
Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Introduction to Unix/Linux

Operating SystemsVU
2023W

Florian Mihola, David Lung, Andreas Brandstätter,
Axel Brunnbauer, Peter Puschner

Technische Universität Wien
Computer Engineering
Cyber-Physical Systems

2023-10-03

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Motivation

I What is an Operating System?

I UNIX, Linux, . . . ?

I Why C?

2 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

What is an Operating System?

The operating system as . . .

1. An extended machine
I Provide simpler and easier to use abstractions of the

underlying hardware
I Provide services that programs can obtain by a special

interface

2. A resource manager
I Multiplexing/sharing resources in time and in space
I Create the illusion that a program has exclusive access to

the resources

Important mechanisms: Processes, virtual memory, file system,
. . .

3 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix
Unix-family OS everywhere

4 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix
Evolution of Unix and Unix-like systems

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2005

Open Source

Mixed/Shared Source

Closed Source

HP-UX
1.0 to 1.2

HP-UX
2.0 to 3.0

HP-UX
6 to 11

HP-UX
11i to 11i v3

OpenSolaris
and

derivatives

Solaris
2.1 to 9

System III

System V
R1 to R2

System V
R3

System V
R4

UnixWare
1.x to 2.x

UnixWare
7.x

OpenServer
6.0

OpenServer
5.0.5 to 5.0.7

OpenServer
5.0 to 5.04

SCO Unix
3.2.4

SCO Xenix
V/386

SCO Xenix
V/386

SCO Xenix
V/286

SCO Xenix

Xenix
3.0

Xenix
1.0 to 2.3

PWB/Unix

AIX
1.0

AIX
3.x to 7.1

OpenBSD
2.3 to 5.x

OpenBSD
1.0 to 2.2

Sun OS
4

Sun OS
1.2 to 3.0

Sun OS
1 to 1.1

Unix/32V

Unix
Version 1 to 4

Unix
Version 5 to 6

Unix
Version 7

Unnamed PDP-7 operating system

BSD
1.0 to 2.0

BSD
3.0 to 4.1

BSD 4.2

BSD 4.3

Unix
Version 8

Unix
9 and 10

(last versions
from

Bell Labs)

NEXTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

Mac OS X
10.0 to 10.9.x

(Darwin)

Minix
1.x

Minix
2.x

Minix
3.x

Linux
2.0 to 2.6.x

Linux
0.95 to 1.2.x

Linux 0.0.1

BSD 4.3
Tahoe

BSD 4.3
Reno

BSD
4.4 to

4.4 lite2

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.3 to 6.x

FreeBSD
3.3 to 9.x

FreeBSD
3.0 to 3.2

FreeBSD
1.0 to
2.2.x

386BSD

BSD NET/2

Linux
3.x

2008Solaris
10

2009 2009

2010 2010

2011 2011
Solaris

11
2012 to 2013 2012 to 2013

Source: Wikipedia

5 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

The C Programming Language
Why?

I “Java [Python, Ruby, . . .] is much more powerful and
high-level.”

I Actually, most high-level languages and interpreters are
implemented in C

I More powerful - Close to hardware, explicit memory and
resource management

I Full control of what’s going on
I Constructs that map efficiently to machine instructions

I Compiled to fast and efficient code
I First compiler for a new architecture is typically a C

compiler
I Arbitrary memory address access and pointer arithmetic

I Perfect fit for systems programming

I Operating system kernels are mostly written in C
I Embedded systems are mostly programmed in C

6 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Relevance of C I

I Appeared 1972 when UNIX was ported to C

I Has not lost popularity and importance!

I Tools (compiler, debugger, profiler, . . .) improved over
time

7 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Relevance of C II

Source: IEEE Spectrum Rating of programming languages, 2022
https://spectrum.ieee.org/top-programming-languages-2022

8 / 37

https://spectrum.ieee.org/top-programming-languages-2022

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Relevance of C III

Source: IEEE Spectrum Rating of programming languages, 2023
https://spectrum.ieee.org/top-programming-languages-2023

9 / 37

https://spectrum.ieee.org/top-programming-languages-2023

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Will C always be relevant?

