
Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

191.109

(formerly 182.712)

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Überblick
191.109 Dependable Systems

→ Bitte ueber TISS zur LVA registrieren (Ankuendingen werden ueber TISS

verschickt).

Vortragende

• Poledna, Stefan

• Puschner, Peter

• Steiner, Wilfried

Einführung in die Laborübung: wird ebenfalls per TISS/TUWEL bereitgestellt

Naechster Pruefungstermin: voraussichtlich April

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Inhalt der LVA

• Dependable systems and incidents

• Basic concepts and terminology

• Fault-tolerance and Modeling

• Processes and Certification Standards

• Failure modes and models

• System aspects of dependable computers

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 1: Dependable systems and incidents

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Contents

• Dependability Problem Statement

• Examples of dependable systems and incidents

• The Therac-25 accidents

• Unintended Acceleration Incidents

• Reasons for low dependability

• Concept of coupling and interactive complexity

5

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Dependability Problem Statement

Our society depends on a broad variety of computer controlled systems

where failures are critical and may have severe consequences on

property, environment, or even human life.

Aims of this lectures

• to understand the attributes and concepts of dependability,

• to understand reasons for low dependability and

• gain knowledge on how to build dependable computer systems

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved 3/20/2020 / Page 7

Boeing 787 NASA Orion

Audi A8 Airbus A380

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

America’s New Rocket:

Space Launch System

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

The Future of Human Space Exploration
NASA’s Building Blocks to Mars

Earth Reliant Proving Ground Earth Independent

Missions: 6 to 12 months
Return: hours

Missions: 1 month up to 12 months
Return: days

Missions: 2 to 3 years
Return: months

Mastering the

fundamentals aboard

the International Space

Station

Developing planetary

independence by

exploring Mars, its

moons, and other deep

space destinationsU.S. companies provide

affordable access to

low Earth orbit

Pushing the boundaries in

cis-lunar space

The next step: traveling beyond low-Earth

orbit with the Space Launch System rocket

and Orion crew capsule

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Launch Abort
System

Crew
Module /
CM Adapter

ESA
Service
Module

The Orion Spacecraft

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

2 Orbits | 20,000 MPH entry | 3,600 Mile Apogee | 28.6 Deg Inclination

EFT-1 WILL EXERCISE 10 TOP LOSS OF CREW RISKS

LAUNCH
LANDING

3,600 Miles

This year NASA will fly a spacecraft built for humans

farther than any has traveled in over 40 years.

Launched Dec/05, 2014

https://www.nasa.gov/specials/orionfirstflight/

https://www.nasa.gov/specials/orionfirstflight/

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Crew Module
Functional Testing Underway; On Track for May Delivery

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Service Module
Assembly Complete – Ready for Integration

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Launch Abort System
Assembly Complete – Ready for Integration

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

48 Network end points | 3 planes of connectivity for every device

Time Triggered Gigabit Ethernet
The Backbone of Orion’s State of the Art, High Reliability Avionics System

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved
Page 16

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved
17

▪ Increase the European competitiveness by delivering the solution that

could be used worldwide

▪ Develop an ITAR-free and radiation hardened 10/100-Base-T Ethernet

transceiver (PHY) for the space market

▪ ASIC will be used in a harsh environment which can produce undesired

effects on electronic devices

▪ Enable Ethernet based technologies to become an international space

standard in future applications

▪ TRL 7 – a system prototype demonstration in a space environment

(the test campaign presented in the project covers all the elements

required to guarantee a proper performance of the device under space

environment)

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved
18

Examples of dependable systems and

incidents

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

“Fly-by-wire”

• pilot commands are transmitted as electrical commands

• a flight control system (FCS computer) is used

• the pilot flies the FCS and the FCS flies the plane

• military planes require FCS to get artificial stability

• for civilian use the advantages are:

− weight savings

− enhanced control qualities

− enhanced safety

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Fly-by-Wire Incidents

The SAAB JAS Gripen:

• 1989: Crash after sixth test flight due to exceeded stability margins

at critical frequency, software was updated

• 1993: Crash on a display flight over the Water Festival in

Stockholm,

again due to pilot commands the plane became instable

• the cycle time of the Gripen FCS is 200 ms

• the probability of instability was estimated by the engineers as

“sufficiently low”

The Airbus A320:

• 4 hull losses (plane crashes)

• all crashes are attributed to a mixture of pilot and computer or

interface failures

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

A332, en-route, Atlantic Ocean,

2009

• Jun/1, 2009

• Airbus A330-200 being operated by Air France on a

scheduled passenger flight from Rio de Janeiro to Paris CDG

as AF447

• exited controlled flight and crashed into the sea with the loss

of the aircraft and all 228 occupants

• loss of control followed an inappropriate response by the

flight crew to a transient loss of airspeed indications in the

cruise which resulted from the vulnerability of the pitot heads

to ice crystal icing.

21

http://www.skybrary.aero/index.php/A332,_en-route,_Atlantic_Ocean,_2009

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Patriot vs. Scud

During gulf war a Scud missile broke through the Patriot anti-missile

defense barrier and hit American forces killing 28 people and injuring 98.

A software problem

• time is represented as an 32 bit integer and converted to 24 bit real

number

• with the advent of time this conversion loses accuracy

• tracking of enemy missiles becomes therefore faulty

• the software problem was already known, and the update was

delivered the next day

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Critical Infrastructure Incidents

Bank of America financial system:

• development during 4 years costs $20 millions

• $60 millions in overtime expenses

• $1.5 billion in lost business

• system was abandoned after nearly one year in service

Airport of Denver, Colorado

• one of the largest airports worldwide

• intelligent luggage transportation system with 4000 “Telecars”, 35 km rails,

controlled by a network of 100 computers with 5000 sensors, 400 radio

antennas, and 56 barcode readers

• due to software problems about one year delay which costs

1.1 million $ per day

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

More Examples
Harsh environment:

• The “bug”: On a Mark II in 1945 a moth came between relay contacts

• train cars were changed form external to disc brakes, trains vanished from

display

• near a broadcast transmission tower it was possible to "hear rock and roll on

the toaster"

• an overripe tomato hung over an answering machine, dripping tomato juice

into the machine which caused repeated call to the emergency line

• pigeons may deposit a "white dielectric substance" in an antenna horn

Examples may seem funny but:

• system are designed to endure within a given operational conditions

• it is very hard to anticipate the operational conditions correctly

• illustrates difficulties of good system design

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Which other (recent) incidents are you aware of?

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved
26

The Therac-25 accidents

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

The Therac-25 accidents
Therac-25 is a machine for radiation therapy (to treat cancer)

Between June 1985 and January 1987 (at least) six patients received

severe overdoses:

• two died shortly afterwards

• two might have died but died because of cancer

• the remaining two suffered of permanent disabilities

Functional principle

• Therac is a “dual-mode” machine

• electron beams are used for surface tumors

• X-ray for deep tumors

• “scanning magnets” are used to spread the beam and vary the

beam energy

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

X-ray and Electron Mode

• a tungsten target and a

“beam flattener” is moved

in the path to the rotating

turntable

• the target generates the X-

rays but absorbs most of

the beam energy

• the required energy has to

be increased by a factor of

100, compared to electron

mode
Typical Therac-25 facility

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

1985

3rd: Marietta, Georgia, overdose.
Later in the month, Tim Still calls AECL and asks if overdose by Therac-25 is possible.

26th: Hamilton, Ontario, Canada, overdose; AECL notified and determines microswitch failure was
the cause.

AECL makes changes to microswitch and notifies users of increased safety.
Independent consultant (for Hamilton Clinic) recommends potentiometer on turntable.

Georgia patient files suit against AECL and hospital.

8th: Letter from Canadian Radiation Protection Bureau to AECL asking for additional hardware
interlocks and software changes.

Yakima, Washington, clinic overdose.

1986

Attorney for Hamilton clinic requests that potentiometer be installed on turntable.
31st: Letter to AECL from Yakima reporting overdose possibility.

24th: Letter from AECL to Yakima saying overdose was impossible and no other incidents had
occurred.

Jun

Jul

Sep

Oct

Nov

Dec

Jan

Feb

Major Event Time Line

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

21st: Tyler, Texas, overdose. AECL notified; claims overdose impossible and no other accidents
had occurred previously. AECL suggests hospital might have an electrical problem.

7th: Tyler machine put back in service after no electrical problem could be found.
11th: Second Tyler overdose. AECL again notified. Software problem found.
15th: AECL files accident report with FDA.

2nd: FDA declares Therac-25 defective. Asks for CAP and proper renotification of Therac-25 users.

13th: First version of CAP sent to FDA.

23rd: FDA responds and asks for more information.
First user group meeting.

26th: AECL sends FDA additional information.

30th: FDA requests more information.

12th: AECL submits revision of CAP.

Therac-20 users notified of a software bug.
11th: FDA requests further changes to CAP.
22nd: AECL submits second revision of CAP.

Mar

Apr

May

Jun

Jul

Aug

Sep

Nov

Dec
FDA = US Food and Drug

Administration
CAP = Corrective Action Plan

Major Event Time Line (cont. 1986)

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

17th: Second overdose at Yakima.
26th: AECL sends FDA its revised test plan.

Hamilton clinic investigates first accident and concludes there was an overdose.
3rd: AECL announces changes to Therac-25.
10th: FDA sends notice of adverse findings to AECL declaring Therac-25 defective under US
law and asking AECL to notify customers that it should not be used for routine therapy.
Health Protection Branch of Canada does the same thing. This lasts until August 1987.

Second user group meeting.
5th: AECL sends third revision of CAP to FDA.

9th: FDA responds to CAP and asks for additional information.

1st: AECL sends fourth revision of CAP to FDA.
26th: FDA approves CAP subject to final testing and safety analysis.

5th: AECL sends final test plan and draft safety analysis to FDA.

Third user group meeting.
21st: Fifth (and final) revision of CAP sent to FDA.

1988

29th: Interim safety analysis report issued.

3rd: Final safety analysis report issued.

Jan

Feb

Mar

Apr

May

Jun

Jul

Jan

Nov

Major Event Time Line (cont. 1987)

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Lessons learned from Therac-25

accident:

• Accidents are seldom simple

• Accidents are often blamed to single source

• Management inadequacies, lack of following incident reports

• Overconfidence in software

• Involvement of management, technicians, users, and

government

• Unrealistic risk assessment

• Less-than-acceptable software-engineering practices

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Who would ride on an autonomous car?

