
Programm- & Systemverifikation
Bounded Model Checking

Georg Weissenbacher
184.741

What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved our programs correct (inductive invariants).
▶ We learned how to test programs.
▶ We heard about logical formalisms:

▶ Propositional Logic
▶ First Order Logic

▶ Last time we learned about Hoare Logic.

Hoare’s Axioms

{P[E/x]} x:=E {P}
{P} C1 {Q} , {Q} C2 {R}

{P} C1 ; C2 {R}

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}
{P} if B then C1 else C2 {Q}

P ′ → P {P} C {Q} Q → Q′

{P ′} C {Q′}

{P ∧ B} C {P}
{P} while B do C {¬B ∧ P}

Can We Automate Hoare Reasoning?

▶ Extremely hard to “synthesize” invariants!
▶ Automating loop rule is impossible.

▶ What if we restrict ourselves to the other rules?
▶ . . . and unwind loops only n times.
▶ Sufficient for bug finding.

Can We Automate Hoare Reasoning?

▶ Extremely hard to “synthesize” invariants!
▶ Automating loop rule is impossible.
▶ What if we restrict ourselves to the other rules?

▶ . . . and unwind loops only n times.
▶ Sufficient for bug finding.

Can We Automate Hoare Reasoning?

▶ Extremely hard to “synthesize” invariants!
▶ Automating loop rule is impossible.
▶ What if we restrict ourselves to the other rules?

▶ . . . and unwind loops only n times.
▶ Sufficient for bug finding.

Predicate Transformers

{P} stmt {Q}

“Forwards with Hoare”: Given P, how can we compute Q?

Definition (Strongest Postcondition)

The strongest post-condition sp(stmt,P)

▶ for a statement stmt
▶ with respect to a pre-condition P

is the strongest predicate Q such that {P} stmt {Q} holds.

I.e., {P} stmt {Q′} is equivalent to sp(stmt,P) ⇒ Q′.

Predicate Transformers

{P} stmt {Q}

“Forwards with Hoare”: Given P, how can we compute Q?

Definition (Strongest Postcondition)

The strongest post-condition sp(stmt,P)

▶ for a statement stmt
▶ with respect to a pre-condition P

is the strongest predicate Q such that {P} stmt {Q} holds.

I.e., {P} stmt {Q′} is equivalent to sp(stmt,P) ⇒ Q′.

Predicate Transformers

{P} stmt {Q}

“Forwards with Hoare”: Given P, how can we compute Q?

Definition (Strongest Postcondition)

The strongest post-condition sp(stmt,P)

▶ for a statement stmt
▶ with respect to a pre-condition P

is the strongest predicate Q such that {P} stmt {Q} holds.

I.e., {P} stmt {Q′} is equivalent to sp(stmt,P) ⇒ Q′.

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

▶ Example:

sp(x := x+ 1, (x ≤ 10)) =

∃x′ . (x = x′ + 1) ∧ (x′ ≤ 10)

▶ Can we get rid of the quantifier?

x′ = (x− 1)

(x = (x− 1) + 1) ∧ ((x− 1) ≤ 10)

▶ Only if underlying logic allows quantifier elimination!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

▶ Example:

sp(x := x+ 1, (x ≤ 10)) = ∃x′ . (x = x′ + 1) ∧ (x′ ≤ 10)

▶ Can we get rid of the quantifier?

x′ = (x− 1)

(x = (x− 1) + 1) ∧ ((x− 1) ≤ 10)

▶ Only if underlying logic allows quantifier elimination!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

▶ Example:

sp(x := x+ 1, (x ≤ 10)) = ∃x′ . (x = x′ + 1) ∧ (x′ ≤ 10)

▶ Can we get rid of the quantifier?

x′ = (x− 1)

(x = (x− 1) + 1) ∧ ((x− 1) ≤ 10)

▶ Only if underlying logic allows quantifier elimination!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

▶ Example:

sp(x := x+ 1, (x ≤ 10)) = ∃x′ . (x = x′ + 1) ∧ (x′ ≤ 10)

▶ Can we get rid of the quantifier?

x′ = (x− 1)

(x = (x− 1) + 1) ∧ ((x− 1) ≤ 10)

▶ Only if underlying logic allows quantifier elimination!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

▶ Example:

sp(x := x+ 1, (x ≤ 10)) = ∃x′ . (x = x′ + 1) ∧ (x′ ≤ 10)

▶ Can we get rid of the quantifier?

x′ = (x− 1)

∃x′ . (x = (x− 1) + 1) ∧ ((x− 1) ≤ 10)