I Short term: yes

I Long term: no?
I Rust

I Memory safety
I C++ replacement?

I Zig
I C replacement?

I Not Go, Nim, ...

10 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix Anatomy

I User space – Kernel space
I Kernel routines run in

privileged mode (kernel
mode), includes device
drivers

I User processes request
kernel services with system
calls

I Multi-process and multi-user
operating system

I Run more than one
program concurrently

I Users share resources

I Requires authentication
(login)

2.6 / TRADITIONAL UNIX SYSTEMS 91

of most modern UNIX systems.The most important of the non-AT&T systems to be
developed was done at the University of California at Berkeley, called UNIX BSD
(Berkeley Software Distribution), running first on PDP and then VAX computers.
AT&T continued to develop and refine the system. By 1982, Bell Labs had combined
several AT&T variants of UNIX into a single system, marketed commercially as
UNIX System III. A number of features was later added to the operating system to
produce UNIX System V.

Description

Figure 2.14 provides a general description of the classic UNIX architecture. The un-
derlying hardware is surrounded by the OS software. The OS is often called the sys-
tem kernel, or simply the kernel, to emphasize its isolation from the user and
applications. It is the UNIX kernel that we will be concerned with in our use of
UNIX as an example in this book. UNIX also comes equipped with a number of
user services and interfaces that are considered part of the system. These can be
grouped into the shell, other interface software, and the components of the C com-
piler (compiler, assembler, loader).The layer outside of this consists of user applica-
tions and the user interface to the C compiler.

A closer look at the kernel is provided in Figure 2.15. User programs can in-
voke OS services either directly or through library programs. The system call inter-
face is the boundary with the user and allows higher-level software to gain access to
specific kernel functions. At the other end, the OS contains primitive routines that
interact directly with the hardware. Between these two interfaces, the system is di-
vided into two main parts, one concerned with process control and the other con-
cerned with file management and I/O. The process control subsystem is responsible

Hardware

Kernel

System call
interface

UNIX commands
and libraries

User-written
applications

Figure 2.14 General UNIX Architecture

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 91

General Unix Architecture
(Source: W. Stallings, “Operating
Systems. Internals and Design

Principles”)

11 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix Anatomy
92 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

for memory management, the scheduling and dispatching of processes, and the syn-
chronization and interprocess communication of processes. The file system ex-
changes data between memory and external devices either as a stream of characters
or in blocks. To achieve this, a variety of device drivers are used. For block-oriented
transfers, a disk cache approach is used: a system buffer in main memory is inter-
posed between the user address space and the external device.

The description in this subsection has dealt with what might be termed traditional
UNIX systems; [VAHA96] uses this term to refer to System V Release 3 (SVR3),
4.3BSD, and earlier versions. The following general statements may be made about
a traditional UNIX system. It is designed to run on a single processor and lacks the
ability to protect its data structures from concurrent access by multiple processors.
Its kernel is not very versatile, supporting a single type of file system, process sched-
uling policy, and executable file format.The traditional UNIX kernel is not designed
to be extensible and has few facilities for code reuse. The result is that, as new fea-
tures were added to the various UNIX versions, much new code had to be added,
yielding a bloated and unmodular kernel.

Hardware

Hardware level

Kernel level

Kernel level

User level

User programs

Trap

Hardware control

System call interface

Libraries

Device drivers

File subsystem
Process
control

subsystem

Character Block

Buffer cache

Interprocess
communication

Scheduler

Memory
management

Figure 2.15 Traditional UNIX Kernel

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 92

Traditional UNIX Kernel

2.8 / LINUX 99

kernel itself consists of an interacting collection of components, with arrows indicat-
ing the main interactions. The underlying hardware is also depicted as a set of com-
ponents with arrows indicating which kernel components use or control which
hardware components. All of the kernel components, of course, execute on the
processor but, for simplicity, these relationships are not shown.

