Problem Set 5

Problem 5.1 Consider the following joint pdf of two random variables x and y:

$$f_{\mathsf{x},\mathsf{y}}(x,y) = \left\{ \begin{array}{ll} x+y, & (x,y) \in [0,1] \times [0,1] \\ 0, & \text{otherwise} \end{array} \right..$$

- a) Sketch $f_{x,y}(x,y)$.
- b) Calculate and sketch the marginal pdfs $f_x(x)$ and $f_y(y)$.
- c) Calculate the mean and the variance of x and y.
- d) Calculate the covariance of x and y.
- e) Calculate the probability $P\{x + y \le 1/2\}$.

Problem 5.2 Consider the following joint pdf of two random variables x_1 and x_2 :

$$f_{\mathsf{x}_1,\mathsf{x}_2}(x_1,x_2) = \begin{cases} a e^{-x_1} e^{-x_2}, & 0 < x_1 < x_2 < \infty \\ 0, & \text{otherwise} \end{cases}$$
.

- a) Find the constant a so that $f_{x_1,x_2}(x_1,x_2)$ is a valid joint pdf.
- b) Calculate the correlation R_{x_1,x_2} .
- c) Calculate the joint pdf $f_{y_1,y_2}(y_1,y_2)$ for $y_1=2x_1$ and $y_2=x_2-x_1$.
- d) Are x_1 and x_2 statistically independent? Justify your answer.
- e) Are y_1 and y_2 statistically independent? Justify your answer.

Problem 5.3 A complex random variable z is defined by

$$z = \cos(x) + i\sin(y)$$
,

where x and y are statistically independent random variables uniformly distributed in $[-\pi, \pi]$.

- a) Calculate the mean value of z.
- b) Calculate the variance of z.

Problem 5.4 Let $x_i, i = 1, 2, ..., N$, be real-valued independent and identically distributed (iid) $\mathcal{N}(0, \sigma^2)$ random variables. Let the random variable y be defined as

$$\mathsf{y} = \sum_{i=1}^{N} |\mathsf{x}_i|^2.$$

- a) Calculate the distribution of $|x_i|^2$.
- b) Calculate the characteristic function of $|\mathbf{x}_i|^2$.
- c) Use the characteristic function obtained in b) to find the distribution of y.
- d) Repeat subtasks a) c) for the case that the x_i are statistically independent circularly symmetric *complex* Gaussian random variables with zero mean and identical variance σ^2 .

Hint:
$$\int_{0}^{\infty} x^{y} e^{-ax} dx = \frac{\Gamma(y+1)}{a^{y+1}}, \ y > -1, a > 0.$$