▶ Only if underlying logic allows quantifier elimination!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assignment x:=e

sp(x :=e,P)
def
=

∃x′ . (x = e[x/x′]) ∧ P[x/x′]

▶ Example:

sp(x := x+ 1, (x ≤ 10)) = ∃x′ . (x = x′ + 1) ∧ (x′ ≤ 10)

▶ Can we get rid of the quantifier?

x′ = (x− 1)

(x = (x− 1) + 1) ∧ ((x− 1) ≤ 10)

▶ Only if underlying logic allows quantifier elimination!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assertion assert(R)

sp(assert(R),P)
def
= P ∧ R

▶ Note: If P and R are inconsistent, then
sp(assert(R),P) = false

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for assertion assert(R)

sp(assert(R),P)
def
= P ∧ R

▶ Note: If P and R are inconsistent, then
sp(assert(R),P) = false

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for sequential execution

sp(stmt1; stmt2,P)
def
=

sp(stmt2, sp(stmt1,P))

II

Example:

{x ≤ y} x := x+ 1; {

∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)

}

*

assert(x > 0)

{

(∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)) ∧ (x > 0)

}

	

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for sequential execution

sp(stmt1; stmt2,P)
def
=

sp(stmt2, sp(stmt1,P))
I

I

Example:

{x ≤ y} x := x+ 1; {

∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)

}

*

assert(x > 0)

{

(∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)) ∧ (x > 0)

}

	

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for sequential execution

sp(stmt1; stmt2,P)
def
=

sp(stmt2, sp(stmt1,P))
II

Example:

{x ≤ y} x := x+ 1; {

∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)

}

*

assert(x > 0)

{

(∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)) ∧ (x > 0)

}

	

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for sequential execution

sp(stmt1; stmt2,P)
def
=

sp(stmt2, sp(stmt1,P))
II

Example:

{x ≤ y} x := x+ 1; {

∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)

}

*

assert(x > 0)

{

(∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)) ∧ (x > 0)

}

	

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for sequential execution

sp(stmt1; stmt2,P)
def
=

sp(stmt2, sp(stmt1,P))
II

Example:

{x ≤ y} x := x+ 1; {∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)}
*

assert(x > 0)

{

(∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)) ∧ (x > 0)

}

	

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for sequential execution

sp(stmt1; stmt2,P)
def
=

sp(stmt2, sp(stmt1,P))
II

Example:

{x ≤ y} x := x+ 1; {∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)}
*

assert(x > 0)

{ (∃x′ . (x = x′ + 1) ∧ (x′ ≤ y)) ∧ (x > 0) }
	

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for conditionals

sp(if B then C1 else C2,P)
def
= sp(C1,B ∧ P) ∨ sp(C2,¬B ∧ P)

▶ What does this mean in terms of program paths?

[B] [¬B]

C1 C2

▶ Merging two paths!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for conditionals

sp(if B then C1 else C2,P)
def
= sp(C1,B ∧ P) ∨ sp(C2,¬B ∧ P)

▶ What does this mean in terms of program paths?

[B] [¬B]

C1 C2

▶ Merging two paths!

Predicate Transformers: Strongest Post-condition

Strongest Post-condition for conditionals

sp(if B then C1 else C2,P)
def
= sp(C1,B ∧ P)∨sp(C2,¬B ∧ P)

▶ What does this mean in terms of program paths?

[B] [¬B]

C1 C2

▶ Merging two paths!

Unwinding Paths

Remember our Test-Case-Generation technique?
▶ Unwinds paths/loops without merging!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

Unwinding Paths

Remember our Test-Case-Generation technique?
▶ Unwinds paths/loops without merging!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

Unwinding Paths

Remember our Test-Case-Generation technique?
▶ Unwinds paths/loops without merging!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

Unwinding Paths

Remember our Test-Case-Generation technique?
▶ Unwinds paths/loops without merging!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

Unwinding Paths

Remember our Test-Case-Generation technique?
▶ Unwinds paths/loops without merging!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

L2 L4

Unwinding Paths

Remember our Test-Case-Generation technique?
▶ Unwinds paths/loops without merging!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

L2 L4

L3
L5

Unwinding Transition Relations

▶ Is path-wise unwinding a good strategy?
▶ Previous unwinding contains 3 copies of L4 and L5!
▶ Path enumeration → exponential blowup!

