
Lecture Notes: Discrete Mathematics

Note 0.1:
Contributions to this summary and the corresponding formula
sheet are welcome on Github .
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Graph Theory

Definition 0.1: simple graph
A simple graph G = (V,E) has vertices V and edges E ⊆ {{u, v} | u, v ∈
V, u 6= v}

TODO example

Definition 0.2: adjacent
Vertices a and b are adjacent if there is an edge f in E with f = {a, b}

Definition 0.3: incident
Vertex a is incident to edge f if a ∈ f

Definition 0.4: graph
A graph also allows loops, i.e. edges of the form {a} for a vertex a.

Definition 0.5: multigraph
A multigraph is a graph where two vertices may be connected by several edges.
E is now a multiset. A vertex in a multigraph may have several loops.

TODO example

Definition 0.6: weighted graph
A weighted graph is a (multi)graph together with a weight function w : E → R.

Definition 0.7: neighbors
The set of neighbors is N(u) = {v ∈ V | ∃e ∈ E : e = {u, v}} for vertex u.
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Definition 0.8: degree
The degree of vertex u is d(u) = |N(u)| for a simple graph, and in general
d(u) = |{e ∈ E|uisincidenttoe}|.

Definition 0.9: directed graph
A directed (multi)graph is a graph where every edge has a head and a tail.
Alternatively: Edges are pairs of vertices (u, v). \ d+(u) = |{e ∈ E | e =
(u, v)forsomev ∈ V }| \ d−(u) = |{e ∈ E | e = (v, u)forsomev ∈ V }|

Remark 0.1:
A (di)graph can be regarded as a relation uRv ⇐⇒ (u, v) ∈ R and if it’s a
symmetric then the graph is undirected.

Definition 0.10:
A graph is regular of degree r if d(u) = r∀u ∈ V

Lemma 0.1: handshaking lemma∑
v∈V

deg(v) = 2 · |E|

Example 0.1:
• Kn = ({1, ..., n}, {{i, j} | i 6= j ∧ i, j ≥ 0 ∧ i, j ≤ n}) is the complete

graph on n vertices.
• Pn path
• Cn cycle
• hypercube: V = {0, 1}n (i.e., 2n vertices), E = {{u, v} |

n∑
i=1
|ui−vi| = 1}

Definition 0.11:
The adjacency matrix A = (aij) of graph G is the |V | × |V | matrix with

aij =
{

1 if {i, j} ∈ E
0 otherwise if G is simple,

• = #edges{i, j} if G is a multigraph,
• = #edges(i, j) if G is a digraph,
• =

∑
e=(i,j)∈E

w(e) if G is weighted and directed.

Different graphs can have the same adjacency matrix, because the labels are
forgotten. Different adjacency matrices can correspond to the same graph.

Definition 0.12: isomorphic
Simple graphs G,H are isomorphic, G ∼= H if there is a bijection g : V (G)→
V (H) sucht that {u, v} ∈ E(G) ⇐⇒ {g(u), g(v)} ∈ E(H)
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TODO example

Problem: It is unknown whether there is an algorithm that decides in polynomial
time graph isomorphism (unknown if NP-complete).

Definition 0.13: Walk, Trail, Path
A walk/trail/path is a sequence u1e1u2e2...ul of vertices u1, ..., ul and edges
e1, ..., el such that ei = {ui, ui+1}. A trail has no repeated edges. A path has
no repeated vertices. Every path is a trail, and every trail is a walk.

Definition 0.14: closed walk, circuit, cycle
A closed walk/circuit/cycle is a walk/trail/path with an el = {ul, u1}

Lemma 0.2:
Let A be the adjacency matrix of a weighted(multi)graph, then (Ak)ij is the
number of walks from i to j of length k

Proof 0.1:
By induction: k = 0 → A0 = I and the number of walks of length zero (0
edges) from i to j is 1 if i = j and 0 otherwise. \ Statement for k implies
statement for k + 1: (Ak+1)ij = (A ∗Ak)ij =

∑
v∈V

Aiv ∗ (Ak)vj . A walk from i

to j of length k + 1 is an edge from i to v followed by a walk of length k from
v to j.

Definition 0.15: connected graph
A graph is connected if for any two vertices u, v there is a walk from u to v.
For a digraph, this is called strongly connected. A digraph is weakly connected
if the underlying graph is connected. A bridge is an edge whose removal
increases the number of connected components.

Definition 0.16: subgraph
H is a subgraph of G if H is a graph (of the same kind) and V (H) ⊆ V (G),
E(H) ⊆ E(H) (note that H must be a graph by itself).

Definition 0.17: bipartite
A (simple) graph is bipartite if its vertices can be coloured red and blue such
that edges only connect vertices of different colours.

Theorem 0.1: König 1936
G is bipartite iff G contains no cycles of odd length
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Proof 0.2:
→, every cycle visits blue and red vertices alternatingly → even length \ ←,
without loss of generality G connected, fix u ∈ V , colour u blue; for any path
from u to v of odd length, colour v red, for even length blue. If there are two
different paths from u to v both have even length or both have odd length
(because there is no cycle of odd length)

Definition 0.18: Eularian Trail
A Eulerian Trail is a trail that uses every edge exactly once.

Theorem 0.2:
A connected graph has a Eulerian circuit if and only if all its vertices have
even degree.

Abbildung 1: no eulerian circuit as every vertex has odd degree

Proof 0.3:
⇒: In any circuit every vertex is entered as often as it serves as a point of
departure.

⇐: Induction on the number of edges

• if the graph G has no edges G = (V = 1, E = ∅)

• otherwise let W be any circuit in G ( this exists: start anywhere, choose
any edge unused so far, continue until you hit starting vertex)

• let G′ = (V (G), E(G)\E(W )), all vertices in G′ have even degree and
G′ need not be connected.

• let G′1, ...G′c be the connected components of G′. In each component
of G′i find a Eulerian circuit Wi. Wi and W have atleast one vertex
in common, because G is connected and removing W produces the
components.

• therefore W1, ...Wc and W can be combined to a Eulerian circuit.
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Trees and Forests

Definition 0.19:
• A forest is a graph without cylces (=acyclic).

• A tree is a connected forest.

• A leaf is a vertex of degree 1.

Lemma 0.3:
If T is a tree and has two vertices it has at least 2 leafs.

Proof 0.4:
V (T ) and E(T ) are finite ⇒ T contains a maximal path and this path has
two leafs (because it is maximal).

Definition 0.20: Spanning subgraphs
A subgraph H of a graph G is spanning if V (H) = V (G).

Theorem 0.3:
Let T be a graph, then the following are equivalent:

1. T is a tree.

2. Any 2 vertices are connected with a unique path.

3. T is connected and every edge is a bridge (min. connected).

4. T has no cycles and adding any edge yields a cycle (maximal acyclic)

Proof 0.5:
• 1⇒ 2: otherwise T would not be connected or T would have a cylce.

• 2⇒ 3: A unique path from u to v exists, which means every edge has
to be a bridge.

• 3 ⇒ 4: An edge in a cycle would not be a bridge ⇒ T has no cycles,
adding an edge would yield a cyle because T is connected.

• 4→ 1: adding any edge (u, v) yields a cycle = T is connected.

Theorem 0.4:
A connected graph G has a spanning tree.

Proof 0.6:
As long as there is a non-bridge, remove it, and use 3. of the previous theorem.
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Theorem 0.5:
A graph is a tree if and only if it is connected and |V | = |E|+ 1.

Proof 0.7:
⇒: induction on |V | : |V | = 1

If |V | ≥ 2: remove a leaf to obtain T ′, by induction |V (T ′) |= |V (T )| − 1 and
|E(T ′)| = |E(T )| − 1

|V (T )| = |V (T ′)|+ 1 = |E(T ′)|+ 1 + 1 = |E(T ) + 1|

⇐: Let T ′ be a spanning tree of T

|V (T ′) |= |E(T ′)|+ 1

|V (T ) |= |E(T )|+ 1, |V (T ) |= |V (T ′)| ⇒ |E(T ) |= |E(T ′)| ⇒ T = T ′

How many spanning trees are there?

Spanning trees of the above graph:

Definition 0.21:
• τ(G) is the number of spanning trees of G.

• G\e is the graph obtained by removing edge e.

• G/e is the graph obtained by contracting edge e.
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Theorem 0.6: Deletion Contraction Theorem
τ(G) = τ(G\e) + τ(G/e)

Example 0.2:

τ( ) = τ( ) + τ( ) = 4 + 4 = 8 (1)

Proof 0.8:
The set of spanning trees is the disjoint union of spanning trees containing e
and spanning trees not containing e.

More generally: If G is a weighted graph with w : E(G)→ R and H is a subgraph
of G, then w(H) =

∏
e∈E(H) w(e)

For weighted graphs, τ(G) is the sum of the weights of the spanning trees of G

τ(G) =
∑
T

∏
e∈E(T )

w(e)

Example 0.3:

τ( ) = τ( )+e·τ( ) = abc+abd+acd+bcd+e(a+d)(b+c)

Definition 0.22: Degree Matrix
The degree matrix of a graph is

D =


d(v1)

· 0
·

0 ·
d(vn)


(The degree of a vertex in a weighted graph is d(u) =

∑
(u,v)∈E(G)

w(v, u))
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Theorem 0.7: Matrix Tree Theorem
Let n = |V (G)|, let λ1, . . . , λn be the eigenvalues of D −A. One of these is 0,
w.l.o.g. λ1 = 0

Then, τ(G) = 1
n · λ2 · · ·λn.

Equivalently: τ(G) = det((D−A)i,i), where Mi,i is obtained by removing row
and column i. M = D −A

Example 0.4:

det(D −A)4,4 =


a+ d −a 0 -d
−a a+ b+ e −b -e
0 −b b+ c -c
-d -e -c c+d+e


= (a+ d)

∣∣∣∣a+ b+ e −b
−b b+ c

∣∣∣∣+ a

∣∣∣∣−a 0
−b b+ c

∣∣∣∣
= (a+ d)((a+ b+ e)(b+ c)− b2)− a2(b+ c)

Spanning Trees of Minimal Weight
Assume graph G is connected.

Kruskal’s Algorithm:

Require: Sorted edges by weight: w(e1) ≤ · · · ≤ w(em).
T1 ← ∅
for i in 1...m do

if E(Ti) ∪ ei is acyclic then
E(Ti+1)← E(Ti) t ei

else
E(Ti+1)← E(Ti)

end if
if |E(Ti+1|+ 1 = n− 1 then

return E(T )← E(Ti+1)
end if

end for
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Remark 0.2:
Kurskal is a so-called greedy algorithm: In every step, it adds the locally
optimal edge. The result is also globally optimal.

Theorem 0.8:
Kruskal yields a spanning tree of minimal weight

Proof 0.9:
• T is acyclic by construction.
• Suppose the algorithm reaches the return statement and Tm+1 is not

connectced with components A and B. There has to be an edge el which
connects the two components A and B. Kruskal would habe added el
becuase Tl ⊆ Tm+1 is acyclic.

• T is of minimal weight: see proof in matroid setting

Metroids
Motivation: Metroids are an abstraction of graphs and provide a framework for
greedy algorithms.