33

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved
34m

Unintended Acceleration Incidents

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Unintended Acceleration Examples

35

I will show a video with accidents for the next 5 minutes.

In case anyone prefers to leave the room, that is of course possible!

https://www.youtube.com/watch?v=cOWdWHSgI-4

https://www.youtube.com/watch?v=cOWdWHSgI-4

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Toyota Unintended Acceleration Incident

2007/Sep: Toyota recall to fasten floor mats

2009/Aug: Toyota Lexus ES 350 sedan crash

• unintended acceleration reached 100 mph

• four passengers died, 911 emergency phone call during event

• crash was blamed on wrong floor mats causing pedal entrapment

2009/Oct: Extended floor mat recalls

2010/Jan: Sticky gas pedal recall

2010/Feb: US congressional investigation

2010/May: CBS News “Toyota Unintended Acceleration has killed 89”

2010-2011: NASA investigation of unintended acceleration
• conclusion: no electronic-based cause for unintended high-speed acceleration

• tight timeline and limited information

2012/Dec: Toyota settlement for $1.6 Billion USD

http://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Toyota Unintended Acceleration Incident
(cont.)

2013/Oct: Bookout/Schwarz Trial

• 2007 crash of a 2005 Toyota Camry

• Dr. Koopman & Mr. Barr testified as software experts

• Testified about defective safety architecture and software defects

Jury awarded $3 million compensation

Key technical element of criticism is the Electronic Throttle Control System

(ECTS)

http://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Electronic Throttle Control System (ETCS)

http://www.nhtsa.gov/staticfiles/nvs/pdf/NASA-UA_report.pdf

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

ETCS Criticism

Safety architecture

• Shortcomings in failsafes

• Shortcomings in the watchdog design

• Non-independent Fault-Containment Regions

Software Quality

• 256,600 Non-Commented Lines of C source

• 9,273 – 11,528 global variables (ideally 0 writable globals)

• Spagetti code, untestable functions according to McCabe

cyclomatic complexity metric

• Use of recursion, no mitigation for stack overflow

• Concurrency issues

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

ETCS Criticism (cont)

Certification

• Critical SW is typically developed by following

standardized processes, e.g., MISRA SW Guidelines

• Toyota does not claim to have followed MISRA

• Mike Barr’s team found 80,000 violations of MISRA C

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Who would ride on an autonomous car?

42

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

System Classification by VDA

43

Machine

Human

Human

Machine

Classification according to VDA

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Electronic Control Units

44

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Vehicle-Wide Virtualization

45

ECU3

ECU4

Actuator

ECU1

ECU2

Actuator

Actuator

Actuator

ECU7

ECU8

ECU5

ECU6

Actuator

Actuator

ECU 1 Network (Backbone Link)

Task Task Task

Guest OS GuestOS

Hypervisor

Hardware / Network IO 

ECU 2

ECU 8

Task

OS

Hardware / Network IO

TaskTask

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved
46

Reasons for low dependability

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

What would you think are reasons for low dependability?

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

• Chips with everything:

Computers are increasingly used for all types of devices and

services.

• Interface design:

Complex systems must have a “friendly” interface that is easy to

understand and must not confuse or mislead the user.

• The “system” includes the operator:

The total system requires some functions to be carried out by the

operator.

• The “system” includes the documentation:

Operator failures may occur due to hard to understand or

misleading documentation.

• The “system” includes its operating procedures:

Just as the operator and the documentation are regarded as part of

the system, so must the procedures for using it.

Reasons for low dependability

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Reasons for low dependability (cont)

• “System” failures are human failure:

Not only the operator, but other humans and ultimately the designer

are causing system failures.

• Complexity:

Problem inherent complexity—not solution induced complexity—is

hard to handle.

• System Structure:

Unsuitable system structures can lead to low dependability

• Wrong assessment of peak load scenario:

Systems can only be designed to handle a priori known peak load

scenarios.

• Wrong assessment of fault hypothesis:

Systems can only be designed to handle a priori known fault

hypothesis.

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Reasons for low dependability (cont.)

• Low dependability of components:

“A system is as strong as its weakest link”

• Misunderstanding of application:

Customer and system manufacturer have different understandings

of the services

• Incomplete problem description:

Unintended system function due to incomplete problem description

• Coupling and interactive complexity:

cf. next slide

• Discontinuous behavior of computers:

cf. foil after slide

• No system is fool-proof

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Concept of coupling and interactive

complexity

The concept of coupling and interactive complexity is a model to

explain what type of systems are potentially hazardous [Perrow 1984].

• Tightly coupled systems:

In a tightly coupled system components affect one another

automatically with great rapidity, so that errors propagate too quickly

for a human operator to detect, contain and correct them.

• Interactive complex systems:

In an interactive complex system components interact in many ways

simultaneously, so that the behavior of the system (as a whole) is

inherently difficult to understand.

Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Problem of discontinuous behavior
or the Problem of Software

• discrete computers are symbol manipulating machines

• symbols are represented in binary form of 0´s and 1´s

• computers are finite state machines

• large state space (combinatorial explosion)

• mapping of actual state and input to new state

• in contrast to analogue systems there is no continuos trajectory

• discontinuous trajectories are intractable by simple mathematics

• is worse than chaotic behavior (of analog systems)

• continuous or analog systems have an infinite number of stable

states while discrete systems have only a small (finite) number of

stable states

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 2: Basic Concepts and Taxonomy

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• The Basic Concepts

• The Threats to Dependability and Security

(Fault – Error – Failure)

• The Means to Attain Dependability

• Error Recovery and Redundancy

• On the Importance of the Specification

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The Basic Concepts

3

Avizienis, Algirdas, J-C. Laprie, Brian Randell, and Carl Landwehr. "Basic

concepts and taxonomy of dependable and secure computing." IEEE

transactions on dependable and secure computing 1, no. 1 (2004): 11-33.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependability Definitions

4

How would you define a dependable system?

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependability Definitions

Original: Dependability is the ability to deliver service that can

justifiably be trusted.

Alternate: Dependability of a system is the ability to avoid

service failures that are more frequent and more severe than

is acceptable.

5

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System Function, Behavior,

Structure, and Service

A system is an entity that interacts with other entities, i.e., other

systems.

For a particular system A, the sum of all the other systems

system A is interacting with is referred to as the environment

of system A.

The system boundary is the common frontier between a

system and its environment.

6

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System Function, Behavior,

Structure, and Service (cont.)

The function of a system is what the system is intended to do.

The function is described in the functional specification.

The behavior of a system is what the system does to implement

its function and is described by a sequence of states.

7

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System Function, Behavior,

Structure, and Service (cont.)

The structure of a system is what enables it to generate the

behavior.

In terms of a structure, a system is composed of components

bound together to interact.

Components are systems which can be composed of other

components.

Alternatively, a component is said to be atomic, in case the

inner structure of the component is of no interest.

8

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System Function, Behavior,

Structure, and Service (cont.)

A system is the provider of a service to one or many users.

Users are, again, systems.

The service interface between the provider and the one or

many users is the respective part of the provider’s system

boundary.

The part of the provider’s total state that is perceivable at the

service interface is its external state. The remaining part is

its internal state.

The interface of the user at which the user receives the service

is the use interface.

9

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System Function, Behavior,

Structure, and Service (cont.)

Recursive nature of the depends () relation

• service users depend on the services provided by the system

(server)

10

physical

process

operator

system

(server)

component

(server)

component

(server)
component

(server)

component

(server)

component

(server)

interface interface interface

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Definitions of Failure – Error – Fault

Correct service is delivered when the service implements the

system function.

A (service) failure is an event that occurs when the delivered

service deviates from correct service.

• Thus, a failure is a transition from correct service to incorrect

service.

The different kinds of incorrect service delivery are referred to as

the failure mode and these modes are ranked according to

failure severity.

11

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Definitions of Failure – Error – Fault

(cont.)

A service failure means that at least some external state of the

provider service deviates from the correct state.

This deviation is called the error (i.e., a deviation from the current

state from the correct state).

The adjudged or hypothesized cause of an error is called a fault.

12

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Attributes of Dependability

Reliability: continuity of correct service.

Availability: readiness for correct service.

Maintainability: ability to undergo modifications and repairs.

Safety: absence of catastrophic consequences on the user(s)

and the environment.

Integrity: absence of improper system alterations.

13

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Availability

Reliability is the probability that the system will conform to its

functional specification throughout a period of duration t.

Availability is the percentage of time for which the system will

conform to its specification (also considering repair actions).

→ Availability is a function of reliability and maintainability.

14

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Availability (cont.)

15

Can you think of an example system that needs to be highly-

available but reliability is less of an issue?

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Availability (cont.)

Factory automatization:

• the computer has to assure proficient manufacturing

• availability is most important parameter

• reliability is not that important

Satellite:

• once put into operation there is no possibility for

maintenance

• mission reliability is most important parameter

16

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Safety

Reliability is the probability that the system will conform to its

functional specification throughout a period of duration t.

Safety is the probability that the system will not exhibit specific

undesired behaviors throughout a period of duration t.

→ In general, not all deviations from the functional specification

imply specific undesired behaviors in the sense of the safety

definition.

.

17

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Safety (cont.)

18

What would be an example of a loss of reliability does/does not

lead to a safety incident?

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Safety (cont.)

• Railway signalling:

− red signal is a safe system state

− safe system state is unreliable

− safety ≠ reliability

• Fly-by-wire airplane control:

− after take off there is no safe (non-functional) system state

− safety  reliability

(degraded modes of operation are possible)

• often there is a conflict between safety and reliability

.

19

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability vs. Safety (cont.)

• often there is a conflict between safety and reliability

→ Why?

.

20

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Attributes of Security

Confidentiality: the absence of unauthorized disclosure of

information.

+ Integrity (as before)

+ Availability (as before)

21

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The Threats to Dependability and Security

Details on: Fault, Error, Failure

22

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Life Cycle of a System

• Development Phase, including

• initial system conception

• system design, development, verification, and validation

• Use Phase, including

• service delivery

• service outage (service not available)

• service shutdown (service not needed)

• maintenance

23

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Faults

Recap:

The adjudged or hypothesized cause of an error is called a

fault.

24

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Faults – eight elementary fault

classes

Classification into eight elementary fault classes:

• Phase of creation or occurrence (development vs. use phase)

• System boundaries (internal vs. external)

• Phenomenological cause (natural vs. human-made)

• Dimension (hardware vs. software)

• Objective (malicious vs. non-malicious)

• Intent (deliberate vs. non-deliberate)

• Capability (accident vs. incompetence)

• Persistence (permanent vs. transient)

25

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

What would a Software Flaw (i.e., a “bug”)

be classified as?