Unwinding Software

Another problem:

L1L1

L2L2

L3L3

L4L4

L5L5 L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

L1

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L2

L3L2

CFG unrolling

V. D’Silva & D. Kroening: Software Verification 26

Unwinding Loops

▶ Recall sp(if (B) thenS elseT ,P)

[B] [¬B]

C1 C2

[x mod 2 = 0] [x mod 2 = 1]

x := x · 2 x := x − 1

We get:

{x mod 2 = 0} {x mod 2 = 1}

{∃x1 . (x = x1 · 2) ∧ (x1mod 2 = 0)} {∃x2 . (x = x2 − 1) ∧ (x2mod 2 = 1)}

Merge:

(∃x1 . (x = x1 · 2) ∧ (x1 mod 2 = 0))∨
(∃x2 . (x = x2 − 1) ∧ (x2 mod 2 = 1))

Unwinding Loops

▶ Recall sp(if (B) thenS elseT ,P)

[B] [¬B]

C1 C2

[x mod 2 = 0] [x mod 2 = 1]

x := x · 2 x := x − 1

We get:

{x mod 2 = 0} {x mod 2 = 1}

{∃x1 . (x = x1 · 2) ∧ (x1mod 2 = 0)} {∃x2 . (x = x2 − 1) ∧ (x2mod 2 = 1)}

Merge:

(∃x1 . (x = x1 · 2) ∧ (x1 mod 2 = 0))∨
(∃x2 . (x = x2 − 1) ∧ (x2 mod 2 = 1))

Unwinding Loops

▶ Recall sp(if (B) thenS elseT ,P)

[B] [¬B]

C1 C2

[x mod 2 = 0] [x mod 2 = 1]

x := x · 2 x := x − 1

We get:

{x mod 2 = 0} {x mod 2 = 1}

{∃x1 . (x = x1 · 2) ∧ (x1mod 2 = 0)} {∃x2 . (x = x2 − 1) ∧ (x2mod 2 = 1)}

Merge:

(∃x1 . (x = x1 · 2) ∧ (x1 mod 2 = 0))∨
(∃x2 . (x = x2 − 1) ∧ (x2 mod 2 = 1))

Unwinding Transition Relations

“Choice” of x1, x2 depends on which condition holds!

{x mod 2 = 0} {x mod 2 = 1}

{∃x1 . (x = x1 · 2) ∧ (x1mod 2 = 0)} {∃x2 . (x = x2 − 1) ∧ (x2mod 2 = 1)}

Should look familiar to compiler engineers:

[x0mod 2 = 0] [x0mod 2 = 1]

x1 := x0 · 2 x2 := x0 − 1

x := φ(x1, x2)

(static single assignment form [Cytron, Ferrante, Rosen, Wegman, Zadeck 1991])

Unwinding Transition Relations

“Choice” of x1, x2 depends on which condition holds!

{x mod 2 = 0} {x mod 2 = 1}

{∃x1 . (x = x1 · 2) ∧ (x1mod 2 = 0)} {∃x2 . (x = x2 − 1) ∧ (x2mod 2 = 1)}

Should look familiar to compiler engineers:

[x0mod 2 = 0] [x0mod 2 = 1]

x1 := x0 · 2 x2 := x0 − 1

x := φ(x1, x2)

(static single assignment form [Cytron, Ferrante, Rosen, Wegman, Zadeck 1991])

Unwinding Loops

▶ Idea:
▶ Unwind loop bodies individually and merge on exit

L1

L2

L3

L4

L5

#6

#5

#4

#3

#2

#1

#0 L1

L2

L3

L2

L3

L4

L5

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

exit();
}

}
}

}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

assert(false);
}

}
}

}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY

if (B) {
BODY
if (B) {

exit();
}

}
}

}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

assert(false);
}

}
}

}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY

if (B) {
exit();

}
}

}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

assert(false);
}

}
}

}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

exit();
}

}
}

}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

assert(false);
}

}
}

}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

exit();
}

}
}

}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
if (B) {

assert(false);
}

}
}

}

What happens if we replace exit with assert(false)?

Unwinding Loops: Unwinding Assertions

Assertion fails if loop can be unwound further.
▶ This is known as “unwinding assertion”.

Bounded Model Checking

➀ “Unwind” all loops in program n times.
➁ Compute strongest post-condition for loop-free program.

▶ Start with {true} at beginning of program
▶ Iteratively compute post-condition of each statement
▶ Merge paths whenever possible

▶ For each program construct stmt, we obtain {P} stmt {Q}.
▶ P and Q are existentially quantified FOL formulas
▶ If we encounter {P} assert(B) {Q}:

report error if P ∧ ¬B is satisfiable

Bounded Model Checking

➀ “Unwind” all loops in program n times.
➁ Compute strongest post-condition for loop-free program.

▶ Start with {true} at beginning of program
▶ Iteratively compute post-condition of each statement
▶ Merge paths whenever possible

▶ For each program construct stmt, we obtain {P} stmt {Q}.