Definition 0.23: Matroids
Let E be a set, I a set of subsets of E (the set of independant sets). Then,
(E, I) is a matroid iff

• M1: ∅ ∈ I
• M2: B ∈ I, A ⊆ B → A ∈ I
• M3: A,B ∈ I, |B| = |A| + 1 ⇒ ∃e ∈ B\A : A ∪ {e} ∈ I (“exchange

axiom”)

Theorem 0.9:
G a graph, I := {F ⊂ E(G)|F acyclic} ⇒ (E, I) is a matroid

Proof 0.10:
• M1: ∅ is a forest
• M2: B is a forest, A ⊆ B ⇒ A is a forest
• M3: A,B edge sets of spanning forests, |B |= |A|+ 1, find edge e ∈ B\A

such that A ∪ e is a forest.
Suppose A has connecdted components T1...Tc Show ∃e in B\A that is
not in any of these components. Count edges:
TODO{. . . }
B has more than |A| edges, so there is an edge not in any B restricted
by V (Ti)
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Greedy: (E, I) matroid, w : E → R
Require: Sorted E by weight: w(e1) ≤ ... ≤ w(em).
T1 ← ∅
for i in 1...m do

if E(Ti) ∪ ei ∈ I then
E(Ti+1)← E(Ti) t ei

else
E(Ti+1)← E(Ti)

end if
end for
return E(T )← E(Tm+1)

Definition 0.24: Basis
A basis of a matroid (E, I) is a (inclusionwise) maximal independent set b ∈ I.

Theorem 0.10:
Greedy returns a basis of minimal weight, that is

∑
e∈T w(e) is minimal among

all bases.

Proof 0.11:
T is a maximal independent set as in Kruskal.∑
e∈T w(e) is minimal: let T = {t1, ..., ts}w(t1) ≤ ... ≤ w(ts)

suppose that B = {b1, ..., br} with w(b1) ≤ .. ≤ w(br) is a basis with∑
b∈B w(b) <

∑
e∈T w(e)

let i := min{j|w(bj) < w(tj)} ie, w(bj) ≥ w(tj) for j < i and w(bj) < w(ti)
let Ti−1 = {t1, .., ti−1}Bi = {b1, ..., bi}
apply M3
⇒ ∃bj ∈ Bi\Ti−1 : Ti−1 ∪ bj ∈ I
w(bj) ≤ w(bi) < w(ti) so greedy should have chosen bj instead of ti
j with w(bj) < w(tj) exists becuase all bases have the same cordinality.

Theorem 0.11:
Suppose that (E, I) satisfies M1 and M2, and that for any weight function
w : E → R the greedy algorithm produces a maximal independent set A ∈ I
such that

∑
e∈A w(e) is minimal among all maximal sets in I. Then, (E, I)

satisfies M3 and therefore is a matroid.

(That is, an independence system is a matroid iff greedy works as expected.)

Proof 0.12:
• all maximal sets in I have the same cardinality. Suppose A,B ∈ I

maximal, |A| < |B| (we will determine ε > 0 in a suitable way).\ for
any ε > 0 greedy returns B. w(B) = |B| ≥ |A|+ 1
w(A) = |A ∩ B| + (1 + ε)|A\B |= |A| + ε|A\B| ⇒ choose ε < 1

|A\B|
(A\B 6= ∅)
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• (E, I) satisfies M3, let A, b ∈ I, |B |= |A| + 1 greedy chooses all of A
first: since |A| < |B| we have that A is not maximal\ suppose @e ∈
B\A|A ∪ e ∈ I
⇒ greedy chooses r − |A| elements of weight x, where r is the size of
any basis. call this set A′, also ∃ basis B′ = B ∪ {e1, ...er−|B|}
w(A′) = w(A) + x(r − |A|) = x(r − |A|)
w(B′) ≤ |B\A|+x(r−|B|) = |B\A|+x(r−|A ` 1) ≤ w(A′)+ |B\A ` x
⇒ choose x > |B\A|, then w(B′) < w(A′) but greedy returned A′

Prims algorithm: let G connected, r any vertex
Require: Sorted E by weight: w(e1) ≤ ... ≤ w(em).
Q← V (G)\r
T ← ∅
VT ← {r}
while Q 6= ∅ do

u← a vertex in Q connected to T with an edge of minimal weight
Q← Q\u
T ← T ∪ e
VT ← VT ∪ u

end while

Prim is a greedy algorithm, but there is no matroid underlying

Minimal Distances

Definition 0.25: Distance
G a weighted directed graph w : E → R.

The distance (or length) of a path P is
∑
e∈P w(e)

TODO{illustration}

Algorithms:

• Dijkstra: (1950s) sinlge source, only for w : E → R+, O(|V |log|V |+ |E|)
• Bellman-Ford-Moore: single source, G loopless, O(|V ||E|)
• Floyd-Warshall: all distances, O(|V |3)

Dijkstra algorithm: d(v) (array of distances) = 0 if v = v0 else ∞
Q← V
while Q 6= ∅ do

find u ∈ Q with minimal d(u)
Q← Q\u
for v ∈ Q, (u, v) ∈ E do

d(v)← min(d(v), d(u) + w(u, v))
(predecessor of v is u if d(u)w(u, v) < d(v))

end for
end while
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Example 0.5:
TODO

Definition 0.26:
A cut of a (di)graph is a set of edges(arcs) S such that V is the disjoint union
of V1 and V2 and there is no edge within V1 or V2 in S. (We will redefine cuts
later a bit differently.)

Remark 0.3:
Dijkstra chooses the minmial weight edge between Q and V \Q, this is called
breadth-first search

Bellman-For-Moore algorithm: d(v) (array of distances) = 0 if v = v0 else ∞ l(v)
(length of path) = 0 if v = v0 else ∞
step← 0
while True do

modified← False
for u ∈ V with l(u) = step do

for e = (u, v) ∈ E do
if d(v) > d(u) + w(e) then

modified← True
d(v)← d(u) + w(e)
l(v)← l(u) + 1

end if
end for

end for
if not modified then

return d
else

if step = |V ` 1 then
throw error: negative cycle

else
step← step+ 1

end if
end if

end while

Example 0.6:
TODO

Example 0.7:
TODO{example with negative cycle}
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Floyd-Warshall algorithm: d(u, v) (array of distances) = 0 if u = v else if
(u, v) ∈ E w(u, v) else ∞ (adjacency matrix with 0 replaced by ∞)
step← 0
for u ∈ V do

for v ∈ V do
for w ∈ V do

d(v, w) = min(d(v, w), d(v, u) + d(u,w))
end for
if d(v, v) < 0 then

error: negative cycle
end if

end for
end for

Flows

Definition 0.27: Flow
Let G be a weighted (di)graph with:

• w : E → R+
• s a source in V , i.e. indegree of s is 0
• t a sink, i.e. outdegree of $t $ is 0.

Then, φ : E → R is called a flow iff

• F1: ∀e ∈ E : 0 ≤ φ(e) ≤ w(e) (Weights indicate maximal capacity.)
• F2: ∀v ∈ V \{s, t}

∑
(v,u)∈E φ(v, u) =

∑
(u,v)∈E φ(u, v) (What flows in

flows out.)

Definition 0.28: Value of a Flow
For a flow from source s to sink t:

val(φ) :=
∑

(s,u)∈E φ(s, u) =
∑

(u,t)∈E φ(u, t)

Proof 0.13:
sum over outbound edges:∑

(s,u)∈E φ(s, u) +
∑
v 6=s,t;v∈V

∑
(v,u)∈E φ(v, u) =

∑
e∈E φ(e)

sum over inbound edges:∑
(u,t)∈E φ(u, t) +

∑
v 6=s,t;v∈V

∑
(u,v)∈E φ(u, v) =

∑
e∈E φ(e)

Definition 0.29: Cut
S ⊆ V, s ∈ S, t /∈ S then (S, V \S) is a cut, any edge from S to V \S is said
to be crossing the cut.

The capacity of a cut is

c(S, V \S) =
∑

(u,v) inE;u∈S,v/∈S

w(u, v)
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A cut is minimal if its capactiy is minimal along all cuts.
A flow is maximal if its value is maximal among all flows.

Lemma 0.4:
val(φ) ≤ c(S, V \S) for any flow φ and all cuts c(S, V \S)

Proof 0.14:
TODO

Definition 0.30: Augmenting Path
An augmenting path P for φ is an (unoriented) path from s to t with

• φ(e) < w(e)∀e ∈ P traversed in the forward direction.
• φ(e) > 0∀e ∈ P traversed in the backward direction.

Theorem 0.12:
Let φ be any flow, then

• val(φ) is maximal ⇐⇒ @augmenting path for φ
• val(φ) is maximal ⇐⇒ val(φ) = c(S, V \S) for some S

Proof 0.15:
val(φ) is max ⇒ @augmenting path for φ

suppose P is an augmenting path, let δ1 := mine∈P ;forward(w(e)−φ(e)), δ2 :=
mine∈P ;backward(φ(e))δ := min(δ1, δ2) φ̃ is a flow: check F2 for a vertex v on
the path. ∑

(v,u)∈E

φ̃(e) =
∑

(v,u)∈E

φ(e)+

function 2\ @ augmenting path ⇒ property 2 of theorem.\ let S = {v ∈
V |∃"augmenting path" from s to v}\ (S, V \S) is a cut (because s ∈ S).\
for forward crossing edges we have φ(e) = w(e) in this cut\ for backward
crossing edges we have φ(e) = 0\ use lemma val(φ) =

∑
eforward φ(e) −∑

ebackward φ(e) = c(S, V \S)− 0\ TODO{illustrations} property 2 ⇒ val(φ)
is maximal.\ Lemma: val(φ) ≤ c(S, V \T ), so val(φ) is maximal.

Theorem 0.13:
A maximal flow exists.

Proof 0.16:
• If w : E → N an augmenting path increases val(φ) by at least one.
• If w : E → Q multiply all weights by the lcm of the denominators.
• If w : E → R any continous real function on a compact set has a

maximum.
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Remark 0.4: Max-Flow-Min-Cut theorem
val of max flow = capacity of a min cut.

Ford-Fulkerson algorithm:
φ1(e)← 0 for all e
while ∃ augmenting path P for φi do

function 3
end while

Hall’s marriage theorem

X,Y finite disjoint sets |X |= |Y |, D ⊆ X × Y

Definition 0.31: Perfect Matchnig
M ⊆ D is called a perfect matching iff ∀x ∈ X∃!y ∈ Y : (x, y) ∈M

Theorem 0.14: Hall’s Marriage Theorem
D admits a perfect matching ⇐⇒ ∀X ′ ⊂ X : |N+(X ′)| ≥ |X ′|

Proof 0.17:
⇒: use the perfect matching, every x is matched to a different y

⇐: TODO{illustration} the value of the max flow is the size of the largest
matching.
let ({s} ∪ X̃ ∪ Ỹ , X\X̃ ∪ Y \Ỹ ∪ {t}) be a minimal cut.
Ỹ ⊇ N+(X̃) because w(x, y) =∞
c(S, V \S) = |X\X̃|+ |Ỹ |
c(S, V \S) ≥ |X| because |Ỹ | ≥ |N+(X̃)| ≥ |X̃| and |X\X̃|+ |Ỹ | ≥ |X\X̃|+
|X̃| = |X|

Hamiltonian Graphs

Definition 0.32: Hamiltonian Graphs
A graph is hamiltonian if it contains a hamiltonian cycle, which is a cycle
which visits every vertex exactly once.