Classification into eight elementary fault classes:

• Phase of creation or occurrence (development vs. use phase)

• System boundaries (internal vs. external)

• Phenomenological cause (natural vs. human-made)

• Dimension (hardware vs. software)

• Objective (malicious vs. non-malicious)

• Intent (deliberate vs. non-deliberate)

• Capability (accident vs. incompetence)

• Persistence (permanent vs. transient)

26

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example Faults: Software Flaws

Software flaws (may) have the following aspects (in red):

• Phase of creation or occurrence (development vs. use

phase)

• System boundaries (internal vs. external)

• Phenomenological cause (natural vs. human-made)

• Dimension (hardware vs. software)

• Objective (malicious vs. non-malicious)

• Intent (deliberate vs. non-deliberate)

• Capability (accident vs. incompetence)

• Persistence (permanent vs. transient)

27

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Faults – combined fault classes

• A particular fault will typically fall into multiple of the eight

elementary fault classes.

• Since three of the elementary fault classes are of particular

importance, we use them to derive combined fault classes:

• Phase of creation or occurrence (development vs. use

phase) → Development Faults

• System boundaries (internal vs. external) → Interaction

faults

• Dimension (hardware vs. software) → Physical faults

28

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failures

Recap:

A (service) failure is an event that occurs when the delivered

service deviates from correct service.

• Thus, a failure is a transition from correct service to incorrect

service.

29

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Overview

• Domain:

• content, early timing failure, late timing failure, halt failure,

erratic failure

• Detectability:

• signaled failures, unsignaled failures

• Consistency:

• consistent failure, inconsistent failure

• Consequences:

• minor failure, ..., catastrophic failure

30

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Domain

• Content

• Early timing failure

• Late timing failure

• Halt failure

− the external state becomes constant, i.e., system activity

is no longer perceptible to the users

− silent failure mode is a special kind of halt failure in that

no service at all is delivered

• Erratic failure

− not a halt failure, e.g., a babbling idiot failure

31

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Consistency

When there are more than one users of a service.

• Consistent failure:

• All users experience the same incorrect service.

• Inconsistent failure

• Different users experience different incorrect services.

32

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Consequences, e.g., Aircraft
Minor: 10E-5 per flight hour or greater

no significant reduction of aeroplane safety, a slight reduction in the

safety margin

Major: between 10E-5 and 10E-7

significant reduction in safety margins or functional capabilities,

significant increase in crew workload or discomfort for occupants

Hazardous: between 10E-7 and 10E-9

large reduction in safety margins or functional capabilities, causes

serious or fatal injury to a relatively small number of occupants

Catastrophic: less than 10E-9

these failure conditions would prevent the continued safe flight and

landing of the aircraft

33

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Error

Recap:

A service failure means that at least some external state of the

provider service deviates from the correct state.

This deviation is called the error (i.e., a deviation from the

current state from the correct state).

34

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Error

• An error is detected if its presence is indicated by an error

message or error signal.

• Errors that are present but not detected are latent errors.

• Whether or not an error actually leads to a failure depends on

the following facts:

• the system composition and the existence of redundancy

(intentional or unintentional redundancy)

• the system activity after the introduction of an error

(the error may get overwritten)

• the definition of a failure by the user’s viewpoint

35

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault – Error – Failure Chain

fault → error

• a fault which has not been activated by the computation process is dormant

• a fault is active when it produces an error

error → failure

• an error is latent when it has not been recognized

• an error is detected by a detection algorithm/mechanism

failure → fault

• a failure occurs when an error “passes through” and affects the service

delivered

• a failure results in a fault for the system which contains or interacts with the

component

36

Fault error failure fault error failure

to next higher hierarchy

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Examples for fault/failure chain

• Program error (software):

− a dormant fault in the written software (instruction or data)

− upon activation the fault becomes active and produces an

error (system state)

− if the erroneous data affects the delivered service, a

failure occurs

• Electromagnetic interference (hardware):

− leads to faulty input value (either digital or analog)

− by reading the input the fault becomes active and

produces an error

− if the erroneous input value is processed and becomes

visible at the interface a failure occurs

37

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault/failure state transition chart

(or dormant fault)

fault activation

error processing

error
state

failure

failure -
accident

service restoration

error pa
sse

s

error passes

correct
state

38

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The Means to Attain Dependability

39

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Means to Attain Dependability and

Security

Fault prevention: means to prevent the occurrence or

introduction of faults.

Fault tolerance: means to avoid service failures in the presence

of faults.

Fault removal: means to reduce the number and severity of

faults.

Fault forecasting: means to estimate the present number, the

future incidence, and the likely consequences of faults.

40

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault prevention

• hardware components:

− environment modifications (temperature)

− quality changes, use “better” components

− component integration level, higher integration

− derating, reduction of electrical, thermal, mechanical, and

other environmental stresses

• software components:

− software engineering methodologies

− OOD and OO languages

− design rules

− CASE tools

− formal methods

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault removal
• verification:

to check, whether the system adheres to the specification.

− Static analysis: inspections, walk-throughs, data flow

analysis, complexity analysis, compiler

checks, correctness proofs, petri net models,

finite state automata.

− Dynamic Analysis: testing, black-box, white-box, conformance,

fault-finding, functional, timeliness, structural,

deterministic, random or statistical

• diagnosis:

diagnosing the fault which prevented the verification from succeeding

• correction:

perform corrective actions to remove the fault  regression

verification

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault forecasting

• performing an evaluation of the system with respect to faults

• evaluation of aspects such as:

– reliability

– availability

– maintainability

– safety

• see chapter “Fault-tolerance and modelling”

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault tolerance

There are four phases, which, taken together, provide the

general means by which faults are prevent from leading to

system failures.

• error detection:

errors are the manifestations of faults, which need to be

detected to act upon

• damage confinement and assessment:

before any attempt is made to deal with the detected error, it

is necessary to assess and confine the extent of system state

damage

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault tolerance (cont.)

• error recovery:

error recovery is used to transform the currently erroneous

system state into

a well defined error-free system state

• fault treatment and continued service:

even if the error-free system state has been recovered it is

often necessary to perform further actions to prevent the fault

from being activated again

45

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Error Recovery and Redundancy

46

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Error recovery

There are two possibilities to transform the currently erroneous system

state into an error-free system state:

• Backward recovery:

− system state is reset to a previously store error-free system

state

− re-execution of failed processing sequence

− typical for data base systems

(it is not possible to predict valid system states)

• Forward recovery:

− system state is set to a new error-free system state

− typical for real-time systems with period processing patterns

(it is possible to predict valid system states)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Redundancy

A system requires some kind of redundancy to tolerate faults. This

redundancy can be implemented in three different domains:

• Domain of information:

redundant information e.g. error correcting codes, robust data

structures

• Domain of space:

replication of components, e.g. 2 CPU’s, UPS (uninterruptable

power supply)

• Domain of time:

replication of computations, e.g. calculate results by same (or

different) algorithm a second time, sending messages more than

once

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance in the domain of

information

• error correcting codes:

– for all error correcting codes (ECC)

(2t + p + 1) ≤ d

d .. Hamming distance of code

t ... number of single bit errors to be tolerated

p .. number of additional errors that can be detected

101

111
001

000

010

110

011

100

3 bit code, d = 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance in the domain of

information (cont.)

• robust data structures:

– store the number of elements

– redundant pointers

(e.g. double linked chains with status)

– status or type information

(e.g. authenticated objects)

– checksum or CRC

• application specific knowledge

50

authetific.

object

pointer to authentificated object

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance in the domain of

space

• active redundancy

– parallel fail-silent components – voting, triple modular

redundancy (TMR)

C1

C3

C2 V

C1

Cn

C2

. . .

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance in the domain of

space (cont.)

passive or standby redundancy

– hot standby:

standby component is operating

– cold standby:

standby components starts only

in case of a failure

52

C1

C2

s

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance in the domain of

time
Allows tolerance of temporary faults

• multiple calculation:

– a function is calculated n times with the same inputs

– the result is checked by an acceptance test

– or the multiple results are voted

• sending messages multiple times:

– message transmission is repeated n times

– retransmission only in case of failures

(positive acknowledge retransmit PAR)

– retransmission always n times

(reduces temporal uncertainty for real-time systems)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

On the Importance of the

Specification

54

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Specification

The definition of all dependability attributes is based on

specifications. A good specification must be:

• exact

• consistent

• complete

• authoritative

Importance of specification

Together with the analysis of possible behavior and its

consequences, system specification is the most difficult

part of building a dependable system.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Specification (cont.)

Multiple levels of specifications

To consider the different aspects and attributes of dependable

systems, usually different levels of specifications exists.

An example

level specification

functional “all commands have to be carried out correctly”

reliability “either correct commands or warning indicator”

safety “recorded info may not be corrupt”

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The underground train

The underground train

• an electronically controlled underground train had the

following buttons:

− to open and close doors

−to start the train

• it was specified that “the train only may start if and only if the

start button is pressed and all doors are closed”

• a driver blocked the start train button by means of a tooth

pick to start the train immediately if the doors were closed

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The underground train (cont.)

What happened?

• one day a door was blocked and the driver went back to

close the door, and of course, the train left the station without

the driver

What went wrong?

• it was the drivers fault to block the start button with a

tooth pick

• but it was also a specification fault since the correct

specification should have read: “the train only may start if

and only if the start button changes it state to start and all

doors are closed”

• in that example it made a big difference whether state or

event-semantics are implemented

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 3: Fault-Tolerance and Modelling

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• Reliability: Basic Mathematical Model

• Example Failure Rate Functions

• Probabilistic Structural-Based Modeling: Part 1

• Maintenance and Repair: Basic Mathematical Model

• Probabilistic Structural-Based Modeling: Part 2

• Open issues of probabilistic structural based models

• Reliability growth models

• Comparison of probabilistic modeling techniques

• Limits of validation for ultra-high dependability

• Example: Hardware Design Analysis at TTTech

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability:

Basic Mathematical Model

3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Probability Q(t)

Reliability R(t)

• Failure Probability Q(t), probability that the system will

not conform to its specification throughout a period of

duration [0:t].

• Reliability R(t), probability that the system will conform to its

specification throughout a period of duration [0:t].

