversity fastly

– Bayesian Optimization: sequential model-based optimization using a surrogate model (e.g.,
regression) to approximate the objective function; selects new configurations by maximizing an
acquisition function:

∗ Initialize observation set H ↙ ∀ and surrogate model M trained on (λ,L(Aφ)) to approx. f

∗ While time budget not exhausted:

· Select a candidate configuration λ ⇑ ! by maximizing the acquisition function aM(λ)
(e.g., expected improvement), which uses M to identify promising inputs for evaluation.

· Evaluate the selected configuration λ by computing f(λ). Since this evaluation is ex-
pensive, M focuses the search on informative regions, i.e., areas with high predicted
performance, high uncertainty, or both.

· Add the new observation (λ,L) to H and update M accordingly.

Philipp Schott - 12132552 | 19

∗ Return the configuration λ≃
⇑ H with the lowest observed validation loss.

– SMAC: practical Bayesian optimization framework using random forests as surrogate model;
handles categorical and conditional hyperparameters and is applicable beyond ML to hard com-
binatorial problems.

8 Reinforcement Learning
Def: A machine learning paradigm where the agent observes the state of the environment, selects an action
based on its policy, receives a reward signal as feedback, and updates its behavior using a value function —
optionally relying on a model of the environment to predict future states and rewards.

• Agent: Learns through trial-and-error which actions to take by interacting with the environment based
on the consequences of its own actions (rather than from supervised data).
It must:

– sense the current state of the environment and take actions that influence the state

– balance exploration (trying new actions) and exploitation (choosing actions that yielded high
rewards)

• Policy: The agent’s strategy: a mapping from states to actions. Determines which action is taken in
each state, try to find hidden structure.

• Reward signal: A scalar feedback from the environment after taking an action. Defines the goal:
maximize the cumulative reward (possibly delayed over time).

• Value function: Estimates how good a state (or state–action pair) is in terms of expected future
rewards. Helps the agent evaluate long-term outcomes beyond immediate rewards.

• Model of the environment: Approximates how the uncertain environment behaves; used for planning
and simulating outcomes of actions.

Tabular Solution Methods: apply to small state and action spaces and can compute optimal value
functions and policies exactly (unlike approximate methods)

8.1 k-armed Bandit Problem

A class of reinforcement learning problems with no state transitions, where the agent repeatedly selects one
of k actions (arms), each with an unknown reward distribution, aiming to maximize expected cumulative
reward.

• The true value of an action a at time t is q≃(a) = E[Rt | At = a]. (initial Q1(a) = 0 ∃a)

• Agent estimates q≃(a) using the sample average: Qt(a)
.
= sum of rewards when a taken prior to t

number of times a taken prior to t =
∑t→1

i=1 Ri·1Ai=a∑t→1
i=1 1Ai=a

– Incremental Implementation: Qn+1 = Qn + 1
n (Rn ↓Qn) (as stationary)

– non-stationary: Qn+1 = (1↓ ω)nQ1 +
∑n

i=1 ω(1↓ ω)n→iRi (recency-weighted)

• Optimistic initial values: encourage exploration by assigning high initial estimates, causing a greedy
agent to try all actions as observed rewards fall short. (doesn’t converge in non-stationary)

• Greedy action selection: At = argmaxa Qt(a)

• ς-greedy: with probability ς (e.g. 5–10%), select an action uniformly at random (exploration)

• Upper-Confidence-Bound Action Selection: Select according to how close their estimates are to
being maximal and the uncertainties in those estimates: At = argmaxa

[
Qt(a) + c ·

√
ln t

Nt(a)

]

This encourages trying actions that are promising but not yet su"ciently explored.

Philipp Schott - 12132552 | 20

10-armed Testbed: A benchmark consisting of 2000 randomly generated 10-armed bandit problems. Used
to evaluate and compare action selection strategies under controlled randomness.
For each problem:

• True action values q≃(a) are sampled from N (0, 1)

• Each observed reward Rt is drawn from N (q≃(At), 1)

8.2 Markov Decision Processes

Context: MDPs formalize sequential decision-making problems, where the agent interacts with an environ-
ment over discrete time steps. Unlike the k-armed bandit problem, the outcome of an action depends not
only on the action itself but also on the current state and influences future states and rewards.