Briefly, the principal kernel components are the following:

• Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.6
gives a few examples of signals.

Table 2.6 Some Linux Signals

SIGHUP Terminal hangup SIGCONT Continue
SIGQUIT Keyboard quit SIGTSTP Keyboard stop

SIGTRAP Trace trap SIGTTOU Terminal write

SIGBUS Bus error SIGXCPU CPU limit exceeded

SIGKILL Kill signal SIGVTALRM Virtual alarm clock

SIGSEGV Segmentation violation SIGWINCH Window size unchanged

SIGPIPT Broken pipe SIGPWR Power failure

SIGTERM Termination SIGRTMIN First real-time signal

SIGCHLD Child status unchanged SIGRTMAX Last real-time signal

Signals System calls

Processes
& scheduler

Virtual
memory

Physical
memory

System
memory

Processes

H
ar

d
w

ar
e

U
se

r
le

v
el

K
er

n
el

CPU Terminal Disk

Traps &
faults

Char Device
drivers

Block device
drivers

Network
device drivers

File
systems

Network
protocols

Interrupts

Network interface
controller

Figure 2.18 Linux Kernel Components

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 99

Linux Kernel Components

(Source: W. Stallings, “Operating Systems. Internals and Design Principles”)

12 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

The Shell

I In the simplest case, a shell is started after login

I A user program that
I Reads and interprets user input interactively (commands)
I Starts other user programs
I Executes shell-scripts

I Shell prompt:

jdoe@ti1:~$ _

13 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Standard Input/Output

I A process communicates with its environment by following
channels:

I Standard input (stdin, 0), redirect with <
I Standard output (stdout, 1), redirect with >
I Standard error (stderr, 2), redirect with 2>

I When started in a shell, the standard I/O is connected to
the terminal.

Process
stdin stdout

stderr

Text terminal

Process

Display
#1 stdout

#2 stderr

Keyboard#0 stdin

14 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix Philosophy

Doug McIlroy, 1978: (summarized)

I Write programs that do one thing and do it well.
(DOTADIW)

I Write programs to work together.

I Write programs to handle text streams, because that is a
universal interface.

= combining small, sharp tools and the use of a common
underlying format (the line-oriented, plain text file) to
accomplish larger tasks

15 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Executing programs

$ echo Hi there

Hi there

$ date

Tue Oct 6 11:15:00 CEST 2020

$ date --iso-8601

2020-10-06

$ rev

Hello class

ssalc olleH

<Ctrl-D> (EOF token)
16 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Redirection and Pipes

Redirection to/from files

$ echo "Hello class" > somefile

$ cat somefile

Hello class

$ rev < somefile

ssalc olleH

$ echo "More text." >> somefile

$ cat somefile

Hello class

More text.

$ nl somefile

1 Hello class

2 More text.

17 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Redirection and Pipes (ctd.)

Pipes connect processes with a unidirectional FIFO

$ cat somefile | rev | nl

1 ssalc olleH

2 .txet eroM

In these examples, redirection and pipes are set up by the shell.

18 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Processes

I The execution of a program is a process.

+ program code
+ program data (variables, . . .)
+ context (state, program counter, processor registers, . . .)

I A Unix system executes many processes concurrently.
Process states:

new ready running exit

blocked

admit
dispatch

timeout

release

event waitevent
occurs

I ps – snapshot of current processes
I pstree – display process hierarchy

19 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Process Management

I Programs executed on the shell are child processes of the
shell.