Remark 0.5:
It is NP-hard to find a hamiltonian cycle.

Definition 0.33: Closure of a Graph
G = (V,E) a graph.

[G] = (V, Ẽ) with E1 := E,Ei+1 := Ei ∪ {e = (u, v) /∈ E|d(u) + d(v) ≥ |V |}.
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That is, Ẽ is the set Ek s.t. d(u) + d(v) < |V | for all (u, v) /∈ Ek
[G] is called the closure of G.

Theorem 0.15:
G is hamiltonian iff [G] is hamiltonian.

Proof 0.18:
⇒: [G] is G with some morde edges.
⇐: suppose H is a hamiltonian cycle in [G], but G is not hamiltonian,
⇒ ∃e = (u, v) ∈ E([G])\E(G) which is in every hamiltonian cycle of [G]
⇒ dG(u) + dG(v) ≥ |V | because TODO{add picture}

Corollary 0.1:
• |V | ≥ 3, d(u) + d(v) ≥ |V |∀u, v ∈ V ⇒ G is hamiltonian (Ore 1960)
• d(v) ≥ |V |2 ∀v ∈ V ⇒ G is hamiltonian (Dirac 1952)

Planarity

Definition 0.34: Planar Graphs
A graph is called planar if there is a drawing of G in R2 s.t. no two edges
intersect (except at vertices).

Example 0.8:
TODO{illustration}

Theorem 0.16:
K3,3 (complete bipartite graph) and K5 are not planar.

TODO{illustrations}

Definition 0.35: Faces
A face of a drawing of a graph is a region bounded by edges.

Theorem 0.17: Euler’s Polyhedran Formula
|V | − |E|+ |F | = 2 for any drawing of a planar connected graph.

Proof 0.19:
Induction on |F |.

Induction Start: |F | = 1
⇒ G is a tree

17



⇒ |V | − |E|+ |F | = 2

Induction Step: |F | > 1.
⇒ ∃e bounding two faces, let G′ = G\e
⇒ |V ′| = |V |, |E′| = |E| − 1, |F ′| = |F | − 1
⇒ 2 = |V ′| − |E′|+ |F ′| = |V | − |E|+ 1 + |F | − 1

Lemma 0.5:
G simple planar connected graph and every edge bounds two faces, then

• |E| ≤ 3|V | − 6 and
• if G additionally has no triangles then |E| ≤ 2|V | − 4

Proof 0.20:
fj := |{faces with j bounding edges}|
⇒ |F | =

∑
j≥3 fj

⇒ 3|F | ≤
∑
j≥3 jfj = 2|E|

⇒ 0 = 3|V | − 3|E|+ 3|F | − 6 ≤ 3|V | − 3|E|+ 2|E| − 6 = 3|V | − |E| − 6

If no triangles:
4|F | ≤ 2|E|
⇒ 0 = 2|V | − 2|E|+ 2|F | − 4 ≤ 2|V | − 2|E|+ |E| − 4 = 2|V | − |E| − 4

Corollary 0.2:
• K3,3 is not planar: no triangles and |V | = 6, |E| = 9
• K5 is not planar |V | = 5, |E| = 10

Theorem 0.18: Kuratowski-Wagner
G is planar if and only if G has no subgraph which is a subdivision of K3,3 or
K5.

TODO{include lecture 7}

Combinatorics
unfinished

Balls in Boxes
We have k balls and n boxes. Balls and boxes could be labelled. Count any
assignment

f : [k]→ [n] .

Notation: [n] = {1, . . . , n}. f means ‘’put balls into boxes”. f can be injective (no
two balls in same box) or surjective (no empty box). How many arbitrary functions
from [k] to [n] are there? Answer: nk. For injective case: n · (n− 1) · · · (n− k+ 1).
For surjective case: not a nice formula.
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TODOmake table of combinatoric equalities

Let the balls be unlabelled and the boxes labelled. Injective case:(
n

k

)
= n!
k!(n− k)!

because k! · · ·
(
n
k

)
= n · (n− 1) · · · (n− k + 1). For the arbitrary case:

(
n+k−1

k

)
.

TODO{make table for these verbal descriptions}

Some identities:

• (x+ y)n =
n∑
k=0

(
n
k

)
xkyn−k means n balls and 2 boxes. TODOswitch k and

n For instance, the term 2xy3 means two possibilities to put 1 ball in the
x-box and 3 balls in the y-box.

•
n∑

m=0

(
m
k

)
=
(
n+1
k+1
)

•
n∑
k=0

(
m+k
k

)
=
(
m+n+1

n

)
Lemma 0.6:(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
∀n ∈ C

Proof 0.21:
left hand side is a polynomial in n. call it p(n) with degree k. The right hand
side is q(n) with degree max{k − 1, k} = k.

We have two polynomials with the same degree ⇒ p(x) = q(x)∀x ∈ C because
p(n) = q(n)∀n ∈ N (which is left as an exercise).

Theorem 0.19: Vandermonde(
x+y
n

)
=

n∑
k=0

(
x
k

)(
y

n−k
)

Proof 0.22:
x, y ∈ N: let |X| = x, |Y | = y, X ∩ Y = ∅(
x+y
n

)
: #subsets of X ∪ Y of size n(

x
k

)(
y

n−k
)
: # subsets of x ∪ Y with |X| = k

Stirling Numbers
Every permutation of [n] is a product of cycles: start at 1, apply π, obtain π(1),
apply again, obtain π(π(1)), eventually we will reach πk(1) = 1 again, which
forms a cycle. Take any i ∈ [n] that is not contained in the cycle and repeat.
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Notations:

• Two-line notation:
(

1 2 · · · n
π(1) π(2) · · · π(n)

)
• Cycle Notation: (1, π(1), . . . , πk(1))(. . . )(. . . )

Example 0.9: (
1 2 3 4 5 6 7 8 9 10 11
3 1 8 9 2 4 7 5 6 11 10

)
is the same as

(10, 11)(1, 3, 8, 5, 2)(6, 4, 9)(7)

In this case, (7) is called a fixed point and (10, 11) is a transposition. If
a number is not written in the cycle notation, then it is a fixed point (by
convention).

Product:

(1, 3, 2) · (2, 3, 4) = (1, 3, 4)(2)

Definition 0.36: Stirling Numbers (First Kind)
sn,k is the number of permutations in Sn with k cycles. It’s called the Stirling
number of the first kind.

Example 0.10:
• sn,1 = (n− 1!)

• sn,n−1 =
(
n
2
)

• sn,n = 1

Theorem 0.20:
sn,k = sn−1,k−1 + (n− 1)sn−1,k

Proof 0.23:
• Case: 1 is a fixed point, then sn−1,k−1

• otherwise: sn−1,k has k cycles but element 1 is missing, put 1 before any
of {2, . . . , n}

Definition 0.37: Set Partition
A set partition of a finite set A is a set of disjoint, non-empty sets with union
A. The sets are called parts or blocks. (Block is more common.)
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Definition 0.38: Stirling Number (Second Kind)
Sn,k is the number of set partitions of [n] with k parts. This is called the
Stirling number of the second kind.

Example 0.11:
• S0,0 = 1

• Sn,0 = S0,n = 0 for n > 0

Theorem 0.21:
Sn,k = Sn−1,k−1 + k · Sn−1,k

Proof 0.24:
• Case: {n} is a singleton block. Then Sn−1,k−1

• otherwise: put n into one of the k blocks: k · Sn−1,k

Notation: the standard way to write set partitions is to sort each set and then
sort the sets by their minimal elements:

{5, 9, 3}{4, 2, 6}{7} → {2, 4, 6}{3, 5, 9}{7}

Theorem 0.22:

• (x)n := xn = x · (x− 1) · · · (x− n+ 1) =
n∑
k=0

(−1)n−k · sn,k · xk

• xn =
n∑
k=0

Sn,k · · ·xn

Remark 0.6:
Vn = {} is a vector space. {1, x, · · · , xn} is a basis of Vn and {1, x, x2, . . . , xn}

is also a basis. The change of basis matrices are (Sn,k)n,k and ((−1)n−ksn,k)n,k
TODO: finish

Proof 0.25:
Induction on n: x0 = 1 = s0,0 · x0

xn = xn−1 · (x−n+1) = (x−n+1)
∑

(−1)n−1+k ·sn−1,k ·xk =
∑

(−1)n−1+k ·
sn−1,k · xk+1 + (n− 1)

∑
(−1)n−1+k · sn−1,k · xk = TODO

Generating Functions
Power series: a sequence (an)n∈N, an ∈ C
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Consider
∑
n≥0

anz
n is the series with cofficients an.

Idea: Power series is useful for approximating functions.∑
anz

n may or may not converge for a given z ∈ C.

Definition 0.39: Formal Power Series (FPS)
A formal power series (FPS), written

∑
anz

n is the same information as the
sequence (an)n∈N

Operations on FPS, like addition, multiplication, differentiation, etc.
∞∑
n=0

anz
n powerset:= lim

N→∞

N∑
n=0

anz
n is a limit of a sequence of complex numbers:

a0, (a0 + a1z), . . .

Theorem 0.23:

lim
N→∞

N∑
n=0

anz
n exists, if |z| < 1

lim sup
n→∞

√
|an|

=: R TODO{it should be the nth

root}

If |z| > R, the series diverges.

(If |z| = R, an ad hoc analysis is necessary.)

Remark 0.7:
{z|series converges} is the domain of convergence, essentially a circle centered
at the origin

Example 0.12:
•
∑
n≥0

zn = 1
1−z . . . geometric series, R = 1

•
∑
n≥0

zn

n! = ez . . . exponential series, R =∞

•
∑
n≥0

(
α
n

)
zn = (1 + z)α, α ∈ C

Theorem 0.24: Identity Theorem for Power Series
f(z) =

∑
anz

n converges for |z| < R and R > 0

⇒ an = f(n)(0)

n!

Corollary 0.3:
If |z| < R:
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f(z) (2)

=
∑

anz
n (3)

=
∑

bnz
n (4)

⇒ an = bn∀n (5)

Operations on Formal Power Series

Let A(z) =
∑
anz

n, B(z) =
∑
bnz

n, however, z is not a complex number now.

Write (an)↔ A(z), (bn)↔ B(z)

((0, 1, 0, . . . )↔ z, (1, 0, 0, . . . )↔ 1, (0, 0, 0, . . . )↔ 0)

Definition 0.40: Operations on FPS
• (αan + βbn)n∈N ↔: αA(z) + βB(z)

• (
n∑
k=0

akbn−k)n∈N ↔: A(z) ·B(z)

• (anγn)n∈N ↔: A(γz)

• (an−1)n∈N≥1 ↔: zA(z)

• (nan)↔: zA′(z)

Note 0.2:
We will use the term generating function for formal power series. Therefore, a
generating function is not a function

Example 0.13:
• 1

1+z =
∑
n≥0

(−1)nzn is an equality of FPS

• z
(1−z)2 = z( 1

1−z )′ =
∑
nzn

• 1
(1−z)k =

∑
n≥0

(
n+k−1
k−1

)
zn

Remark 0.8:
if A(z) = B(z) as FPS and A(z) and B(z) converge as power series for |z| < R,
then A(z) = B(z) as power series

For instance,
∑
n≥0

n!zn is a FPS. It converges only at 0 as a power series

Why are FPS useful?
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Example 0.14: Towers of Hanoi
Discs of different sizes on three pegs. Goal: move discs to another peg, but no
disc is allowed to be under a larger disc, and we may only move one disc at a
time.