• R(0) = 1 R(∞) = 0

• R(t) = 1 – Q(t)

4

0.2

0.4

0.6

0.8

1



0

0

R(t)

t

0.8

0.6

0.4

0.2

0

1

Q(t)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Probability Density Function

• Def.: The failure density f(t) at time t is defined by the

number of failures during t.

5

dt

tdR

dt

tdQ
tf

)()(
)(−==

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Rate

• Def.: The failure rate (t) at time t is defined by the number of

failures during t in relation to the number of correct

components at time t.

• The dimension of failure rate is FIT (failures in time)

• x FIT = x failures per 109 hours

6

(t) =
f (t)

R(t)

= −
dR(t)

dt

1

R(t)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example Failure Rates in FIT
(according to IEC TR 62380)

▪ Resistor 0.1 FIT

▪ Capacitor (ceramic) 2 FIT

▪ Capacitor (electrolytic) 7 FIT

▪ Diode 9 FIT

▪ Inductor 6 FIT

▪ Transistor (low power) 8 FIT

▪ Transistor (high power) 46 FIT

▪ Varistor 1 FIT

▪ Switching regulator 22 FIT

▪ Comparator IC 5 FIT

▪ Flash (46 MBit) 105 FIT

▪ EEPROM (512 kBit) 33 FIT

▪ CPU (180 MHz, Dualcore)

300 FIT (Hard Errors) /

2700 FIT (Soft Errors)

▪ High-side powerswitch 25 FIT

▪ Shift Register IC (8 Bit) 8 FIT

▪ 8 to 1 analog multiplexer IC

8 FIT

▪ CAN transceiver 7 FIT

▪ RS232 transceiver 9 FIT

▪ LIN transceiver 7 FIT

▪ Ethernet PHY 41 FIT

▪ Signal transformator 34 FIT

7

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example Failure Rate Functions

8

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Constant Failure Rate

Used to model the normal-life period of the bathtub curve

• failure rate

• probability density function

• reliability

Reliability for constant failure rate

 (t) = 

 f (t) = e−t

 R(t) = e−t 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

R(t)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Weibull distributed failure rate

Used to model infant mortality and wear out period of components.

 < 1: failure rate is decreasing with time

 = 1: constant failure rate

 > 1: failure rate is increasing with time

• failure rate

• probability density function

• reliability

10

Reliability for weibull distributed failure rate

1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

R(t)

 = 1

 = 2

 = 0.5

 (t) = (t)−1

 f (t) = (t)−1e−(t)


 R(t) = e−(t)


Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Lognormal distributed failure rate

For semiconductors the lognormal distribution fits more data collections

than any other and is assumed to be the proper distribution for

semiconductor life.

• failure rate

• probability density function

• reliability

11

f (t) =

1

t 2
e

−
1

2

ln t−









2

R(t) = 1−
1

 2

1

x
e

−
1

2

ln t−









2

dx

0

t



(t) =

f (t)

R(t)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Probabilistic Structural-Based

Modeling: Part 1

12

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Assumptions

• Identifiable (independent) components,

• Each component is associated with a given failure rate,

• Model construction is based on the structure of the

interconnections between components.

13

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example Modelling Paradigms

• Simple block diagrams

• Arbitrary block diagrams

• Markov models

• Generalized Stochastic Petri Nets (GSPN)

14

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Simple block diagrams

• assumption of independent components

• combination of series or parallel connected components

15

R1(t) Rn(t)R2(t) . . .

Rseries (t) = Ri (t)
i=1

n



Qseries (t) = 1− Rseries (t) = 1− Ri (t)
i=1

n



= 1− 1− Qi (t)()
i=1

n



Qparallel (t) = Qi (t)
i=1

n



Rparallel (t) = 1− Qparallel (t) = 1− Qi (t)
i=1

n



= 1− 1− Ri(t)()
i=1

n



R1(t) Rn(t)R2(t)
. . .

Series Connection Parallel Connection

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Simple block diagrams (cont.)

16

Constant failure rate

Series connection

• the resulting failure rate for the

system is still constant

 (t) = 

 R(t) = e−t

Rseries (t) = Ri (t)

i=1

n

 = e−it

i=1

n



= e

−t i

i=1

n



Reliability of 1,2 and 4 series connected

components with constant failure rate

(1 = 2 = 3 = 4)

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

n = 1
n = 2

n = 4

R(t)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Simple block diagrams (cont.)

17

Parallel connection

for 3 parallel components this gives:

under the assumption 1 = 2 = 3 it follows

the resulting failure rate is no longer constant

Rparallel (t) = 1− 1− Ri (t)()
i

n



= 1− 1− e
−it()

i

n



Rparallel (t) = 1− 1− e
−1t()1− e

−2t()1− e
−3t()()

= e
− 1t + e

−2t
+ e

−3t
+ e

− (1 +2 +3)t
−

e−(1+2)t − e−(1+3)t − e−(2 +3)t

Rparallel (t) = 3 e−t − e−2t()+ e−3t

Reliability of 1,2 and 4 parallel connected

components with constant failure rate

(1 = 2 = 3 = 4)

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

R(t)

n = 4

n = 2

n = 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Simple block diagrams (cont.)

Pros:

• can be used to model arbitrary combinations of series and parallel

connected components

• easy mathematics for constant failure rates

Cons:

• assumption of independent failures

• maintenance cannot be modeled

• restricted to series/parallel connection

• only for active redundancy and fail-silence

18

R1(t) R3(t)

R2(t)

R4(t)

R5(t)

R6(t)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams

no restriction to series/parallel connections

19

RE(t)

RA(t)

RC(t)

RB(t)

RD(t)

Inclusion/exclusion principle

1: A B +
2: B E +
3: D E +
4: C D +

12: A B E –
13: A B D E –
14: A B C D –
23: B D E –
24: B C D E –
34: C D E –

123: A B D E +
124: A B C D E +
134: A B C D E +
234: B C D E +

1234: A B C D E –

Rblock(t) = RAB + RBE + RDE + RCD −

RABE − RABCD − RBDE − RCDE +

RABCDE

 RABC = Rseries (A,B,C)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Active redundancy and voting

20

• for TMR 2 out of 3 components have

to function correctly

• under the assumption of identical failure rates

• for general voting systems where c out of n components have to

function correctly

RTMR(t) = R(CA ,CB ,CC , t) + R(CA ,CB CC ,t) +

R(CA ,CC CB ,t) + R(CB ,CC C A ,t)

CA

CC

CB V

)()(3)()(23 tQtRtRtRTMR +=

RNMR(t) =
n

k











k=c

n

 e−t()
k

1 − e−t()
n −k

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Parallel fail silent components vs. majority voting

Neglected issues:

• coverage of fail silence assumption

• reliability of voter

21

n = 1 single component

n = 2 two parallel components

n = (3,2) voting, 2 out of 3

n = (5,2) voting, 2out of 5

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

t

R(t)

n = 1

n = (3,2)

n = 2

n = (5,2)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Passive redundancy

• probability that A is performing correctly

plus conditional probability that B is

performing correctly and A has failed

22

• under the assumption of constant failure rates A = B

R(t) = R(CA) + R(CB C A)

R(t) = e− t + RB(t − x + x)
RA (x) − RA (x + x) x

x
x =0

t



x → 0: e−t + RB (t − x)

x =0

t

 f (x)dx

= e−t + e− (t− x)

x =0

t

 e−xdx

= e−t (1+ t)

CA

CB

s

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Passive vs. active redundancy

Neglected issues:

• coverage of fail silence assumption

• reliability of switch

23

n = 1 single component

n = 2 two parallel components

n = (3,2) voting, 2 out of 3

n = 1 + 1 one passive backup

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

R(t)

n = 1

n = (3,2)

n = 2

n = 1 + 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Passive redundancy with an unreliable switch

• assumption that the switch functions correctly with

probability Rs(t)

• the system reliability is the probability that A is performing

correctly plus the conditional probability that B is performing

correctly and A has failed and the switch still functions

correctly

24

R(t) = e− t + RB(t − x + x) Rs (t) RA(x) − RA(x − x) 
x =0

t



= e− t + e− (t −x) e
− st

e−xdx

x =0

t



CA

CB

s

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Passive red. with limited error detection coverage

• assumption that errors of component A are not always

detected, the error detection coverage is given by c

• the system reliability is the probability that A is performing

correctly plus the conditional probability that B is performing

correctly and A has failed and A’s error has been detected

25

R(t) = e− t + c RB (t − x + x) RA(x) − RA(x − x) 
x =0

t



= e− t + c e− (t − x)e−xdx

x =0

t



CA

CB

s

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Arbitrary block diagrams (cont.)

Perfect vs. imperfect passive redundancy

• under practical conditions it is impossible to build an ideal

passive replicated system

• an unreliable switch with s = 0.5 or a switch with error

detection coverage of 80% reduces the system reliability below

that of active redundant components

26

n = 1 + 1 one passive backup

n = 2 two parallel components

n = 1 +0.8 1 error detection coverage 80%

n = 1 +0.5 1 reliability of switch is 0.5

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

t

R(t)

n = 1 + 1

n = 2

n = 1 +0.8 1

n = 1 +0.5 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Maintenance and Repair

27

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Single parametric measures

▪Mean time to failure:

▪Mean time to repair:

▪Mission reliability:
Rm = R(tm) tm ... mission duration

▪ (Steady state)

availability:

28

MTTF = t f (t)dt

0





MTTR = t fr(t)dt

0





A =

MTTF

MTTF + MTTR

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Mean time to failure

▪ Constant failure rate:

▪ Serial Connected Components

▪ Parallel connected components:

▪ Weibull distributed failure rate:

▪ Passive redundancy:

29

MTTF = t f (t)dt = t e−tdt =
1


0




0





MTTFseries =

1

 1 + 2 + +  n

MTTFparallel =

1


1+

1

2
+

1

3
+ +

1

n











MTTFpassive =

1

1

+
1

 2

+ +
1

n

MTTF = t(t)−1e−(t)


dt =
(1+ −1)


0





Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Repair

▪ Repair rate

• repair rate (t) analogous

to failure rate

• most commonly constant

repair rates (t) = 

▪Mean time to repair

• analogous to mean time

to failure

30

MTTR =

1



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Mission reliability

• assumption of a mission time tm

• during mission there is no possibility of maintenance or repair

• typical examples are space flights or air planes

• suitability of architectures depends on mission time

31

0 1 1.5 2

0.2

0.4

0.6

0.8

1

t

R(t)

n = 1

n = (3,2)

tm1 tm20.5

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Availability

• the percentage of time for which the system will conform to

its specification

• also called steady state or instantaneous availability

• without maintenance and repair

• Mission availability

32

t → :

A =
MTTF

MTBF
=

MTTF

MTTF + MTTR
mean time between failures (MTBF)

 MTTR = : A = 0

t → tm :

Am =
1

tm

R(t)dt

t =0

tm



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Probabilistic Structural-Based

Modeling: Part 2

33

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models

• Suitable for modeling of:

• arbitrary structures

(active, passive and voting redundancy)

• systems with complex dependencies

(assumption of independent failures is no longer necessary)

• coverage effects

• Markov property:

• The system behavior at any time instant t is independent of

history (except for the last state).