I <Ctrl+Z > stops currently active job
I jobs – status of processes started in the current shell
I fg n – continue job n in foreground
I bg n – continue job n in background
I ’&’ at the end of a command starts it in the background

I Multiple commands:

Command sequence Resulting behaviour
cmd1 ; cmd2 Execute commands subsequently
cmd1 && cmd2 Execute cmd2 only if cmd1 succeeds
cmd1 || cmd2 Execute cmd2 only if cmd1 fails
cmd1 & cmd2 Start cmd1 in background and

cmd2 in foreground
(cmd1 ; cmd2) Execute both commands in a subshell

I Example: $ (sleep 10; date) > outfile &

20 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Filesystem Organisation

I Hierarchical structure of files
I Wide range of input/output resources are simple streams

of bytes exposed through the filesystem name space →
“everything is a file”

I Documents
I Directories
I Character-, block special files (devices; e.g. hard-drives,

keyboards, printers)
I Named pipes
I Sockets (e.g. TCP/IP sockets, UNIX domain sockets)
I Symbolic links

/bin	 /dev	 /etc	 /var	
commands	 devices	 startup	 and	

configura4on	
files	

/lib	 /man	 /local	

/	

/usr	

21 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Filesystem Hierarchy Standard1 I

I / Primary hierarchy (root directory)
I /bin: Essential command binaries (for all users)
I /etc: Configuration files
I /dev: Devices
I /lib: Libraries essential for the binaries in /bin and

/sbin
I /home: Users’ home directories
I /media: Mount points for removable media
I /mnt: Temporarily mounted file systems
I /opt: Optional application software packages
I /proc: Virtual filesystem providing process and kernel

information as files
I /sbin: Essential system binaries

22 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Filesystem Hierarchy Standard2 II

I /usr: Secondary hierarchy for shareable, read-only data
(contains the majority of multi-user utilities and
applications)

I /usr/local: Tertiary hierarchy for local data, specific to
the host

I /var: Variable files, whose content is expected to
continually change during normal operation of the system
(log files, spools, temporary e-mails)

1http://www.pathname.com/fhs/
2http://www.pathname.com/fhs/ 23 / 37

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Mounting File Systems

I All files and directories appear under the root directory,
even if they are stored on different physical or virtual
devices

I File system to be mounted is either:
I locally available (hard-drive partitions, removable media)
I a network resource (e.g. using NFS),
I or contained in a file itself (e.g. loop device for

ISO-Images)

I Advantage: different file systems concurrently in use

/bin /etc /var /usr

/

/bin /src /lib /include

/

bin /etc /var /usr

/

/bin /src /lib /include

before mounting

after mounting

24 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Navigating through the File System
I cd – change directory

$ cd

$ pwd

/home/jdoe

$ mkdir test

$ cd test

$ pwd

/home/jdoe/test

$ echo "Hello class" > textfile

$ ls -l

-rw-rw-r-- 1 jdoe jdoe 12 Oct 6 11:15 textfile

$ cd .. ; pwd

/home/jdoe

I Filenames
I absolute: start with ’/’, from the root directory

e.g. $ cat /etc/passwd
I relative: do not start with ’/’, and are related to the

current directory
e.g. $ cat ../tmpfile

(. is the current directory, .. the parent directory)
I Note: use <TAB> for shell completion 25 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Wildcards

I Pattern matching for filename specification
* zero or more characters
? a single character
[xyz] one of ‘x’, ‘y’ or ‘z’
[a-i] one in the range from ‘a’ to ‘i’

I Interpretation and expansion by the shell

I The operation of matching of wildcard patterns to
multiple file or path names is referred to as globbing.

I Use wildcards as normal characters by quoting or a
preceding backslash (\)

26 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Wildcards
Examples

$ ls

myfile prog prog.c proG.c t1 t2

t3 t4 test1 test1.c

* (all files listed above)
t* t1 t2 t3 t4 test test.c
t? t1 t2 t3 t4
t[12] t1 t2
pr*.c proG.c prog.c
*[1-4].c test1.c

27 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Permissions

-rw-rw-r-- ???