Recurrence for number of required moves an to move n discs to a different
peg.

First move smaller n− 1 discs to other peg, then move largest disc to third
peg, and then move the n− 1 discs on top of that.

an = 2an−1 + 1 and a0 = 0, but we want an explicit formula for an:

• an = 2an−1 + 1|zn

• anz
n = 2an−1z

n + zn|
∑

•
∑

anz
n︸ ︷︷ ︸

A(z)

= 2
∑

an−1z
n︸ ︷︷ ︸

zA(z)

+
∑

zn︸ ︷︷ ︸
1

1−z

• A(z)− a0 = 2zA(z) + 1
1−z − 1

• A(z)(1− 2z) = a0 + 1
1−z − 1 = z

1−z

• A(z) = z
(1−z)(1−2z) = −1

1−z + 1
1−2z

• A(z) = −
∑
zn +

∑
2nzn =

∑
(2n − 1)zn

• ⇒ an = 2n − 1

Example 0.15: Solving Recurrences with Generating Functions
F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

• F (z) :=
∑
Fnz

n

•
∑
Fn+2z

n+2 =
∑
Fn+1z

n+2 + Fnz
n+2

• F (z)− F0 − F1z = z(F (z)− F0) + z2F (z)

• F (z)(1− z − z2) = F0 + z(F1 − F0)

In general an+k + q1an+k−1 + · · · qkan = 0 for n ≥ 0, a0, . . . , ak−1 are given as
initial conditions
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A(z) =
∑
n≥0

anz
z

∑
n≥0

an+kz
n+k + q1

∑
an+k−1z

n+k + · · ·+ qk
∑

anz
n+k = 0

A(z)− a0 − a1z − · · · − ak−1z
k−1 + q1z(A(z)−

k−2∑
i=0

aiz
i) + · · · qkzkA(z) = 0

A(z) (1 + q1z + · · · qkzk)︸ ︷︷ ︸
q(z)

= p(z)

with p(z) a polynomial of degree at most k − 1. Essentially, p(z) contains the
initial conditions while q(z) describes the recurrence.

Then, A(z) = p(z)
q(z) , which is a reational function! (very nice)

Partial fraction decomposition:

1. find roots of q(z) =
r∏
i=1

(z − zi)λi ,
∑
λi = l

2. Ansatz: p(z)q(z) =
r∑
i=1

λi∑
j=1

Ãij

(z−zi)j

3. expand to generating function:
r∑
i=1

λi∑
j=1

Aij

(1−z/zi)j

4.
∑
n≥0

(A11 +
(
n+ 1

1

)
A12 + · · ·+

(
n+ λ1 − 1

λ1

)
A1λ1)︸ ︷︷ ︸

p1(n)

( zz1
)n + · · ·+

∑
. . .

5. =
∑

(p1(n)( 1
z1

)n + · · ·+ pr(n)( 1
zr

)n)︸ ︷︷ ︸
=an

zn

Definition 0.41: Characteristic Polynomial
χ(z) := zk+q1z

k−1 + · · ·+qk is the characterisitc polynomial of the recurrence
relation.

(χ(z) = q(z)|zkn→zn−k)

χ(z) =
r∏
i=1

(z − 1
zi

)λi

Example 0.16: Characteristic Polynomial of Fibonacci Sequence
an = 1√

5 TODO{finish formula}
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Unlabelled Enumeration

Definition 0.42: Binary Trees
A binary tree is a rooted tree where each node has no successors or 2 successors.

Definition 0.43: Set of all Binary Trees
B is the set of all binary trees

B = {·} ∪ {} TODO{finish depiction}

B(z) =
∑
n≥0

bnz
n where bn is the number of binary trees with n internal nodes,

b0 = 1, b1 = 1, b2 = 2

• B(z) = 1 + zB2(z)

• B = 1−
√

1−4z
2z = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + . . .

Dictionary for unlabelled structures

Definition 0.44:
A(z) =

∑
n≥0

#elements of size n · zn

• (A ∪ B)(z) = A(z) +B(z)

• (A×B)(z) = A(z) · · ·B(z), (size of (a, b) is the size of a plus size of b)

• (sequencesofobjectsinA)(z) = 1 +A(z) +A2(z) + · · · = 1
1−A(z)

Example 0.17: Sequences of Ones and Twos
Ones have size 1, twos have size 2.

• ∅

• 1

• 1 + 1, 2

• 1 + 1 + 1, 1 + 2, 2 + 1

• 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2

• . . .

1 + (z + z2)2 + (z + z2)3 + (z + z2)4 + · · · = 1
1−(z+z2)

Example 0.18:
We have red, blue and yellow balls. 2 or 3 red ones︸ ︷︷ ︸

r2+r3

, at least one blue︸ ︷︷ ︸
b+b2+b3+···= b

1−b

and

at most one yellow︸ ︷︷ ︸
1+y

. We have n ball. How many possibilities are there?
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⇒ A(z) = ((rz)2 + (rz)3) bz
1−bz (1 + yz)

We want to find [zn]A(z) = generating function in r, b, y

Example 0.19: Combinations without Repetitions
Balls a1, a2, . . . , aN Select balls, but no ball twice, generating function:

(1 + a1)(1 + a2) · · · (1 + aN ), ai := z: (1 + z)N =
∑
n
≥ 0
(
N
n

)
zn

If we allow repetition: (
∑
an1 )(

∑
an2 ) · · · (

∑
anN )→ ( 1

1−z )N =
∑(

n+N−1
n

)
zn

Labelled Enumeration
For the unlabelled case, we had A(z) =

∑
anz

n, where an was the number of
objects of size n.

For the labelled case, it is a bit more complicated: Â(z) =
∑
an

zn

n! . This is called
the exponential generating function.

Example 0.20: Permutations
A(z) =

∑
n!zn

Â(z) =
∑
n! · zn/n! = 1

1−z

Example 0.21: Cyclic Permutations
Â(z) =

∑
n≥1

(n− 1)! · zn/n! = ln( 1
1−z )

Dictionary for labelled enumeration

• (Â ∪B)(z) = Â(z) + B̂(z)

• (Â×B)(z) = Â(z) · B̂(z)

• setofobjectsinÂ(z) = eÂ(z)

• cyclesofobjectsinÂ(z) = log( 1
1−Â(z) )

• ÂB

Definition 0.45: Product of Labelled Set (Pairs of Labelled Objects)
Let A,B be sets of labelled objects that are closed under relabelling. Let
A[1, . . . , n] be the set of objects with labels 1, . . . , n.

Then, A×B[1, . . . , n] is the set of pairs (a, b) with a ∈ A, b ∈ B such that the
total set of labels is 1, . . . , n.

Formally, A× B[1, . . . , n] =
⋃

TODO

A[U ]× [V ].
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Example 0.22:
A[1, 2, 3] = {1, 2, 3} is not closed under relabelling. A[1, 2, 3] produces all
objects with labels {1, 2, 3}

Example 0.23:
A[1, 2] = {12, 21}

B[1, 2] = {12, 21}

A×B[1, 2, 3, 4] = {(13, 42), (12, 34), (13, 24), (31, 42), (21, 34), (12, 43), . . . }

(There will be 24 pairs.)

[zn] ̂(A×B)(z) =
n∑
k=0

(
n

k

)
akbn−k

̂(A×B)(z) =
∑
n

n∑
k=0

(
n

k

)
akbn−k · zn/n!

=
∑
n

n∑
k=0

n!
k!(n− k!)

1
n!akbn−kz

kzn−k

=
∑
n

n∑
k=0

akz
k

k!
bn−kz

n−k

(n− k︸ ︷︷ ︸
l

)!

=
∑
k≥0

∑
l≥0

akz
k

k!
bn−kz

n−k

l!

= Â(z) · B̂(z)

Definition 0.46:
Let A be a set closed under relablling. Then, set(A)[1, . . . , n] is the set of
objects {a1, . . . , al} such that the total set of labels is {1, . . . , n}

Example 0.24:
Sets of cycles with lables {1, 2, 3, 4}

Cycles of {1}

TODO

Sets of cycles are permutations!

ŝets(z) = ez, ĉycles(z) = ln( 1
1−z )

̂set(cycles)(z) = eln( 1
1−z ) = 1

1−z = ̂permutations(z)
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B := setsofnon− emptysets

B̂(z) = ee
z−1

B̂(z)istheexponentialgeneratingfunctionforsetpartitions.

Partially Ordered Sets

Definition 0.47: Partial Order
A partial order (P,<) is a set P together with a relation <, such that

• a < b⇒ ¬b < a (anti-symmetry)

• a < b, b < c⇒ a < c (transitivity)

Notation:

• a ≤ b means a < b ∨ a = b.

• al b means a < b and 6 ∃c : a < c ∧ c < b, ”a is covered by b”

Remark 0.9:
Notation: In Hasse diagrams, the arcs are drawn from bottom to top.

Example 0.25:
(N, |)

TODO

Remark 0.10:
1|6 but not al 6

Definition 0.48: Total Order
A linear (or total) order is a poset with a ≤ b or b ≤ a for all a, b

Example 0.26:
(2A,⊆)

TODO

Definition 0.49: Minimal/Maximal Elements
A minimal element of a poset (P,≤) is an element a ∈ P such that ∀b ∈ P :
a ≤ b. Analogously for maximal elements.

(Minimal/maximal elements are not necessarily unique.)
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Definition 0.50: Interval
An interval is a subset [x, y] := {z|x ≤ z ≤ y} of P

(P,≤) is locally finite if |[x, y]| ≤ ∞∀x, y ∈ P

Definition 0.51: Boundedness
P is bounded if

• ∃M ⊆ P : ∀x ∈ P∃y ∈M : x ≤ y and

• ∃M ⊆ P : ∀x ∈ P∃y ∈M : y ≤ x

(P,≤) a poset, f : P → R, Sf (x) :=
∑
z≤x

f(z).

Given Sf , can we recover f?: Yes!

Definition 0.52: Möbius Function
(P,≤) a poset, locally finite, with a minimal element 0

µ : P × P → R is the Möbius function of P if it satisfies

∀x, y :
∑

z∈[x,y]

µ(z, y) = δx,y =
{

0 x 6= y
1 x = y

Remark 0.11:
This Relation determines µ uniquely.