• Restriction to constant failure rates

34

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models
The two phases for Markov modeling

• Model design:

− identification of relevant

system states

− identification of transitions

between states

−construction of Markov graph

with transition rates

• Model evaluation:

−Differential equation

−Solution of equation gives R(t)

– explicit (by hand)

– Laplace transformation

– numeric solution (tool based)

− Integration of differential

equation gives MTTF

– system of linear equations

35

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Example model for active redundant system

Two parallel connected components A and B

with maintenance. Failure rates are A and B,

repair rates are A and B.

Identification of system states: Construction of Markov Graph

36

RA(t)

RB(t)

1: A correct B correct P1(t)
2: A failed B correct P2(t)
3: A correct B failed P3(t)
4: A failed B failed P4(t)

A

A
B

41

2

3B

A

B

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Active redundancy with identical components

37

• failure rates: A = B =  repair rates: A = B = 

• Identification of system states: ▪ Construction of Markov Graph

1: A correct B correct P1(t)

2: one failed one correct P2(t)

3: A failed B failed P3(t)

• Differential equations:

 
1 2 3



)(
)(

)()()(2
)(

)()(2
)(

2
3

21
2

21
1

tP
dt

tPd

tPtP
dt

tPd

tPtP
dt

tPd







=

+−=

+−=

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

MTTF evaluation from Markov model

38

• In a Markov model the MTTF is given by the period during which the

system exhibits states that correspond to correct behavior.

• for the active redundant example system:

• state probabilities for t = 0 and t = 

MTTF = P1(t) + P2(t)()
t=0



 dt = T1 + T2

T1 = P1(t)dt

t=0



 T2 = P2(t)dt

t =0





P1(0) = 1 P1() = 0

P2 (0) = 0 P2 () = 0

P3 (0) = 0 P3() = 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

MTTF evaluation from Markov model (cont.)

39

• integration of differential equation

• solution of linear equation system

d P1(t)

dt
= − 2P1(t) + P2(t)

d P2(t)

dt
= 2P1(t) − ( + )P2(t)

d P3(t)

dt
= P2(t)

0 − 1 = −2T1 + T2

0 − 0 = 2T1 − ( + )T2

1− 0 = T2



221

2221

2

22

3

22

1

22

1





















+=+=

+=
+

=
+

=

=

TTMTTF

TT

T

P1(0) = 1 P1() = 0

P2 (0) = 0 P2 () = 0

P3 (0) = 0 P3() = 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Effect of maintenance

40

• repair and failure rate:

• for 2 active redundant components the MTTF is improved by a factor 34

• for 2 passive redundant components the MTTF is improved by a factor 51

 =

1

1000
[h]  =

1

10
[h]

without maintenance with maintenance

R(t) MTTF h R(t) MTTF h

2 components in series 500 500

single component 1000 1000

2 components in parallel 1500 — 51500

one passive backup 2000 — 102000

 e
−2t

1

2

 e
−t

1


 2e−t − e−2t

3

2

 e
−t (1+ t)

2


 e
−2t

1

2

 e
−t

1


3

2
+



22

2


+


2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Effect of failure semantics and assumption coverage

41

• comparing a system with two active replicated components to a TMR systems shows

that under ideal conditions active replication has a higher reliability

• But: active replication is based on

the assumption that components

are fail silent

– assumption coverage ???

• TMR voting is based on the assump-

tion of fail consistent components

– assumption coverage  1

(if properly constructed)

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

t

R(t)

n = 2

n = (3,2)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Effect of failure semantics and assumption coverage

42

• modeling of the TMR was reasonable since assumption

coverage of fail consistent behavior  1

• modeling of the active redundant system was idealistic since

assumption coverage of fail silent behavior < 1

• Markov model:

 .. failure rate for active redundant parallel connected

components

c .. assumption coverage for fail silent behavior

c 
1 2 3

( − c)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Effect of failure semantics and assumption coverage

43

• failure rate of a single component:  = 100 FIT

System Description MTTF

n = 2, 0.999 two parallel components, coverage of fail silent assumption 99.9% 14.99 106

n = 2, 0.90 two parallel components, coverage of fail silent assumption 90% 14.00 106

n = 2, 0.70 two parallel components, coverage of fail silent assumption 70% 12.00 106

n = 2, 0.50 two parallel components, coverage of fail silent assumption 50% 10.00 106

n = (2, 3) TMR system, coverage of fail consistent assumption 100% 8.33 106

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

t [h 106]

R(t)
n = 2, 0.999
n = 2, 0.90

n = 2, 0.70
n = 2, 0.50

n = (2, 3)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Effect of failure semantics and assumption coverage

44

• comparing parallel components to a TMR systems shows that the reliability

of the parallel system is superior for reasonable assumption coverages

• Safety:

from the viewpoint of safety both systems needs to be reevaluated

• R(t) = S(t)

In an example, a system consists of two parallel components. The system

reliability is equal to the system safety when the system may potentially

cause a hazard if it does not function correctly.

• R(t) < S(t)

In an example, a system consists of a TMR systems. The reliability is not

equal to the safety when the system can enter a safe state although it is not

functioning correctly, e.g. all three components disagree.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)
Safety of a TMR system

45

• to model the safety of a TMR system it needs to be differentiated

between incorrect function and the unsafe system state

• Markov model:

 .. failure rate for single component

c .. probability of coincident failures of two components

1 .. 3 correct components

2 .. 2 correct, 1 failed comp.

3 .. 1 correct, 2 failed comp.

4 .. 3 failed components

5 .. unsafe state,  2 coincident

component failures

3

2(1 –c)

1

5

32 4
3(1 –c)

2c
3c

3ccorrect

function

system failure

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)
Effect of assumption coverage on safety

46

• failure rate of a single component:  = 100 FIT

System Description MTTFS

n = (2, 3), 10 10-6 TMR system, probability of two coincident failures 10 10-6 333.34 109

n = (2, 3), 4 10-3 TMR system, probability of two coincident failures 4 10-3 861.71 106

n = (2, 3), 0.5 TMR system, probability of two coincident failures 0.5 13.33 106

n = 2, 0.999 two parallel comp., coverage of fail silent assumption 99.9% 14.99 106

n = 2, 0.90 two parallel comp., coverage of fail silent assumption 90% 14.00 106

0.2

0.4

0.6

0.8

1

S(t)

0 2 4 6 8 10 12 14 t [h 106]

n = (2, 3), 10 10 -6
n = (2, 3), 4 10 -3

n = 2, 0.999

n = 2, 0.90
n = (2, 3), 0.5

coincidence probability of

two even distributed numbers

16 bit 10 10-6

8 bit 4 10-3

1 bit 0.5

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Generalized Stochastic Petri Nets

(GSPN)

48

• because of the very limited mechanisms available, Markov models become

easily very complex

• Petri Nets provide much richer mechanisms, they can be used to model and

analyze arbitrary systems, algorithms and processes

• basic Petri Nets — which were restricted to discrete behavior only — can be

extended to “Generalized Stochastic Petri Nets” by allowing transition

delays to be either deterministically equal to zero or exponentially

distributed random variables, or to be random variables with different

distributions

• it was shown that stochastic Petri Nets are isomorphic to continuous

Markov chains, i.e. for each stochastic Petri Net there exists a functional

equivalent Markov chain (and vice versa)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Generalized Stochastic Petri Nets
Example

49

Single-writer/multiple-reader access to a shared resource with single access.

pi ... places

ti ... transitions

i ... transition priorities

• the 3 tokens in place p1 represents customers that may request the

resource

• firing t1 starts the protocol

• t2 indicates “read” and t3 “write” access, respectively

• the single token in p5 represents the resource

p1

p2

p3

p4

p5

p6

p7

K

K = 3

t1

t2

t3 t5

t4 t6

t7

1

1

1

2

2

2

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Generalized Stochastic Petri Nets
Modeling

To model and analyze a system by means of GSPN the following steps have to

be carried out:

• model construction: usually by means of structured techniques, bottom-up or

top-down

• model validation: structural analysis, possibly formal proves of some behavioral

properties

• definition of performance indices: definition of markings and transition firings

(deterministically or stochastic)

• conversion to Markov chain: generation of reachability set and reachability graph

to obtain the Markov chain

• solution of the Markov chain

Tool support for all steps exists. Conversion to a Markov chain and solution can

be automated completely.

50

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Generalized Stochastic Petri Nets
Model simulation vs. analytical solutions

• generalized stochastic petri nets are well suited for simulation

• transition rates are not restricted to be deterministic or

exponentially distributed

• complex models are computationally expensive

(simulation step width and simulation duration)

• too large simulation step width can result in meaningless

results (variance of result is too big)

51

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Open issues of probabilistic

structural based models

52

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Open issues of probabilistic

structural based models

• large gap between system and model

• model construction is time consuming, error prone and

unintuitive

• small changes in the architecture result in considerable

changes in the model

• model validation for ultra-high dependability

53

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Probabilistic structural modeling

and software
Probabilistic structural based models are not well suited for software.

They are rather well suited to analyze hardware architectures and

design alternatives.

• for software there are no well defined individual components

• complexity of software structures is very high

• for software the assumption of independent failures is too strong

−one CPU for many processes

−one address range for many functions

• real-time aspects are not captured

• parallelism and synchronization is not considered

(except for GSPN’s)

54

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability growth models

55

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability growth models

• no assumption on identifiable components and system structure

• based on the idea of an iterative improvement process:

− testing → correction → re-testing

• major goals of reliability growth models:

− disciplined and managed process for reliability improvement

− extrapolating the current reliability status to future results

− assessing the magnitude of the test, correction and re-test

effort

• allows modeling of wearout and design faults

• can be used for hardware and software as well

56

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability growth models (cont.)