To define this interaction probabilistically, we use the transition-reward function

p(s↓, r | s, a)
.
= Pr(St = s↓, Rt = r | St→1 = s,At→1 = a), where

∑

s↑↘S

∑

r↘R
p(s↓, r | s, a) = 1 for all s ⇑ S, a ⇑ A(s)

which gives the likelihood of arriving in state s↓ and receiving reward r after taking action a in state s. From
this function, we can derive useful quantities like:

• p(s↓ | s, a)
.
= Pr{St = s↓ | St→1 = s,At→1 = a} =

∑
r↘R p(s↓, r | s, a)

(transition probability of reaching state s↓),

• r(s, a)
.
= E[Rt | St→1 = s,At→1 = a] =

∑
r↘R r ·

∑
s↑↘S p(s↓, r | s, a) (expected reward value),

• r(s, a, s↓) = E[Rt | St→1 = s,At→1 = a, St = s↓] =
∑

r r ·
p(s↑,r|s,a)
p(s↑|s,a) (as Pr(A | B,C) = Pr(A,C|B)

Pr(C|B)).
(expected reward for transitioning to state s↓ after taking action a in state s)

Def (Finite MDP): is defined by a tuple (S,A, p, R, ▷), where

• S is a finite set of states, and A is a finite set of actions,

• p : S ×R× S ×A → [0, 1] defined as above

• R(s, a) = E[Rt | St→1 = s,At→1 = a]
(expected reward at time t after taking action a in state s at time t↓ 1)

• ▷ ⇑ [0, 1] is the discount factor for future rewards.

The goal is to estimate the optimal action-value function:

q≃(s, a) = E[Gt = Rt + ▷Rt+1 + ▷2Rt+2 + . . . (↖ Rt+1 + ▷Gt+1) | St = s,At = a]

which gives the expected return when starting in state s, taking action a, and thereafter following the optimal
policy.

A policy ◁ is a mapping from states to probabilities over actions: ◁(a | s) = Pr(At = a | St = s)
It defines the agent’s behavior: in each state s, it gives the probability of taking action a.

Before estimating the optimal value function, define value functions with respect to a given policy ◁:

• State-value function: vϑ(s)
.
= Eϑ [Gt | St = s] = Eϑ

[∑⇐
k=0 ▷

kRt+k+1

∣∣St = s
]
, for all s ⇑ S

expected return when starting in state s and following policy ◁.

• Action-value function: qϑ(s, a)
.
= Eϑ [Gt | St = s,At = a] = Eϑ

[∑⇐
k=0 ▷

kRt+k+1

∣∣St = s,At = a
]

expected return when starting in state s, taking action a, and thereafter following policy ◁.

The Bellman equation expresses a recursive relationship between the value of a state and the values of its
successor states under a policy ◁:

vϑ(s) = Eϑ[Gt | St = s] = Eϑ[Rt+1+▷Gt+1 | St = s] =
∑

a

◁(a | s)
∑

s↑,r

p(s↓, r | s, a) [r + ▷vϑ(s
↓)] , for all s ⇑ S

Philipp Schott - 12132552 | 21

This equation averages over all possible actions and successor states, weighting each by its probability of
occurring under policy ◁.

Goal: Find a policy ◁≃ that maximizes long-term expected reward. We do this via the optimal value functions:

• Optimal state-value function: v≃(s)
.
= maxϑ vϑ(s) gives the best expected return from state s.

• Optimal action-value function: q≃(s, a) = E[Rt+1 + ▷v≃(St+1) | St = s,At = a] = maxϑ qϑ(s, a)
gives the expected return for taking action a in s and following ◁≃ thereafter.

These functions can be computed using Dynamic Programming, which solves the Bellman equations
exactly — but it requires full knowledge of the environment dynamics and is often computationally expensive.

8.3 Monte Carlo Methods

Def: Estimate value functions based on complete episodes of experience, without requiring knowledge of the
environment’s dynamics (model-free / no model of the environment). Updates are made only at the end of
each episode.

The idea is to average observed returns following visits to a state (or state-action pair) under a fixed policy
◁, which approximates the expected return. Each state can be seen as a separate bandit problem, though
they are interrelated since actions in one state influence future states and rewards within the same episode.

Monte Carlo Prediction: Given a policy ◁, estimate the state-value function vϑ(s) by averaging returns:

vϑ(s) ↖
1

N

N∑

i=1

G(i)
t where each G(i)

t is a return following a visit to s

• First-visit MC: only the return following the first visit to s in each episode is used.

• Every-visit MC: averages all returns following every occurrence of state s in an episode.

Monte Carlo Estimation of Action Values: Estimates the action-value function qϑ(s, a) by averaging
returns after visiting state–action pairs (s, a) under a fixed policy ◁. A pair (s, a) is visited if state s is
encountered and action a is taken. Without a model, state values alone are not su"cient to derive a policy
— we need qϑ(s, a).

Challenge: Some pairs may never be visited under a deterministic policy. Solutions:

• Exploring starts: start episodes from randomly chosen (s, a).

• Stochastic policies: ensure every action has non-zero probability in every state.

Monte Carlo Control: Iteratively improve the policy using sample-based estimates of qϑ(s, a).
Goal: Find an optimal policy ◁≃ that maximizes expected return.

• Alternate between:

– Policy evaluation: estimate qϑ(s, a) from episodes.

– Policy improvement: update ◁(s) ↙ argmaxa q(s, a).

• This is sample-based policy iteration.

• Greedy improvement guarantees:
qϑk(s,◁k+1(s)) ↘ vϑk(s)

• Converges to an optimal policy ◁≃ under su"cient exploration.

Philipp Schott - 12132552 | 22