Remark 0.12:
For x 6≤ y : µ(x, y) := 0

Example 0.27:
• [x, x] = {x} ⇒ µ(x, x) = 1

• [x, y] = {x, y} ⇒ µ(x, y) + µ(y, y) = 0⇒ µ(x, y) = −1

Example 0.28:
(N,≤):

• µ(n, n) = 1

• µ(n, n+ 1) = −1

• µ(n,m) = 0∀m ≥ n+ 2 ∨m < n

Example 0.29:
TODO{finish example}
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Definition 0.53: Product of Posets
(P1,≤), (P2,≤) Posets. Then (P1,≤)× (P2,≤) := (P1 × P2,≤):

Has (x1, xy) ≤ (y1, y2)⇔ (x1 ≤ y1) ∧ (x2 ≤ y2)

Theorem 0.25:
If both P1 and P2 have a unique minimal element, then P1 × P2 has a unique
minimal element and µP1×P2(~x, ~y) = µP1(x1, y1) ·µP2(x2, y2) with ~x = (x1, x2)
and ~y = (y1, y2)

Proof 0.26:
Left as an exercise to the reader

Example 0.30:
A = {a1, . . . , an}, (2A,⊆) ∼= ({0, 1},≤)n

e.g. n = 5, X = {a2, a5} ∼= 01001, Y = {a1, a3, a3, a5} ∼= 11101 ⇒ X ≤ Y

µ(X,Y ) = µ(0, 1)µ(1, 1)µ(0, 1)µ(0, 0)µ(1, 1) = (−1) · 1 · (−1) · 1 · 1 = 1

Note: The relation is a component wise comparison. It is not the lexicographical
order.

In general, X ⊆ Y : µ(X,Y ) = (−1)different places = (−1)|Y \X| = (−1)|Y |−|X|

Theorem 0.26: Möbius Inversion
(P,≤) locally finite with a unique minimal element 0

f : P → R, Sf (x) =
∑

z∈[0,x]
f(z) ⇒ f(x) =

∑
z∈[0,x]

Sf (z)µ(z, x)

Proof 0.27: ∑
z∈[0,x]

Sf (z)µ(z, x) =
∑

0≤z≤x

∑
0≤y≤z

f(y)µ(z, x)

=
∑

0≤y≤z

∑
y≤z≤x

f(y)µ(z, x)

= TODO

=
∑

y∈[0,x]

f(y)δy,x

= f(x)

Example 0.31:
(N,≤)
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µ(m,n) =

 1 m = n
−1 m+ 1 = n
0 otherwise

f : N0 → R

TODO

Example 0.32: Inclusion Exclusion
A1, . . . , Am ⊆M

consider (2{1,...,m},⊇) (the poset of indices)

I ⊆ {1, . . . ,m}

f(I) := |
⋂
i∈I Ai ∩

⋂
j∈{1,...,m}\I Aj |

f(I) is the number of elements precisely in all Ai, i ∈ I

Sf (I) =
∑
J⊇I

f(J) = |
⋂
i∈I Ai|

Sf (I) is the number of elements in Ai, i ∈ I (but not precisely in Ai)

Möbius inversion: f(I) =
∑
J⊇I

Sf (J)µ(J, I) =
∑
J⊇I

(−1)|I|+|J||
⋂
j∈J Aj |

In particular, f(∅) = |
⋂
j∈{i,...,m}Aj | =

∑
J⊆{1,...,m}

(−1)|J||
⋂

j∈J
Aj |

This is the principle of inclusion/exclusion

Example 0.33:
“classical” number theoretic Möbius functions

(N,|)

m = pe1
1 · · · per

r \ n = pf1
1 · · · pfr

r with ei, fi ∈ N0

m|n⇔ ei ≤ fi∀i

(N,|) ∼= (N0,≤)× (N0,≤)× . . .

µ(n) := µ(N,|)(1, n) = µ(0, e1) · µ(0, e2) · · ·µ(0, er) · µ(0, 0)︸ ︷︷ ︸
1

· · ·

µ(0, k) =

 1 k = 0
−1 k = 1
0 k > 1

 =

 1 ...
(−1)r ...
0 otherwise

TODO{finish formula}

Conclusion: f : N+ → R TODO{finish example}
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Lattices

Definition 0.54:
(P,≤) poset, x, a, b ∈ P , then if a ≤ x ≤ b, then a is called a lower bound and
b an upper bound for x.

Let x ∨ y (say “x join y”) be the smallest common upper bound of x and y
(if it exists).

Let x ∧ y (say “x meet y”) be the largest common lower bound of x and y (if
it exists).

(If x, y have no common upper/lower bound or more than one, they cannot
be joined/met.)

Notation: TODO{insert big vee}

Basic properties:

• x ∨ y = y ∨ x

• x ∨ x = x

• (x ∨ y) ∨ z = x ∨ (y ∨ z)

• a ∨ (a ∧ b) = a = a ∧ (a ∨ b)

Definition 0.55: Lattices
L is a lattice if ∀x, y ∈ L : ∃x ∨ y and x ∧ y .

J is a join-semi-lattice if ∀x, y ∈ J : ∃x ∨ y .\ J is a meet-semi-lattice if
∀x, y ∈ J : ∃x ∧ y .

L is a complete lattice if ∀X ∈ L : ∃Vx∈Xx and & x∈Xx TODO{fix
notation}

Example 0.34:
(2M ,⊆) is a lattice: A,B ⊆M ⇒ A ∨B := A ∪B and A ∧B := A ∩B.

Lemma 0.7:
L lattice, x, y, s, t ∈ L

• x ≤ s and y ≤ s ⇒ x ∨ y ≤ s

• x ≥ t and y ≥ t ⇒ x ∧ y ≥ t

• x ≤ y ⇔ x ∨ y = y ⇔ x ∧ y = x

Lemma 0.8:
L a finite meet-semi-lattice with a ‘’1” element (a top element which is larger
than all others)

⇒ L is a lattice
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Proof 0.28:
x, y ∈ L, B = {u ∈ L|x ≤ u and y ≤ u}

B 6= ∅ because 1 ∈ B

|B| <∞ (because L is finite) ⇒ B = {u1, . . . , um}

u := u1 ∧ . . . ∧ um ∈ B

⇒ u =: x ∨ y

Example 0.35:
Πn = {π a set partition of [n]}

Πn, refinement is a lattice. (Refinement means take a block and split it into
two.)

“1” is the set partition with one block.

“0” is the set with all singletons.

α, β ∈ Πn : α ∧ β = set partition where i, j are in the same block ⇔ i, j are
in the same block in α and in β

Theorem 0.27:
L lattice with “0” and “1” elements, b ∈ L, b 6= 1

⇒ µ(0, 1) = −
∑

x:x∧b=0,x 6=0
µ(x, 1)

Proof 0.29:
⇔

∑
x:x∧b=0

µ(x, 1) = 0 (because 0 ∧ b = 0)

N(y) :=
∑

x:x∧b=y
µ(x, 1)∀y ≤ b

SN (b) :=
∑
y:y≤b

N(y) =
∑
y≤b

∑
x∧b=y

µ(x, 1) =
∑
x∈L

µ(x, 1) =
∑

x∈[0,1]
µ(x, 1) = 0

Möbius inversion ⇒ N(b) =
∑
y≤b

S(y)︸︷︷︸
0

µ(y, b) = 0

And therefore, in particular, N(0) = 0.

Corollary 0.4:
µΠn(0, 1) = (−1)n−1(n− 1)!

Proof 0.30:
choose b = {{1 . . . n− 1}{n}}

then use induction
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Number Theory

Definition 0.56: Divisibility
a, b ∈ Z then a|b⇔ ∃c ∈ Z : a · c = b

More generally, this applys to any ring, e.g. Z[X] or Zm)

Definition 0.57: GCD
a, b ∈ Z, d = gcd(a, b)⇔ d|a and d|b and it is the greates TODO{notation}

b > 0⇒ ∃q, r ∈ Z : a = bq + r and 0 ≤ r < b

Euclidean Algorithm:

TODO{insert algorithm}

Theorem 0.28:
d = gcd(a, b)⇒ ∃e, f ∈ N : d = ae+ bf

Proof 0.31:
Euclidean Algorithm backwards

Remark 0.13:
d = ae+ bf ⇒ gcd(a, b)|d

Definition 0.58: Integral Domain
R is an integral domain if it has no zero-divisors:

a · b = 0⇒ a = 0 or b = 0

Example 0.36:
Z6 = {0, 1, 2, 3, 4, 5}

2 · 3 = 0, therefore, 2 and 3 are zero-divisors

Example 0.37:
• Zp for p prime

• Z[X]

Definition 0.59: Euclidean Ring
R is a Euclidean ring if R is an integral domain and there exists a “Euclidean
function” n : R → N0 such that ∀a, b,∈ R, b 6= 0∃q, r ∈ R : a = bq + r
TODO{finish definition}

35



Example 0.38:
• Z: n(a) := |a|

• k a field, k[X]: n(a) := deg(a) (Warning: Z[X] is not euclidean)

Remark 0.14:
If x is invertible (x is a unit, i.e. ∃x̄ : x · x̄ = 1) then gcd(a, b) = gcd(a, x · b)

Remark 0.15:
R∗ := {x|x a unit}

Example 0.39:
gcd(xˆ4 + 3xˆ3 - 3xˆ2 - 7x + 6, xˆ3 + xˆ2 - x + 15) = x+3

because

x4 + 3x3 − 3x2 − 7x+ 6 = (x3 + x2 − x+ 15) · x+ 2x3 − 2x2 − 22x+ 6︸ ︷︷ ︸
deg(·)=3<4

x3 + x2 − x+ 15 = (2x3 − 2x2 − 2xx+ 6) · 1
2 + 2x2 . . .

...

Definition 0.60: Prime Numbers
p ∈ N>1 is a prime number if m|p⇒ m ∈ {±1,±p}

P is the set of primes.

Remark 0.16:
In arbitrary integral domains, such a p is called irreducible. In Euclidean
domains, prime and irreducible is the same.

Remark 0.17:
properly:

p ∈ R is irreducible if ∀m : m|p⇒ m ∈ {±1,±p}.

p ∈ R is prime if ∀a, b : p|ab⇒ p|a ∨ p|b.

If R is a euclidean domain (e.g. Z), then prime and irreducible are equivalend

Theorem 0.29:
p ∈ P, p|a · b⇒ p|a ∨ p|b

(In Euclidean domains, this is the denition of primes.)
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Proof 0.32:
two cases:

• p|a

• p 6 |a ⇒ gcd(p, a) = 1 and therefore ∃e, f : pe + af = 1. b = b · 1 =
b · (pe+ af) = bpe+ abf . We see that p|bpe and p|abf . Therefore, p|b

Remark 0.18:
Consider Z[

√
−5], then 3 is irreducible, i.e. m|3⇒ m ∈ {±1,±3}, but 3|9 =

(2 +
√
−5)(2−

√
−5) but neither is divisble by 3.

Theorem 0.30: Prime Factorization
n ∈ N≥1 ⇒ n = p1 · · · pr for pi ∈ P

Proof 0.33:
Induction: Base case: n ∈ P⇒ n = p

Otherwise: ∃n1, n2 < n : n = n1n2 ⇒ n1 = p1 · · · pk, n2 = pk+1 . . . pr

Theorem 0.31:
The factorization into primes is unique (except for the ordering), i.e.:

n =
∏
p∈R

pνp(n)

where νp(n) is the multiplicity of p in n

Remark 0.19:
We can use the prime factorization to find the gcd and the lcm:

• gcd(a, b) =
∏
p∈P

pmin(νp(a),νp(b))

• lcm(a, b) =
∏
p∈P

pmax(νp(a),νp(b))

Theorem 0.32:
There are infinitely many primes.