Software

• typically continuous time reliability growth

− the software is tested

− the times between successive failures are recorded

− failures are fixed

• observed execution time data t1, t2, t3, ... ti – 1 are realizations of the

random variables T1, T2, T3, ... Ti – 1

• based on these data the unobserved Ti, Ti + 1, ... should be

predicted (e.g. Ti = MTTF)

But:

• accuracy of models is very variable

• no single model can be trusted to behave well in all contexts

57

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliability growth models (cont.)

The prediction system

Software reliability growth models are prediction systems which are

comprised of:

• The probabilistic model

which specifies the distribution of any subset Tj’s conditional

on a unknown parameter 

• A statistical inference procedure

for  involving use of available data (realizations of Tj’s)

• A prediction procedure

combining the above two points to allow to make probability

statements about future Tj’s

58

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of probabilistic

modeling techniques

59

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of probabilistic

modeling techniques

60

simple block
diagrams

arbitrary block
diagrams

markov chains

simple and easy to understand
model, easy to calculate for
constant failure rates

can be used to model arbitrary
structures

can model arbitrary structures, no
restriction to independent failures,
complex dependencies can be ex-
pressed, modeling of coverage
and maintenance, good tool
support

restricted to series and parallel
connection, assumption of inde-
pendent failures, maintenance
can-not be modelled, only for
active redundant systems, not well
suited for software

same restrictions as with simple
block diagrams, except series and
parallel connection, not well suited
for software

compared to GSPN higher model
complexity, restriction to constant
failure rates, not well suited for
software

Method Advantages Restrictions and deficienies

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of probabilistic

modeling techniques (cont.)

61

generalized
stochastic petri nets

reliability growth
models

error seeding

much richer mechanisms for
modeling, allows combination of
discrete and stochastic behavior,
good tool support, can be used to
model algorithmic issues of
software

suited for prediction of software
reliability, does not make
assumptions on the system
structure, based on relatively easy
obtainable experimental data

very easy procedure, takes few
assumptions on the system

it is difficult to verify that the model
agrees with reality (as for any
complex model)

accuracy of models is very
variable, no general applicable
model, user must analyze different
models to select suitable one

computational complexity (seeded
errors by number of test cases),
error size needs to be controlled

Method Advantages Restrictions and deficienies

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Limits of validation for ultra-high

dependability

62

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Limits of validation for ultra-high

dependability

• 10-9 catastrophic failure conditions per hour for civil transport

airplanes

• experimental system evaluation is impossible for critical

applications

• modeling is therefore the only possibility to validate ultra-high

dependability

63

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Limits of validation for ultra-high

dependability (cont.)

• Limits for reliability growth models:

−If we want to have an assurance of high dependability, using

information obtained from the failure process, then we need to

observe the system for a very long time.

• Limits of testing:

−If we see a period of 109 hours failure free operation a MTTF of

109 hours can be expected without bringing any apriori believe to

the problem.

−If a MTTF of 106 is required and only 103 hours of test are carried

out, Bayesian analysis shows that essentially we need to start with

a 50:50 believe that the system will attain a MTTF of 106.

64

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
65

However, it is important to recognize that this
is a theoretical lower bound, based on perfect
performance of vehicles.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
66

https://qz.com/1419747/waymos-self-driving-cars-have-logged-10-million-miles/

https://arstechnica.com/cars/2018/02/waymo

-now-has-a-serious-driverless-car-rival-gms-

cruise/

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Limits of validation for ultra-high

dependability (cont.)

• Limits of other sources of evidence:

−Step-wise evolution, simple design, over-engineering can be

used only to a limited extent to obtain confidence because there is

no continuous system model and there are no identifiable stress

factors.

• Limits of past experience:

−For software there is no clear understanding of how perceived

differences in the design or design methodology affect

dependability.

• Limits of structural modelling:

−There are obvious limitations with respect to design faults, and

software in particular since the assumption of failure

independence does not hold.
67

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Limits of validation for ultra-high

dependability (cont.)

• Limits of formal methods and proofs:

“We believe that proofs may eventually give ‘practically complete’

assurance about software developed for small but well-understood

application problems, but the set of these problems is now empty

and there is no way of foreseeing whether it will grow to be of some

significance.”

(Littlewood and Strigini, 1993)

68

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example: Hardware Design

Analysis at TTTech

69

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Design Analysis Goals

▪ Failure Rate Prediction

• Calculation of component FIT and MTBF values

▪ IEC TR 62380 Reliability Data Handbook

• provides elements to calculate failure rate of mounted

electronic components

• Reliability data is taken from field data

• Failures rates include the influence of component mounting

processes

70

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

▪ Advantages:
• Per component predefined

analysis method

• Analysis within the schematic

• Component parameter changes

are automatically adopted in the

design analysis

• Analysis's can be sequenced

and use results from preceding

calculations

Mission

Profile

Schematic

is central

document

Component

Database

Datasheets

Additional

Parameters:

e.g. Voltage

Design Analysis
• Integrated algebra tool

• Predefined calculation sheets

• Predefined calculation method for

each component type

Parameters Results

Component

specific

parameters

Application

specific

parameters

Schematic Topology

specific

parameters

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 4: Certification – Processes and Standards

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• Generic Characteristics

• Example: TTTech´s Software Development

• Example: Traceability in the Development of an Ethernet

Switch

• Certificates

• Standards

• Safety Integrity Levels (SIL)

• Automotive SIL (ASIL)

• Design Assurance Levels (DAL)

• The Safety Case

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Generic Characteristics of

Development Processes for

Dependable Systems

3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Objectives of Development

Processes

• The aim of development processes is to minimize the

likelihood of development faults, i.e., faults that occur during

the creation of the system (HW, SW, etc.)

• For example: since the introduction of the DO-178B standard

“Software Considerations in Airborne Systems and

Equipment Certification” in the 1990s, not a single lethal

incident has occurred that would trace back to a software

development fault.

4

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Typical activities in such

development processes
• Requirements Capturing

• High-Level Requirements

Document

• Low-Level Requirements

Document

• Conceptual Design Document

• Detailed Design (i.e., implem-

entation)

• Verification and Validation

• Peer review and auditing

• Key property of the

documents: traceability

5

http://www.mitre.org/sites/default/files/images/selc-te-vv-fig2.gif

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Verification and Validation

• Verification is the process to check whether a product

satisfies its requirements.

• Validation is the process to check if the product satisfies its

purpose.

• Why is verification different from validation?

→ Sometimes, a product’s purpose is not fully described

by its requirements.

6

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example: TTTech´s Software

Development

7

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

▪ The flowchart to the left shows how

software processes are implemented

at TTTech.

▪ Each development process creates an

artifact as output (documents or code).

▪ Software Verification Cases and

Procedures (SVCP) are developed in

parallel to the refinement steps of the

development process.

▪ All development, planning and

verification artifacts are peer reviewed

prior to release.

▪ The Testing Process creates the

Software Verification Results (SVR) as

objective evidence for the correct

implementation of all high- and low-

level requirements.

▪ SQAR, SW Quality Assurance Record

▪ SQARI, SW Quality Assurance Record

Index

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example: Traceability in the

Development of an Ethernet Switch

9

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

[PURPOSE]

This test case checks if the switch ip drops incoming RC

frames that ageded out inside the IP.\\

[AUTHOR]

AST

[RESULT]

PASS

[REQUIREMENTS]

\ReqRef{MNI-3700}

\ReqRef{VLU-4650}

\ReqRef{DCI-2745}

[PRECONDITIONS]

\footnotesize

\begin{verbatim}

The test assumes the following configuration is loaded:

General Parameters Table:

- static cots routing := 1

- dynamic cots routing := 0

- ct marker := 0xDEADBEEF

- ct mask := 0xFFFFFFFF

- rc latency := 500 (4us) - has the resolution

of system clock, which is 8 ns

if R.tdma_frame >= SERDES_PORTS_NO then

V.age_time := ONE_SECOND; --\ReqRef{VLU-4650}

else

V.age_time := cdi.age_time(stdvec_to_int(R.tdma_frame)); --\ReqRef{VLU-4650}

end if;

elsif R.start_tdma_buffer_d = '1' then

V.tdma_frame := ismi.tdma_frame; --\ReqRef{VLU-4650}

if ctci.valid = '1' and R.one_time = '1' then

V.ramo_lbl_to_link_ram_addr := ctci.tail_index; --\ReqRef{MNI-3660},

Requirement

Conceptual Design

Implementation

Test

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Certificates

11

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

What is being certified?

▪ Product

• a regulatory body

approves that a

product has certain

characteristics.

• e.g., type certificate of

an airplane

▪ Company

• a regulatory body

approves that a given

company follows given

standards.

• e.g., ISO 9001

12

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Certificates Examples

• Type Certificate (Aerospace):

• is issued to signify the airworthiness of an aircraft

manufacturing design,

• is issued by a regulating body (e.g., FAA, EASA).

13

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Standards

14

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Main Aspects of Development

Processes

• Requirements on the development process in particular:

• specification

• design

• verification

• Requirements on the safety management.

15

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example Standards

• IEC 61508 – “Functional Safety”

• ISO 26262 – “Road vehicles – Functional safety”

• ARP 4754 – “Certification Considerations for Highly-

Integrated or Complex Aircraft Systems”

• DO 178B/C – “Software Considerations in Airborne Systems

and Equipment Certification”

16

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
17

E

D

C

A

B

1

2

3

4
C
B

D

DO-254
DO-178C

Industrial

Automotive

10-7

10-5

10-9

10-6

10-8

Non safety
related

systems

fa
il
u
re

 r
a
te

 [
h

-1
]

IEC 61508 ISO 26262

SIL ASIL

A
100 FIT

10 FIT

Possible relation between safety standards
Multi-dimensional aspects needs to be considered here

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Terminology

• Certification-related standards have been developed in

parallel to the academic work. Thus, the terminology as

introduced by Avizienis et al. and used in this course, does

not always apply.

• Certification-related standards introduce their individual terms

and definitions.

18

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Life Cycle Considerations

• A complete framework for the safety life cycle consists of:

• definition of different life cycle phases

• specification of which activities to perform in each phase

• specification of which inputs to provide to each of the

activities

• requirement on which results to achieve.

• Standards vary with respect to their framework completeness.

• e.g., IEC 61508 defines a complete framew. (see next slide)

• e.g., DO 178 defines only the results to be achieved

19

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
20

We will discuss later how some of

these parts tie into each other.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

SW/HW Development Life Cycle

• Standards also vary in imposing requirements on the SW/HW

development life cycle.

• e.g., IEC 61508 does not require any particular SW

development process

• e.g., ISO 26262 defines a V-Model as a reference

software development process (see next slide).

