192.067 VO Deductive Databases January 28, 2021				
	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	

1.) Consider a program P consisting of the following rules:

 $\begin{array}{l} a \leftarrow \\ b \leftarrow a,c \\ w \leftarrow c,b \\ c \leftarrow e \\ c \leftarrow e,g \\ e \leftarrow \\ g \leftarrow c,f \end{array}$

List all minimal models of P. Explain your answer.

(10 points)

2.) Consider interpretations $I_1 = \{c, d\}$ and $I_2 = \{e, f\}$, and a program P consisting of the following rules:

$$e \leftarrow not \ c, not \ d$$
$$f \leftarrow not \ c, e$$
$$c \leftarrow not \ e$$

Compute the programs P^{I_1} and P^{I_2} , i.e. the reducts of P with respect to I_1 , and with respect to I_2 . Is I_1 a stable model of the program P? Is I_2 a stable model of the program P? Justify your answer. (10 points)

3.) Consider a program P consisting of the following rules:

$$d \leftarrow c$$

$$c \leftarrow not \ d$$

$$d \leftarrow not \ c$$

List all stable models of P. Justify your answer.

(10 points)

- 4.) Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfying the following:
 - $\Delta^{\mathcal{I}} = \{a, b, c\},$
 - $A^{\mathcal{I}} = \{b, c\}$ for the concept name A,
 - $B^{\mathcal{I}} = \{a\}$ for the concept name B,
 - $P^{\mathcal{I}} = \{(b, b), (a, b)\}$ for the role name P, and
 - $R^{\mathcal{I}} = \{(a, a), (b, b)\}$ for the role name R.

Compute the extension of $\cdot^{\mathcal{I}}$ for the following complex concepts (i.e. compute $C^{\mathcal{I}}$ for all complex concepts C listed below):

- (1) $B \sqcup \neg A$
- (2) $(B \sqcup A) \sqcap \neg B$
- (3) $\forall P.A$
- (4) $\exists P.A$
- (5) $\forall P.(B \sqcap \neg B)$
- (6) $\exists R.(B \sqcup \neg B)$

(15 points)

5.) By defining a suitable interpretation, show that the concept $A \sqcap \neg(\forall R.A)$ is satisfiable. Here A is a concept name and R is a role name. (15 points)

Grading scheme: 0–31 nicht genügend, 32–38 genügend, 39–45 befriedigend, 46–52 gut, 53–60 sehr gut