Proof 0.34:
Let a, b, c, . . . , k be (finitely many) prime numbers. Take the product P =
abc · · · k and add 1. Either P + 1 is prime or not. If it is prime, then it is larger
than a, b, c, . . . , k. Otherwise, there exists a prime p which divides P + 1. p is
different from a, b, c, . . . , k because it would divide P and P + 1 so it would
divide P − P + 1 = 1, which is impossible.
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Congruence Relations and Residue Classes

Definition 0.61:
m ∈ Z≥1, we call it “modulus”; ā := a+m · Z := {a+m · z|z ∈ Z}

Remark 0.20:
a ∈ ā, ā = b̄⇔ m|a− b

Notation:

a ≡ b mod m
a = b (m)

Definition 0.62:
Zm = {ā = a+mZ|a ∈ Z} = {0̄, 1̄, . . . ,m− 1}

Example 0.40:
Z2 = {0̄, 1̄}

0̄ are the even numbers, 1̄ are the odd ones.

Definition 0.63:
(Zm,+, ·) with ā+ b̄ := a+ b and ā · b̄ := a · b, then (Zm,+, ·) is a commutative
ring.

Remark 0.21:
Notation: x̄ · ā = 1, then x̄−1 := ā

Example 0.41:
m = 5, 2̄−1 = 6̄

Theorem 0.33:
∃ā−1 ∈ Zm ⇔ gcd(a,m) = 1 (i.e. a and m are coprime)

Proof 0.35:
TODO

Definition 0.64:
Z∗m = {ā ∈ Zm|gcd(a,m) = 1}
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Example 0.42:
• Z∗5 = {1, 2, 3, 4}

• Z∗6 = {1, 5}

Example 0.43:
n ∈ N

9|n⇔ 9|sum of digits of n

Proof: TODO

Chinese Remainder Theorem

Theorem 0.34:
m = m1 ·m2, gcd(m1,m2) = 1 (coprime)

Then, x ≡ y mod m⇔ x ≡ y mod m1 ∧ x ≡ y mod m2

Proof 0.36:
TODO

Corollary 0.5:

m =
r∏
i=1

mi with mi pairwise coprime

then, x ≡ y mod m⇔ ∀i : x ≡ y mod mi

Theorem 0.35: Chinese Remainder Theorem

x ≡ a1 mod m1

...
x ≡ ar mod mr

where all mi are pairwise coprime.

This system of congruences has a unique solution mod m =
r∏
i=1

mi

The solution is given by

x :=
r∑
j=1

m

mj
bjaj

with bj := ( mmj
)−1 mod mj
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Example 0.44:

3x ≡ 2 mod 5
2x ≡ 7 mod 11

⇓

x ≡ 4 mod 5
x ≡ 9 mod 11

⇓

b1 = 11−1 = 1 mod 5
b2 = 5−1 = 9 mod 11

⇓

x = 11 · 1 · 4 + 5 · 9 · 9 = 9 mod 55

(which is the unique solution mod 55)

Proof 0.37:

1. x is a solution:
since gcd(mi,mj) = 1 for i 6= j it follows that gcd( mmj

,mj) = 1⇒ ∃bj

m
mj
≡ 0 mod mi∀i 6= j ⇒

r∑
j=1

m
mj
bjaj ≡ m

mi
biai ≡ ai mod mi

2. x is unique mod m:
suppose x ≡ ai mod mi and y ≡ ai mod mi for all i

⇒ x ≡ y mod mi ⇒ x ≡ y mod m

Example 0.45: finding inverses
m = 17, find 13−1, ie, solve 13x ≡ 1 mod 17

gcd(13, 17) = 1, which is the condition for the existence of an inverse

⇒ ∃e, f : 13e+ 17f = 1

⇒ 13e = 1 mod 17

e and f can be found with the extended Euclidean algorithm. In this case, it
gives us e = 4, f = −3
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Remark 0.22: Reduction of congruence relations
3b ≡ 3c mod 5⇒ b ≡ c mod 5 because 3 has an inverse mod 5.

But: In 3b ≡ 3c mod 6, 3 has no inverse

• ⇒ 3b = 3c+ 6k
• ⇒ b = c+ 2k
• ⇒ b ≡ c mod 2

In general: ab ≡ ac mod am⇒ b ≡ c mod m

Euler-Fermat and Rivest-Shamir-Adleman

Definition 0.65:
< Z∗m, · > is a group

|Zm| = m
|Z∗m| =: φ(m) is the (Euler) totient, i.e. the number elements coprime m

Example 0.46:
• φ(5) = 4
• φ(6) = 2
• φ(7) = 6

Theorem 0.36:
For p ∈ P: φ(p) = p− 1

•

φ(pe) = |{0, . . . , pe − 1}| − |{0, p, 2, p, . . . , (pe−1 − 1)p}|
= pe − pe−1

= pe(1−1/p)

• φ(pe1
1 · p

e2
2︸ ︷︷ ︸

m

) = m · (1− 1/p1) · (1− 1/p2) TODOproof

• m = pe1
1 · · · per

r ⇒ φ(m) = m · (1− 1/p1) · · · (1− 1/pr)

Example 0.47:
φ(6) = φ(2 · 3) = 6(1− 1/2)(1− 1/3) = 2

Theorem 0.37: Euler-Fermat
gcd(a,m) = 1⇒ aφ(m) = 1 mod m

Special Case: p ∈ P, p 6 |a⇒ ap−1 = 1 mod p
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Proof 0.38:
Z∗m){ā1, . . . , āk}, k = φ(m)

gcd(a,m)⇒ a is invertible in Zm ⇒ ā ∈ Z∗m
⇒ Z∗m = {āā1, . . . , āāk} is a permutation of the original residue classes

⇒ TODO{finish}

Theorem 0.38:
p, q ∈ P different odd primes, m = pq, v = lcm(p− 1, q − 1)

⇒ ∀a, k ∈ Z : akv+1 ≡ a mod m

Proof 0.39:
pq|akv+1 − a iff. p|akv+1 − a and q|akv+1 − a

p|akv+1 − a because : case 1: p|a or case2: ap−1 ≡ 1 mod p ⇒ akv ≡ 1
mod p⇒ akv+1 ≡ a mod p

(same for q)

Definition 0.66: RSA Algorithm
m = p · q, gcd(e, v) = 1 with v = lcm(p− 1, q − 1)⇒ ∃d : d · e ≡ 1 mod v

message: a1, a2, . . . with 0 ≤ ai < m

E(aj) = (aej mod m) =: bj \ D(bj) = (bdj mod m)

Note that (aej)d = akv+1
j ≡ aj mod m

(m, e) is called the “public key”

“E-Signature”: several pairs (ej , dj) and ej ’s are public

User i sends y := Ej(Di(x)) = xdiej mod m to user j

User j checks: Dj(y) = DjEjDi(x) = Di(x) and Ei(Di(x)) = x

Problem: E(x) may have (many) fixed points in Zm

Primitive Roots

Definition 0.67:
G is a group: |G| is the oder of G.

minimal k such that xk = 1 is the order ordG(x) of x in G.

Proposition: ordG(x)| |G|
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Definition 0.68: Cyclic Group
A group generated by a single element, G =< x >= {x0, x1, x2, x3, . . . } is
called cyclic.

Remark 0.23:
Groups may be written multiplicatively or additively, depending on convention.
Abelian groups are often (but not always) written additively.

Definition 0.69: Primitive Roots
ā ∈ Z∗m such that Z∗m =< ā >, then ā is called a primitive root mod m.

Example 0.48:
• Z∗2 =< 1̄ >
• Z∗3 =< 2̄ >
• Z∗5 =< 2̄ >
• Z∗8 = {1̄, 3̄, 5̄, 7̄} has no generator

Proposition: ā is a primitive root mod m, then Z∗m = {a, a2, . . . , aφ(m)} and
aφ(m) ≡ 1.

Theorem 0.39:
Z∗m is cyclic iff m ∈ {2, 4, pe, 2pe} with p ∈ P\{2} and e ∈ N≥1

Lemma 0.9:
• g is a primitive root mod p ⇒ g or g + p is a primitive root mod pe
• g is a primitive root mod pe ⇒ g or g + p is a primitive root mod 2pe

Proof 0.40:
(using the following lemma)

φ(p2) = p(p− 1), assum that p− 1 = kl with k, l < p− 1 and ordZ∗
p2

(g) = pl

Lemma 0.10:
gp−1 ≡ 1 mod p2 or (g + p)p−1 6≡ 1 mod p2 for g a primitive root mod p

TODO

Proof 0.41:
(g + p)p−1 ≡ gp−1 + pgp−2 mod p2 (by the binomial theorem)

TODO
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Example 0.49:
14 is a primitive root mod 29 but not 292.

Definition 0.70: Carmichael Function
λ(m) = maxa∈Z∗m ord(Z∗m,·)(a) is the Carmichael function

Remark 0.24:
• λ(m)|φ(m)
• λ(m1 · · ·mk) = lcm(λ(m1), . . . , λ(mk))
• For p ∈ P:
λ(pr) =

{ 1
2φ(pr) if p = 2 ∧ r ≤ 3
φ(pr) otherwise

TODO{include lecture 17}

Polynomials over Finite Fields

Definition 0.71: Rings
(R,+, ·) is a ring if (R,+) is an abelian group with neutral element 0 and
multiplication satisfies

• (a+ b)c = ac+ bc
• c(a+ b) = ca+ cb
• a(b · c) = (a · b)c
• ∃1 ∈ R : ∀a ∈ R : a · 1 = 1 · a = a

Remark 0.25:
1. A ring is not a field because in a ring, multiplication does not necessarily

have inverse elements.
2. Recall that (R∗, ·) is the group of units where R∗ is the set of elements

with multiplicative inverse.
3. R is an integral domain if ab = 0⇒ a = 0 ∨ b = 0 and multiplication is

commutative.

Definition 0.72: Euclidean Ring
R is a euclidean ring if there is a map n : R\{0} → N0 such that ∀a, b ∈
R∃q, r ∈ R, q 6= 0 : a = bq + r with n(r) < n(b) or r = 0, and ∀a, b ∈ R\{0} :
n(a) ≤ n(ab)

The reason we are interested in integral domains is that there, we have a theory
of divisibility.