21

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
22

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

23

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508)
• 3.5.1 safety function:

• function to be implemented by an E/E/PE safety-related system or other

risk reduction measures, that is intended to achieve or maintain a safe

state for the EUC [Equipment Under Control], in respect of a specific

hazardous event (see 3.4.1 and 3.4.2)

• 3.5.4 safety integrity:

• probability of an E/E/PE safety-related system satisfactorily performing

the specified safety functions under all the stated conditions within a

stated period of time

• 3.5.8 safety integrity level SIL:

• discrete level (one out of a possible four), corresponding to a range of

safety integrity values, where safety integrity level 4 has the highest

level of safety integrity and safety integrity level 1 has the lowest

24

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

25

Is the result of a risk assessment

(IEC 61508 – part 5).

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

mode of operation: way in which a safety function operates, which may be

either

• low demand mode: where the safety function is only performed on

demand, in order to transfer the EUC into a specified safe state, and

where the frequency of demands is no greater than one per year; or

• high demand mode: where the safety function is only performed on

demand, in order to transfer the EUC into a specified safe state, and

where the frequency of demands is greater than one per year; or

• continuous mode: where the safety function retains the EUC in a safe

state as part of normal operation

26

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

average probability of dangerous failure on demand (PFDavg):

• mean unavailability (see IEC 60050-191) of an E/E/PE

safety-related system to perform the specified safety function

when a demand occurs from the EUC or EUC control system

average frequency of a dangerous failure per hour (PFH)

• average frequency of a dangerous failure of an E/E/PE safety

related system to perform the specified safety function over a

given period of time

27

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

• NOTE 3: Tables 2 and 3 relate the target failure measures, as allocated to a

safety function carried out by an E/E/PE safety-related system, to the safety

integrity level. It is accepted that it will not be possible to predict

quantitatively the safety integrity of all aspects of E/E/PE safety-related

systems. Qualitative techniques, measures and judgements will have to be

made with respect to the precautions considered necessary to ensure that

the target failure measures are achieved...

• NOTE 4 For hardware safety integrity it is necessary to apply quantified

reliability estimation techniques in order to assess whether the target safety

integrity, as determined by the risk assessment, has been achieved, taking

into account random hardware failures (see IEC 61508-2, 7.4.5).

28

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

• Determination of the safety integrity of a safety function is non-

trivial as it highly depends on expert knowledge in the

application area.

• Various methods are informally presented in IEC to determine

the safety integrity (and consequently also the SIL).

• Examples are: ALARP (as low as reasonable possible), and the

quantitative method (IEC 61508 – part 5).

29

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

31

Is the result of a risk assessment

(IEC 61508 – part 5).

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

• Once the SIL of a given safety function is determined, IEC

61508 (part 2, 3) defines particular requirements. IEC 61508

is product prescriptive, i.e., it requires that the end product

implements specific features:

32

IEC 61508 – part 7

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels

(IEC 61508) cont.

• IEC 61508 part 7 gives an overview of techniques and measures, e.g. C.3.3

Failure assertion programming

33

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Automotive SIL (ASIL)

34

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Automotive Safety Integrity Levels

(ISO 26262)
• IEC 61508 determines the SIL levels by consideration of the

consequence of the hazardous event and by the probability of

occurrence of this event.

• The equivalent parameters in ISO 26262 are:

• Severity:

• estimate of the extent of harm to one or more individuals

that can occur in a potentially hazardous situation

• Exposure (actually – the probability of exposure)

• state of being in an operational situation that can be

hazardous if coincident with the failure mode under analysis

35

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Automotive Safety Integrity Levels

(ISO 26262) cont.

• ISO 26262 defines in addition also a third parameter: the

controllability.

• Controllability:

• ability to avoid a specified harm or damage through the timely

reactions of the persons involved, possibly with support from

external measures

• E.g., in current series implementations of driver assistance systems,

the driver is requested to be alert such that he/she can take over in

case of an emergency. Typically the driver needs to get in contact

with the steering wheel every few seconds. This increases and

enforces the controllability.

36

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Automotive Safety Integrity Levels

(ISO 26262) cont.

• Classes of Severity:

• Classes of Probability of Exposure:

• Classes of Controllability:

37

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Automotive Safety Integrity Levels

(ISO 26262) cont.

• QM: Quality Management – there are no hazards associated with

the given application

• ASIL A: lowest automotive safety integrity level, moderate additional

requirements towards the development process

(on top of QM), example sub-system: retractable hardtop for

convertibles

• ASIL B: example sub-system: head & tail lights

• ASIL C: example sub-system: electric drivetrain

• ASIL D: highest automotive safety integrity level, rigorous

development process requirements, example sub-system: EPS

(electro-mechanical power steering)

38

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Automotive Safety Integrity Levels

(ISO 26262) cont.

39

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Determination of ASIL

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
41

Light/moderate

injury

Severe /

lifethreatening

injury (survival

possible)

Lifethreatening /

fatal injury

(survival

uncertain)

Very low

probability
Low

(<1% of operating time)
Medium

(1-10% of operating time)

High

(>10% of operating time)

Simply controllable

(≥ 99% of drivers

are able to control)

Normally controllable

(≥ 90% of drivers

are able to control)

Difficult to

control or

uncontrollable

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

ARP 4754, 4761, DO 178,

DO 254

42

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
43

SAE ARP 4754A

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

▪ Aircraft level functional requirements
are allocated to aircraft systems

▪ Iterative analysis with Functional
Hazard Assessment (FHA)

• Determines severity of failures

▪ Development of System Architecture

• Allocation, Redundancy, Partitioning,
etc.

▪ Preliminary System Safety
Assessment (PSSA) of design,
iteratively (top-down)

• Determines Safety Requirements
and

• Development Assurance Levels

▪ Allocation of requirements to
hardware and software items

▪ HW/SW item development
according to DO-254 and DO-178B,
respectively

▪ System Safety Assesments (SSAs)
analyze implementation (bottom-up)

SAE ARP 4754

44

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Common Cause Analysis
▪ Common Cause Analysis (CCA) targets design errors that may invalidate

subsystem failure independence assumptions required by the (P)SSA.

• Zonal Safety Analysis:

should examine each physical zone of the aircraft to ensure that equipment

installation and potential physical interference with adjacent systems do not violate

the independence requirements of the systems.

• Particular Risk Assessment:

should examine those common events or influences that are outside the system(s)

concerned but which may violate independence requirements. These particular

risks may also influence several zones at the same time, whereas zonal safety

analysis is restricted to each specific zone.

• Common Mode Analysis:

provides evidence that the failures assumed to be independent are truly

independent. The analysis also covers the effects of design, manufacturing, and

maintenance errors and the effects of common component failures.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Functional Hazard Analysis (FHA)

from ARP 4754

46

ARP 4761, p.18

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Consequences, e.g., Aircraft
Minor: 10E-5 per flight hour or greater

no significant reduction of aeroplane safety, a slight reduction in the

safety margin

Major: between 10E-5 and 10E-7

significant reduction in safety margins or functional capabilities,

significant increase in crew workload or discomfort for occupants

Hazardous: between 10E-7 and 10E-9

large reduction in safety margins or functional capabilities, causes

serious or fatal injury to a relatively small number of occupants

Catastrophic: less than 10E-9

these failure conditions would prevent the continued safe flight and

landing of the aircraft

47

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Design Assurance Levels

(ARP, DO 178, DO 254)
• Design Assurance Levels are determined only by the effects on the aircraft:

• DAL A: Catastrophic

• DAL B: Hazardous failure condition

• DAL C: Major

• DAL D: Minor

• DAL E: No Effect

• DO 178 and DO 254 are process prescriptive,

• i.e., the DAL defines which processes need to be executed and how.

• DO 178 and DO 254 are not product prescriptive,

• i.e., the DAL does not require specific functions in an end product

48

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Assurance Cases / Safety Cases

49

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Definitions

• “An assurance case provides arguments to justify certain

claims about a system, based on evidence concerning both

the system and the environment in which it operates.”

[Rushby]

• A safety case is a special kind of assurance case in which

the claims being argued concern safety properties.

50

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Prescriptive Method vs.

Performance-Oriented Method

• Prescriptive methods can be product prescriptive and/or

process prescriptive.

• We have discussed IEC 61508 and ISO 26262 as product

prescriptive methods.

• We have discussed DO 178b/c and DO 254 as project

prescriptive methods.

• In performance-oriented methods, “the certification authority

specifies a threshold of acceptable performance and a

means for assuring that the threshold has been met. [...] it is

up to the assurer to decide how to accomplish that goal.”

[Leveson].

51

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 5: Failure Modes and Models

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• Recap from Part 2: Canonical Failure Classification

• Failure Mode Hierarchy

• Fault-Hypothesis, Failure Semantics, and Assumption

Coverage

• Failure Hypothesis Estimation

• Overview of Safety Analysis Methods

• Comparison of Safety Analysis Methods

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Recap from Part 2: Canonical

Failure Classification

3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failures

Recap:

A (service) failure is an event that occurs when the delivered

service deviates from correct service.

• Thus, a failure is a transition from correct service to incorrect

service.

4

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Overview

• Domain:

• content, early timing failure, late timing failure, halt failure,

erratic failure

• Detectability:

• signaled failures, unsignaled failures

• Consistency:

• consistent failure, inconsistent failure

• Consequences:

• minor failure, ..., catastrophic failure

5

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Domain

• Content

• Early timing failure

• Late timing failure

• Halt failure

− the external state becomes constant, i.e., system activity

is no longer perceptible to the users

− silent failure mode is a special kind of halt failure in that

no service at all is delivered

• Erratic failure

− not a halt failure, e.g., a babbling idiot failure

6

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Consistency

When there are more than one users of a service.

• Consistent failure:

• All users experience the same incorrect service.

• Inconsistent failure

• Different users experience different incorrect services.

7

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Classification –

Consequences, e.g., Aircraft
Minor: 10E-5 per flight hour or greater

no significant reduction of aeroplane safety, a slight reduction in the

safety margin

Major: between 10E-5 and 10E-7

significant reduction in safety margins or functional capabilities,

significant increase in crew workload or discomfort for occupants

Hazardous: between 10E-7 and 10E-9

large reduction in safety margins or functional capabilities, causes

serious or fatal injury to a relatively small number of occupants

Catastrophic: less than 10E-9

these failure conditions would prevent the continued safe flight and

landing of the aircraft

8

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Hierarchy

9

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Based on the strength of the assumptions the failure modes form a

hierarchy.