▶ P and Q are existentially quantified FOL formulas
▶ If we encounter {P} assert(B) {Q}:

report error if P ∧ ¬B is satisfiable

Bounded Model Checking

➀ “Unwind” all loops in program n times.
➁ Compute strongest post-condition for loop-free program.

▶ Start with {true} at beginning of program
▶ Iteratively compute post-condition of each statement
▶ Merge paths whenever possible

▶ For each program construct stmt, we obtain {P} stmt {Q}.
▶ P and Q are existentially quantified FOL formulas
▶ If we encounter {P} assert(B) {Q}:

report error if P ∧ ¬B is satisfiable

CBMC Example

Example.C:

unsigned nondet();

unsigned a[100];

int main(int argc, char** argv) {
unsigned i;

for (i=0; i<100; i++) {
a[i]=nondet();

CPROVER assume(a[i] <= i);

}
i=nondet();

CPROVER assume(i<100);

CPROVER assert(a[i]<100, "Not too large");

return 0;

}

CBMC Command Line Parameters

▶ cbmc --show-claims Example.C

Claim main.assertion.1:

file Example.C line 14 function main

Not too large

a[i] < 100

▶ cbmc --claim main.assertion.1

--unwinding-assertions --unwind 10 Example.C

Violated property:

file Example.C line 8 function main

unwinding assertion loop 0

▶ cbmc --claim main.assertion.1 Example.C

VERIFICATION SUCCESSFUL

CBMC Example

Wegner.C:

unsigned nondet();

unsigned count(unsigned x) {
unsigned y, c=0;

y=x;

while (y!=0) {
y=y&(y-1);

c++;

CPROVER assert(x!=y, "Not equal");

}
}

int main(int argc, char** argv) {
unsigned i=nondet();

return count(i);

}

CBMC Command Line Parameters

▶ cbmc Wegner.C

Unwinding loop 0 iteration 1 file wegner.c line 7

function count

. . .
Unwinding loop 0 iteration 3227 file wegner.c line 7

function count

. . .

▶ cbmc --32 --unwind 33 --unwinding-assertions

Wegner.C

VERIFICATION SUCCESSFUL

CBMC – Modeling

CBMC provides three mechanisms for modeling:

1. Assertions: If assert(c) is reachable and c evaluates to
false, CBMC reports a counterexample.

2. Non-determinism: If the implementation of a function is not
provided, CBMC assumes that the return value is arbitrary.

3. Assumptions: If CPROVER assume(c) reachable, CBMC
assumes that c is true and silently discards all execution
paths for which this doesn’t hold.

CBMC – Example

int nondet_int ();

int main() {

int x,y;

x = nondet_int ();

y = nondet_int ();

__CPROVER_assume(x >= 0 && x<10);

__CPROVER_assume(y >= 0);

int r = x+y;

assert(r>=y);

return 0;

}

Checks whether ∀x , y .0 ≤ x < 10 ∧ y ≥ 0 ⇒ x + y ≥ y holds.

Non-determinism vs. Randomness

▶ Randomized Testing
▶ Fixed distribution
▶ Each path has a certain probability

▶ Model Checking with non-determinism:
▶ All paths are checked
▶ no path is “more likely”

CBMC – “Test Harness” and “Function Stubs”

Test Harness
▶ Code that calls the functions under test
▶ can be highly non-deterministic

▶ e.g. order of function calls:

switch (nondet ()) {

case 0: foo ();

break;

case 1: bar ();

break;

}

▶ or non-deterministically initialized parameters

CBMC – “Test Harness” and “Function Stubs”

Function Stubs
▶ e.g. for modeling functions of an operating system
▶ clear demarcation of code that needs not be tested
▶ Can over-approximate behavior:

▶ e.g. int getchar() with non-deterministic return values
▶ or fread non-deterministically initializing an array:

size_t fread

(char *ptr , size_t sz, size_t ni , FILE *s)

{

for (unsigned i = 0; i < (ni * sz); i++)

ptr[i] = nondet ();

}

The “C Bounded Model Checker”

http://www.cprover.org/cbmc

▶ A bounded model checking tool for ANSI-C programs
▶ Checks and detects:

▶ User-provided assertions
▶ Array access violations (upper and lower bound)
▶ Division by zero
▶ Arithmetic overflow
▶ NaN floating point values
▶ Invalid pointers

▶ cbmc --unwind 10 program.c unwinds all loops 10 times

http://www.cprover.org/cbmc

Recap

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved our programs correct (inductive invariants).
▶ We learned how to test programs.
▶ We heard about logical formalisms:

▶ Propositional Logic
▶ First Order Logic

▶ Formal correctness proofs with Hoare Logic.
▶ Automated software verification with BMC.