• t|a :⇔ ∃c : a = t · c
• d = gcd(a, b, ) :⇔ d|a ∧ d|b ∧ (t|a ∧ t|b⇒ t|d)
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Definition 0.73: Associated Elements
a, b ∈ R are called associated (write a ∼ b) iff ∃r ∈ R∗ : a = rb

Lemma 0.11:
1. R euclidean ring, a, b ∈ R, b 6= 0, a|b⇒ n(a) ≤ n(b).
2. If a, b 6∈ R∗ ∪ {0} ⇒ n(a) < n(ab)

Proof 0.42:
1. a|b⇒ ∃c : b = ac, n(a) ≤ n(ac) = n(b)
2. x = ab, . . . Professor didn’t manage to prove this

Corollary 0.6:
If d and d′ are gcd’s of a and b, then n(d) = n(d′)

Definition 0.74: Irreducibility and Primality
R integral domain, a ∈ R\(R∗ ∪ {0}), then

• a is called irreducible iff a = bc⇒ b ∈ R∗ ∨ c ∈ R∗
• a is called prime iff a|bc⇒ a|b ∨ a|c

Example 0.50:
R = Z, then x ∈ R irreducible ⇔ x ∈ P or

TODO

Theorem 0.40:
• prime ⇒ irreducibe
• R euclidean, then irreducible ⇔ prime

Proof 0.43:
• a prime, a = bc, if a|b then c TODO
• TODO

Example 0.51:
R = Z[i

√
(5)] = {a+ bi

√
5|a, b ∈ Z}

6 = 2 · 3 = (1 + i
√

5)(1− i
√

5)

2|6 but 2|1 + i
√

5 because
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1 + i
√

5 = 2c
= 2(a+ bi

√
5)

= 2a+ 2bi
√

5
1 = 2a⇒ a 6∈ Z

Similarilly, 2 6 |1− i
√

5. Therefore, 2 is not prime.

But 2 is irreducible:

2 = (a+ bi
√

5)(c+ di
√

5)

TODO

Example 0.52:
K a field ⇒ K[x] is a euclidean ring (with euclidean function n(·) = deg(·))

⇒ primes are irreducible polynomials

That is, a(x) = b(x) · c(x)⇒ deg(b(x)) = 0 or deg(c(x)) = 0

In C[x], these are the linear polynomials ax+ b with a 6= 0.

Definition 0.75: Unique-Factorization Domain
R integral domain. R is a unique fractorization domain (UFD) or factorial
ring if ∀a ∈ R\{R∗ ∪ {0}} there exists a unique factorization a = ε · p1 · · · pk
with ε ∈ R∗, pi prime

(unique: TODO)

Theorem 0.41:
R euclidean ⇒ R UFD

Proof 0.44:
Existence of a factorization:

• Case 1: a irreducible ⇒ a prime ⇒ a = 1 · a

• Case 2:a = bc, bc ∈ R∗ ⇒ n(b), n(c) < n(a). Suppose a has no fac-
torisation, n(a) minimal. Then b = ε · p1 · · · pk and c = η · q1 · · · ql
⇒ a = bc = ε · η · p1 · · · pk · q1 · · · q1

Uniqueness:

TODO
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Definition 0.76: Ideals
(R,+·) integral domain.

J ⊆ R is called an ideal of R iff

• (J,+) ≤ (R,+) (additive subgroup)
• ∀a ∈ R : a · J ⊆ J

Example 0.53:
mZ is an ideal of Z.

Definition 0.77:
J ideal of R

a ≡ b mod J iff a− b ∈ J (⇔ a+ J = b+ J).

Lemma 0.12:
J ideal of R
a ≡ b mod J
c ≡ d mod J

}
⇒
{
a+ c ≡ b+ d mod J
a · c ≡ b · d mod J

R/J = {a+ J |a ∈ R}
(a+ J) + (b+ J) := (a+ b) + J
(a+ J) · (b+ J) := a · b+ J
⇒ (R/J,+, ·) is a ring!

For instance, Zm = Z/mZ

The ideals J = {0} and J = R are trivial ideals.

Definition 0.78: Principal Ideals
m ∈ R.

(m) := mR = {m · a|a ∈ R} is an ideal of R. Ideals of this form are called
principal Ideals.

Remark 0.26:
K field (i.e. K∗ = K\{0})

⇒ {0} and K are the only ideals of K.

Proof 0.45:
TODO
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Definition 0.79: Ring Homomorphism
R,S integral domains.

ϕ : R→ S is called a ring homomorphism iff ∀a, b ∈ R :

• ϕ(a+ b) = ϕ(a) + ϕ(b)
• ϕ(a · b) = ϕ(a) · ϕ(b)

ker(ϕ) := {a|a ∈ R,ϕ(a) = 0}

Lemma 0.13:
ϕ : R→ S ring homomorphism.

⇒ ker(ϕ) is an ideal of R

Proof 0.46:
TODO

Lemma 0.14:
Ji, i ∈ I ideals of R.

⇒
⋂
i∈I Ji ideal of R

Definition 0.80: Ideal Generated by a Set
M ⊆ R (any subset)

The set that is generated by M is

(M) :=
⋂

(ideals that contain M)

(If M = {m}, then (M) = (m) = mR.)

R euclidean.
M = {m1, . . . ,mk}
⇒ (M) = (gcd(m1, . . . ,mk)) = gcd(m1, . . . ,mk) ·R principal ideal

Theorem 0.42:
R euclidean ring.

J ideal of R ⇒ ∃m ∈ R : J = (m) = mR

That is, all ideals are principal!

Proof 0.47:
TODO

R euclidean, J = (m) = mR
a ≡ b mod J ⇔ a ≡ b mod m⇔ m|a− b
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Example 0.54:
R = Z, J ideal of Z ⇒ J = mZ

R/J = Z/mZ

TODO{I think there is something missing or out of sequence}

TODO{Rewatch recording 4.2 and complete the following section}

Definition 0.81: Field
(K,+, ·) is a field iff

• (K,+, ·) is an integral domain
• and K∗ = K\{0} (all elements are invertible except 0)

Remark 0.27:
If p ∈ P, then Zp is a field.

Lemma 0.15:
(Ki)i∈I subfields of K,

Then,
⋂
i∈I

Ki is also a subfield of K.

Proof 0.48:
TODO

Definition 0.82: Prime Field of a Field
K field.

The prime field P (K) of K is the intersection of all subfields of K. (Therefore,
it is the smalles subfield of K.)

Definition 0.83: Characteristic of a Field
K field.

The characteristic char(K) of K is given by

char(K) :=
{
ord(K,+)(1) if ord(K,+)(1) <∞
0 otherwise

(That is, the characteristic tells us how often we can add 1 until we arrive at
0.)
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Lemma 0.16:
If ord(K,+)(1) <∞, then ord(K,+)(1) ∈ P

Proof 0.49:
char(K) = p <∞.

This means that 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0.

Now assume that p is not prime. Then we have that p = a · b = 0. But because
the integers are an inegral domain, either a or b already have to be 0, so p
cannot be the characteristic.

⇒ p ∈ P

Theorem 0.43:
• If char(K) = p <∞, then

– p ∈ P
– P (K) ∼= Zp

• If char(K) = 0 (i.e. ord(K,+)(1) =∞), then
– P (K) ∼= Q

Theorem 0.44:
K finite field.

∃p ∈ P, n ∈ N<0 : |K| = pn.

(The size of a finite field has to be a prime power.)

Proof 0.50:
TODO

Theorem 0.45:
• ∀p ∈ P, n ∈ N>0∃field K : |K| = pn

• K1,K2 finite fields. |K1| = |K2| ⇒ K1 ∼= K2

That is, up to isomorphism, there is only one unique field of finite size pn. It
is called the Galois-field GF (pn).

Remark 0.28:
• R[x]/(x2−1) is not an integral domain because (x−1)(x+1) = x2−1 = 0

(zero dividers).
• p(x) ≡ 0⇒ xn ≡ −an−1x

n−1 · · · − a0 ⇒ any polynomial in K[x]/(p(x))
has a representative of degree strictly less than n.
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Theorem 0.46:
K a field, p(x) ∈ K[x], then K[x]/p(x) is a field iff p(x) irreducible.

Remark 0.29:
• p(x) irreducible ⇒ p(x) has no zeros, because otherwise x− a|p(x)
• K is a subfield of K[x]/p(x)

Algebraic Extensions
Let p(x) be monic (leading coefficient 1) and irreducible of field K.

Define a new element a ∈ L by p(a) = 0.

Theorem 0.47:
Let L ⊇ K such that a is a zero of p(x) ∈ K[x], then exists a unique monic,
irreducible polynomial m ∈ K[x] with m(a) = 0, which is the minimal
polynomial.

Example 0.55:
C is defined as the field containing R and the roots of x2 + 1.

Proof 0.51:
p1(x), p2(x) monic irreducible p_1(a)=p_2(a)=0

d(x) := gcd(p1, p2) = A(x)p1(x) +B(x)p2(x)

⇒ d(a) = A(a)p1(a) +B(a)p2(a) = 0⇒ p1(x) = p2(x)

Remark 0.30:
m(x) has minimal degree among all polynomials with p(a) = 0.

$p\in K[x], p(a) = 0 \Rightarrow m(x)|p(x)$

Remark 0.31:
m(x) has minimal degree among all polynomials with p(a) = 0.

Proof 0.52:
p(x) = q(x)m(x) + r(x) with deg(r) < deg(m) or r = 0

⇒ 0 = p(a) = q(a)m(a) + r(a) = r(a)

Since m is minimal, we have r(x) = 0 and therefore m(x)|p(x).
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Let L := {
n−1∑
i=0

bia
i|bi ∈ K} is the smallest field containing K and a, because

an = −
∑n−1
k=0 cka

k, with deg(m) = n and m(x) =
n∑
k=0

ckx
k.

L ∼= K[x]/m(x)

Example 0.56:
K = R, m(x) = x2 + 1, a = i with i2 = −1.

K[x]/m(x) = R ∪ {ax+ b|a 6= 0}, eg. x3 = x · x2 = −x.

L = {a · i+ b|a, b ∈ R}

Definition 0.84: Algebraic Elements
a ∈ L is called algebraic over K iff

∃p(x) ∈ K[x]\{0} : p(a) = 0

Example 0.57:
• Q[x]/(x2 − 2) ∼= Q[

√
2] = {a+ b ·

√
2|a, b ∈ Q}

• a, b ∈ K, K[x]/(ax+ b) ∼= K

Definition 0.85: Algebraic Closure
A field with no algebraic extensions (i.e. any polynomial is a product of linear
factors) is algebraically closed.

Remark 0.32:
• For any field K, there is an algebraically closed field L ⊇ K.
• If |K| = p ∈ P (i.e., K ∼= Zp), then, ∀n ∈ N∃m(x) such that
|K[x]/m(x)| = pn.

Finite Fields

Theorem 0.48:
Field K finite. (K∗, ·) is a cyclic group of order pn − 1 = |K∗|.

∀a ∈ K : apn = a

Proof 0.53:
|K∗| = pn − 1, let a ∈ K∗ with ord(K∗,·)(a) =: r is maximal.

⇒ r|pn − 1 and ∀y ∈ K∗ : ord(K∗,·)(y)|r

⇒ ∀y ∈ K∗ : yr − 1 = 0 but the number of zeros of xr − 1 ≤ r

⇒ pn − 1 ≤ r → pn − 1 = r
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Since the maximal order of an element equals the order of the group, the
group is cyclic.

Definition 0.86: Primitive Element and Primitive Polynomial
K finite field.

• a ∈ K is called primitive element if it generates (K\{0}, ·).
• The minimal polynomial of a primitive element is called primitive poly-

nomial.

Definition 0.87: Generator
A generator of (K∗, ·) is a primitive element. Its minimal polynomial (in Zp[x]
is the primitive polynomial).

Theorem 0.49:
q(x) is a primitive polynomial of k = GF (pn) (Galois-field of size pn)

⇔ q(x)|xpn−1 − 1 and q(x) 6 |xk − 1 for 1 ≤ k < pn − 1 and q is irreducible (in
Zp[x]).