I Access permissions for each individual file (as file

attribute) -︸︷︷︸
special

4 2 1
rwx︸︷︷︸
user

4 2 1
rwx︸︷︷︸
group

4 2 1
rwx︸︷︷︸
others

I First character to indicate normal (-) or special file:
directory (d), socket (s), symbolic link (l), pipe (p),
character special device (c), block special device (b)

I Permission to read, write, and execute for
user/group/others

I chmod – change file mode bits (= permissions)
I with octal representation, e.g. chmod 764 textfile
I textual specification, e.g. chmod ugo+x,g-w textfile,

chmod u=rwx,go=rx textfile

I Only user (owner) or root can change permissions
28 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Shell Variables

I Only string type

I Created at first assignment

$ FILE=/tmp/dummy.txt

I Usage:

$ ls /tmp

dummy.txt dummy.txt.bak

$ rm $FILE ${FILE}.bak

I Export to environment for subsequently started processes:

$ export FILE

at assignment

$ export FILE=/tmp/dummy.txt

29 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

System Variables

I $HOME . . . Home directory

I $USER . . . User name

I $? . . . Exit status of the last command

I $PATH . . . Program path

$ echo $PATH

/usr/local/bin:/usr/bin:/usr/local/sbin:

/usr/sbin

→ If you create a program in a local directory and want to
execute it:

$./myprogram

I Print environment variables with env

30 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix Commands I
Examples

I File management
ls list directory contents
cd change the working directory
pwd print filename of working directory
cp, mv move (rename) files
ln make links between files
mkdir make directories
rm, rmdir remove files and directories
chmod, chown change file mode bits, owner
du estimate file space usage
file determine file type

I Process management
jobs display status of jobs in current shell session
fg, bg run job in foreground/background
ps, pstree snapshot of current processes/process hierarchy
kill send a signal to a process

31 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix Commands II
Examples

I Text processing
cat concatenate files to standard output
sort sort lines of text files
nl number lines of files
wc print line, word, and byte counts
cut remove sections from each line
tr translate or delete characters
tac contatenate and print files in reverse
rev reverse lines of a file
grep print lines matching a pattern
sed stream editor for filtering and transforming text

32 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Unix Commands III
Examples

I Utilities
echo print arguments to stdout
more, less pager
date, cal print current time and time/calendar
tar archiving utility
make build utility
ssh SSH client (remote login program)
gcc GNU compiler collection C compiler

I Editors vim, emacs

I . . . and many many more

I see $ man command for more information

33 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Interprocess communication

I How can processes interact?
I stream of data (pipes, stream sockets)
I sending messages (message queues, datagram sockets)
I accessing a shared resource (file, memory)

I Classification
I related vs. unrelated processes

unrelated processes require named resources (system-wide
namespace)

I implicit vs. explicit synchronization
ensure orderly execution and access to a shared resource

34 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Outlook
What you will learn in this course

We assume. . .

You already know how to program in an imperative
programming language.
This is not an introduction to programming!

Educational objectives of the programming assignments

I How to write and compile a C program, use options and
arguments, basic stream I/O (1a)

I Collaboration of unrelated processes through shared
memory and synchronization with semaphores (1b)

I How to create child processes, communicate through
unnamed pipes (2)

I Communicate through stream sockets (3)

35 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Summary

I C is still a highly relevant language

I Unix-based OS are ubiquitous

I Introduction to basic Unix concepts and the environment

36 / 37

Introduction
to Unix/Linux

Motivation

The Unix
Environment

Unix
Anatomy

Unix
Philosophy

The Shell

Filesystem

Permissions

Commands

Interprocess
communica-
tion

Outlook

Conclusion

Material

I Advanced Bash-Scripting Guide
http://www.tldp.org/LDP/abs/html/

Homework

Work through slides “Introduction to C”.
The next lecture will deal with the features specific to C, so
you should be familiar with the elements of the C language.

37 / 37

http://www.tldp.org/LDP/abs/html/

	Motivation
	The Unix Environment
	Unix Anatomy
	Unix Philosophy
	The Shell
	Filesystem
	Permissions
	Commands

	Interprocess communication
	Outlook
	Conclusion