Proof 0.54:
TODO

Theorem 0.50:
q(x) has the following form:

q(x) = (x− a)(x− ap)(x− ap2) · · · (x− apn−1), that is it has n zeros

Lemma 0.17:
φ : GF (pn)→ GF (pn) (field-automorphism)
x 7→ xp (i.e. a homomorphism and bijective)

Proof 0.55:
homomorphism:

• (a+ b)p = ap + bp (no joke, see exercise)
• (ab)p = ap · bp

bijektive:

• ker(φ) is an ideal of GF (pn) but fields only have two (trivial) ideals:
the field itself and zero.

• but ker(φ) 6= GF (pn) because φ(1) = 1

Fact: All automophisms are powers of φ: {φ, φ2, . . . , φn = idK}
⇒ TODO
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Let q(x) be a primitive polynomial:
GF (pn) = Zp[x]/q(x)
b = φ(a) for an automorphism φ
⇒ q(b) = q(φ(a)) = φ(q(a)) = φ(0) = 0

Since φ(x) = x, φ(x) = xp, . . . , φ(x) = xp
2 are all automorphisms, we have that

φ0(a), φ1(a), . . . are zeros of q(x) and these are actually all zeros of q(x)

Corollary 0.7:
The number of primitive polynomials is 1

nφ(pn−1), because any two primitive
polynomials have no common root.

Linear Codes

Definition 0.88: Linear Codes, Generator Matrix, Codewords
K = GF (q), f : Kk → Kn linear (i.e. homomorphic) and injective

C = f(Kk) is an (n, k)-linear code

Let {c1, . . . , ck} be a basis of C, then

G =


c1

c2
...
ck

 ∈Mk×n

(with the ci’s as row vectors) is the generator matrix.

Codewords are elements of C, i.e. linear combinations of {c1, . . . , ck}.

Definition 0.89: Check Matrix
A generator matrix of C⊥ := {v ∈ Kn|v · u = 0∀u ∈ C} (orthogonal space to
C) is called check matrix.

Proposition: Let H be a check matrix, then G ·H> = 0k×(n−k)

Remark 0.33:
A code C is called systematic if G = (Ik||F ), i.e. if v = (v1, . . . , vk) is the
message then the encoding is vG = (v1, . . . , vk, wk + 1, . . . , wn). That is, the
code just appends stuff.

If C is systematic, then H = (−F>||In−k)

Definition 0.90: Syndromes
sH(c) = c ·H> is called the syndrome of c (with c ∈ Kn).

The syndrom is 0 iff c is a correct codeword (no error detected).
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Proposition: C an (n, k)-linear code, then u, v are in the same coset of a+ C ⇔
sH(u) = sH(v)

Polynomial Codes

Polynomial Codes are linear codes, but we take a different vector space

Kn−1[x] = {p(x) ∈ K[x]|deg(p(x) ≤ n− 1)}
(dim(Kn−1[x]) = n)

g(x) ∈ K[x], deg(g) = n− k (generator polynomial)

Encoding: f(p(x)) = p(x) · g(x) for p(x) ∈ Kk−1[x]
(f injective and linear)

C = f(Kk−1[x]) is a k-dimensional subspace of Kn−1[x]

To check a an encoded message, choose f(x) ∈ K[x] with deg(f) = n and h(x)
such that c(x) ∈ C ⇔ c(x) · h(x) = 0 mod f(x).

Proposition: f(x) = λg(x)h(x), λ ∈ K∗

Definition 0.91:
s(v(x)) := v(x) mod g(x) is the syndrome of v(x)

Proposition: v(x) is a code iff s(v(x)) = 0

Definition 0.92:
A code is cyclic if for any c0 + c1 · x+ · · ·+ cn−1 · xn−1 ∈ C also the cyclic
shift is in C. TODO

Theorem 0.51:
C is cyclic iff g(x)|xn − 1.

Linear (Feedback) Shift Registers (LFSRs)
start with sequence R0, . . . , Rk1

TODO{Create Graphic of LFSR (tikz)}

e.g. Rn ∈ GF (2)

Rk = a0R0 + a1R1 + · · ·+ ak−1Rk−1

Remark: We assume a0 6= 0. Otherwise, the LFSR behaves like a different LFSR
with the leading zero-multipliers cut off.

new sequence is R1, . . . , Rk

Example 0.58:
TODO

101→ 010→ 100→ 001→ 011→ 111→ 110→ 101
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Observations:

• If K = GF (2), there are 2n states. Therefore, the sequence of states is
periodic → this forms a cycle.

• The zero-state will always be a fixed point

The maximally possible period is 2k − 1 (for GF (2)). But when is the period
actually maximal?

The register sequence is the sequence (Rn)n≥0 and it satisfies the linear recurrence

Rn + k =
k−1∑
i=0

aiRn+1

The generating function R(x) :=
∑
n≥0

Rnx
n = g(x)

f(x) for two polynomials g, f ∈

GF (2)[x]. We know that f(x) = 1−ak−1x−ak−2x
2− . . .−a0x

k and deg(g) < k

Example 0.59:
(a0, a1, a2, a3) = (1, 1, 0, 1)

⇒ f(x) = 1 + x+ x3 + x4 (addition and subtraction is the same in GF (2))

TODO{finish example (tabular)}

Theorem 0.52:
Let (Rn)n≥0 be a register sequence with denominator polynomial f(x) irredu-
cible. Then, the period equals t ⇔ f(x)|1− xt

Proof 0.56:
• Rn+t = Rn∀n ≥ 0
R(x) = (R0 + . . .+Rt−1x

t−1)︸ ︷︷ ︸
σ(x)

· (1 + xt + x2t + · · · )︸ ︷︷ ︸
1

1−xt

R(x) = σ(x)
1−xt

TODO

• TODO

Remark 0.34:
In the example above, the polynomial is not irreducible. Therefore, the theorem
does not apply. This is also why the period depends on the initial state (which
does not reflect) in the theorem.

Recall the following theorem we had before:

Theorem 0.53:
q(x) is primitive polynomial iff q(x)|xpn−1 and q(x) 6 |xk − 1 for k < pn − 1
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Therefore:

Theorem 0.54:
Rn has period 2n − 1 iff R(x) = g(x)

f(x) with f(x) a primitive polynomial.

Repetition on Counting Structures with Genera-
ting Functions (Combinatorial Species)

Definition 0.93:
A combinatorial species F is an assignment

• of finite sets (of labels) U to finite sets (of strutures) F [U ]
• of bijections σ : U → V between sets of labels to bijections F [σ] :
F [U ]→ F [V ]

such that

• F [σ ◦ τ ] = F [σ] ◦ F [τ ]
• and F [idU ] = idF [U ]

Example 0.60:
Linear Orders L[{1, a,♥}] = {1a♥, 1♥a, a1♥, a♥1,♥1a,♥a1}

Relabelling: L
[

1, a,♥
1, 2, 3

]
(♥a1) = 321 ∈ L[{1, 2, 3}]

Permutations S[{1, a,♥}] = TODO

• S

[
1, 2, 3
2, 3, 1

]
(TODO) = TODO

• S

[
1, 2, 3
2, 3, 1

]
(TODO) = TODO

TODO

Definition 0.94: Atom or Singleton or X

X[U ] :
{
{U} . . . |U | = 1
∅ . . . otherwise

X[idU ] = idx[U ]

Definition 0.95: Empty Set or One or 1
1[U] = TODO
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Definition 0.96: Set Species ()
TODO

Definition 0.97:
two structures f1 ∈ F [U ] and f2 ∈ F [V ] are isomorphic iff there is a relabelling
σ : U → V such that F [σ](f1) = f2

Notation: F [n] := F [{1, . . . , n}], F̃ [n] is the set of isomorphism classes in F [n]

(f1 ∈ F [U1], f2 ∈ F [U2] are isomorphic if ∃σ : U1 → U2 : F [σ](f1) = f(2).)

Example 0.61:
S[{1, a,♥}] = TODO

S̃[3] = TODO

Remark: |S̃[n]| = number of integer partitions

L̃ = {TODO}

Definition 0.98:
The exponential generating function of a species F is F (x) =

∑
n≥0
|F [n]| · xn

n!

The ordinary generating function of a species F is F̃ (x) =
∑
n≥0
|F̃ [n]| · xn

Operations on Species
F,G combinatorial species

Addition:
(F +G)[U ] := F [U ] ∪G[U ]

(F +G)[σ : U → V ](s) := F [σ](s) s ∈ F [U ]
G[σ](s) s ∈ G[U ]

Example 0.62:
F = G = X

(F +G)[{♥}] = {(left,♥), (right,♥)}

Multiplication:
(F ·G)[U ] :=

⋃
V,W,V ∪W=U

F [V ]×G[W ]

(F ·G)[σ : U → U ′](fv, gw) := (F [σ|V ](fV ), G[σ|W ](gW )) where σ is restricted
to V or W respectively.

58



Example 0.63:
L . . . linear orders
L = 1 + X · L (say out loud: “A linear oder is either the empty order or a
first element concatenated with a linear order.”)

L[{a, b}] = 1[{a, b}] ∪ (X · L)[{a, b}]
1[{a, b}] = ∅
(X ·L)[{a, b}] = X[∅]×L[{a, b}]∪X[{a}]×L[{b}]∪X[{b}]×L[{a}]∪X[{a, b}]×
L[∅]
= ∅ ∪ {(a, b)} ∪ ({b, a}) ∪ ∅
= {(a, b), (b, a)}

Example 0.64:
binary (rooted ordered) trees

TODO

B = 1 +X · B · B

e.g. B[{a}] = 1[{a}] ∪ (X · B · B)[{a}] ∪ . . .
= ∅ ∪ (a, ∅, ∅)

Theorem 0.55:
F,G comb. species

(F +G)(x) = F (x) +G(x)
(F ·G)(x) = F (x) ·G(x)

(F̃ +G)(x) = F̃ (x) + G̃(x)
(F̃ ·G)(x) = F̃ (x) · G̃(x)

(This theorem is the reason why combinatorial species work. In the original
article the author said that species are a liftig of generating functions.)

Example 0.65:
B = 1 +X · B · B ⇒ B(x) = 1 +X · B2(x) and B̃(x) = 1 + B̃2(x)

L = 1 +X · L ⇒ L(x) = L̃(x) = 1
1−x

Substitution:
G[∅] = ∅

(F ◦G)[U ] :=
⋃

P={B1,...,Bk},partition
F [P ]×

k∏
i=1

G[Bi]

Theorem 0.56:
(F ◦G)(x) = F (G(x))

WARNING: (F̃ ◦G)(x) 6= F̃ (G̃(x))!
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Example 0.66:
rooted (but unordered) trees:

TODO{illustration}

A = X · (E ◦ A)
A(x) = x · exp(A(x))

A[{1, 2, 3}] = X[{1}]× (E ◦ A)[{2, 3}] ∪ TODO

Example 0.67:
ordered rooted trees (order of successors matters):

TODO{illustration}

AL = X · (L ◦ AL)
AL(x) = x · 1

1−AL(x)

Example 0.68:
plane rooted trees:

TODO{illustration}

F = X +X · (C ◦ AL) with C being the cycle structure

Example 0.69:
Permutation:

S = E ◦ C
⇒ TODO

A permutation is just a set of cycles (of labels).

Example 0.70:
Involutions:

I = E ◦ (X + E2)
I(x) = exp(x+ x2

2 )
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