• byzantine failures are based on the weakest assumption

(a non-assumption)

• fail-stop failures are based on the strongest assumptions

(only correct results, information about the last correct state in case

of a failure)
10

Byzantine

Performance

Authentification detectable byzantine

Omission

Crash

Fail-stop

Universe of possible behavior

Fail uncontrolled behavior

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Example

11

Faulty ECU

Without protection, the switch

forwards all frames from the attack. At some magnitude of attack, the switch

starts loosing frames from other,

independent applications.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Based on the strength of the assumptions the failure modes form a

hierarchy.

• byzantine failures are based on the weakest assumption

(a non-assumption)

• fail-stop failures are based on the strongest assumptions

(only correct results, information about the last correct state in case

of a failure)
12

Byzantine

Performance

Authentification detectable byzantine

Omission

Crash

Fail-stop

Universe of possible behavior

Fail uncontrolled behavior

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Hierarchy (cont.)

• Byzantine or arbitrary failures:

there is no restriction on the behavior at the system interface,

this mode is often called fail-uncontrolled

(“two-faced” behavior, forging of messages)

• Authentification detectable byzantine failures:

the only restriction on the behavior at the system interface is

that messages of other systems cannot be forged

(this failure mode applies only to distributed systems)

13

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Hierarchy (cont.)

• Performance failures:

under this failure mode systems deliver correct results in the

value domain, in the time domain results may be early or

late (early or late failures)

• Omission failures:

a special class of performance failures where results are

either correct or infinitely late (for distributed systems

subdivision in send and receive omission failures)

14

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Mode Hierarchy (cont.)

• Crash failures:

a special class of omission failures where a system does not

deliver any subsequent results if it has exhibited an omission

failure once

(the system is said to have crashed)

• Fail-Stop failures:

besides the restriction to crash failures it is required that

other (correct) systems can detect whether the system has

failed or not and can read the last correct state from a stable

storage

15

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-Hypothesis, Failure Semantics,

and Assumption Coverage

16

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-Hypothesis, etc.
Concepts

• Fault hypothesis:

The fault hypothesis specifies anticipated faults which a

server must be able to handle (also fault assumption).

• Failure semantics:

A server exhibits a given failure semantics if the probability of

failure modes which are not covered by the failure semantics

is sufficiently low.

• Assumption coverage:

Assumption coverage is defined as the probability that the

possible failure modes defined by the failure semantics of a

server proves to be true in practice conditions on the fact that

the server has failed.
17

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-Hypothesis, etc. (cont.)

Importance of assumption coverage

• The definition of a proper fault hypothesis, failure semantics

and achievement of sufficient coverage is one of the most

important factors.

• If the fault hypothesis (or failure semantics) is violated a

system may fail as a whole.

18

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-Hypothesis, etc. (cont.)

Assumption Coverage Example

If component 1 or 2 violates its failure semantics the system

fails, although it was designed to tolerate 1 component failure.

19

Component 1

Component 2

Voter

input 1

input 2

output

crash semantics

crash semantics

Why?

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-Hypothesis, etc. (cont.)

The Titanic or: violated assumption coverage

• The fault hypothesis:

The Titanic was built to stay afloat if less or equal to 4 of the

underwater departments were flooded.

• Rationale of fault hypothesis:

This assumption was reasonable since previously there had

never been an incident in which more than four

compartments of a ship were damaged.

• But:

Unfortunately, the iceberg ruptured five spaces, and the

following events went down to history.

20

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failure Hypothesis Estimation

21

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Life-characteristics curve (Bathtub curve)

• For semiconductors, out of three terms describing the life

characteristics only infant mortality and the constant-failure-

rate region are of concern

22

Life-characteristics curve, showing the three components of failure

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Semiconductor failure rate

• a typical failure rate distribution for semiconductors shows

that wear out is of no concern

23

Semiconductor failure rate

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Stress Tests

• semiconductor failures are stress dependent

• the most influential stress factor is temperature

24

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Stress Tests (cont.)

Arrhenius equation

• the basic relationship between the activation rate of failures

and temperature is described by the Arrhenius equation

25

Arrhenius plot (EA = 1 eV)

R0 .. constant

T .. absolute temperature (K)

EA .. activation energy (eV)

k .. Boltzmann’s constant 8.6 10-5 eV/K

 R = R0e
−

EA

kT

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Stress Tests (cont.)

Accelerated stress testing of semiconductors

• to remove freaks and infant-mortality failures (screening)

• to determine the expected failure rate

Accelerated conditions:

accelerated temperature lowering of temperature

cycling of temperature high temperature and current

temperature and voltage stress  particles

temperature, voltage and high voltage gradients

humidity stress

26

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Stress Tests (cont.)

Software stress

• For software there is no sound empirical and mathematical basis to

use stress as a method to characterize the behavior of components.

• it is currently unknown how to characterize stress for software

• it is impossible to carry out accelerated stress tests to examine

failure rates for software

• for software there is no such relation as the Arrhenius equation

which describes the activation rate of failures

• there is no general possibility to “over-engineer” a system to

handle conditions which are more stressful

27

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Hardware/Software

Interdependence

• software depends on hardware:

• software requires hardware to execute

(e.g. Intel’s Pentium bug)

• hardware depends on software:

• VLSI design uses software tools

• PCB layout and routing by software tools

• EMC analysis by software tools

• hardware testers are software driven

28

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Overview of Safety Analysis

Methods

29

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Concepts

System Safety: is a subdiscipline of system engineering that

applies scientific, management, and engineering principles to

ensure adequate safety, throughout the operational life cycle,

within the constraints of operational effectiveness, time and cost.

Safety: has been defined as “freedom from those conditions that

can cause death, injury, occupational illness, or damage to or

loss of equipment or property”. safety has to be regarded as a

relative term.

Software Safety: to ensure that the software will execute within a

system context without resulting in unacceptable risk

30

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety analysis
Overview

• includes complete life cycle of project/product

(specification, design, maintenance, modification, ...)

• definition of responsibilities

• communication with other groups

• complete documentation

• analysis of complex processes

• management procedures

(specialists, meetings, action reviews, time schedule, ...)

31

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Major topics of Safety analysis

• which (hazard analysis)

• how (accident sequencing)

• how likely (quantitative analysis)

32

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Safety analysis methodologies

• Preliminary Hazards Analysis (PHA)

• Hazards and Operability Study (HAZOP)

• Action Error Analysis (AEA)

• Fault Tree Analysis (FTA)

• Event Tree Analysis (ETA)

• Failure Modes and Effect Analysis (FMEA)

Failure Modes, Effect and Criticality Analysis (FMECA)

• Cause-consequence analysis

33

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Preliminary hazard analysis (PHA)

• The first step in any safety program is to identify hazards and

to categorize them with respect to criticality and probability

• define system hazards

• define critical states and failure modes

• identify critical elements

• determine consequences of hazardous events

• estimate likelihood of hazardous events

• issues to be analyzed in more detail

34

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Hazards and Operability Study (HAZOP)

Based on a systematic search to identify deviations that may

cause hazards during system operation

Intention: for each part of the system a specification of the

“intention” is made

Deviation: a search for deviations from intended behavior which

may lead to hazards

Guide Words: Guide words on a check list are employed to

uncover different types of deviations

(NO, NOT, MORE, LESS, AS WELL AS, PART OF,

REVERSE, OTHER THAN)

Team: the analysis is conducted by a team, comprising different

specialists
35

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Example for HAZOP

• Intention: pump a specified amount of A to reaction tank B.

Pumping of A is complete before B is pumped over.

36

NO or NOT

– the tank containing A is empty

– one of the pipe’s two valves V1 or V2 is closed

– the pump is blocked, e.g. with frozen liquid

– the pump does not work (switched off, no power, ...)

– the pipe is broken

CONSEQUENCE is serious, a possible explosion

MORE

– the pump has a too high capacity

– the opening of the control valve is too large

CONSEQUENCE not serious, tank gets overfilled

AS WELL AS

– valve V3 is open, another liquid or gas gets pumped

– contaminants in the tank

–A is pumped to another place (leak in the connecting

pipe)

CONSEQUENCE is serious, a possible explosion

. . .

A

C

B

V1

V3
V2

V5

V4

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Action Error Analysis (AEA)

Considers the operational, maintenance, control and supervision

actions performed by human beings. The potential mistakes in

individual actions are studied.

• list steps in operational procedures (e.g. “press button A”)

• identification of possible errors for each step, using a check-list of

errors

• assessment of the consequences of the errors

• investigations of causes of important errors

(action not taken, actions taken in wrong order, erroneous actions,

actions applied to wrong object, late or early actions, ...)

• analysis of possible actions designed to gain control over these

process

• relevant for software in the area of user interface design

37

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

https://www.theguardian.com/world/2015/jul/02/transasia-crash-pilot-pulled-wrong-

throttle-shut-down-sole-engine

https://en.wikipedia.org/wiki

/Kegworth_air_disaster

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Fault Tree Analysis (FTA)

A graphical representation of logical combinations of causes that

may lead to a hazard (top-event). Can be used as a quantitative

method.

• identification of hazards (top-events)

• analysis to find credible combinations which can lead to the

top-event

• graphical tree model of parallel and sequential faults

• uses a standardized set of symbols for Boolean logic

• expresses top-event as a consequence of AND/OR

combination of basic events

• minimal cut set is used for quantitative analysis

39

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Symbols used in fault tree analysis

40

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

An Example for fault tree analysis

In a container two chemicals react with each other over a period of 10 hours at a

temperature of 125 °C. If the temperature exceeds 175 °C toxic gas is emitted.

The temperature is controlled by a computer system.

41

Relay
Valve

Alarm

Computer

system

T = 125°C

Power Supply

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

An Example for fault tree analysis (cont.)

Identification of the top-event:

Emission of poisonous gas

is the top event

42

The upper part of the fault tree

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

An Example for fault tree analysis (cont.)

Subtree for temperature

measurement failure

43

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

An Example for fault tree analysis (cont.)

Subtree for heating

cut off failure

44

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Autonomous Driving Example

45

Failure of the
Computer

Vision System

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Event Tree Analysis (ETA)

Models the potential consequences of faults which are

considered as events. Can be used as a quantitative method.

• identification of basic events

• start with basic events and describe possible consequences

of this event

• binary decision for consequences of events

• opposite of FTA which starts with top events

46

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Failure Modes and Effect Analysis (FMEA)

A common method where the designer in a systematical way

has to answer the questions “How can the component fail?” and

“What happens then?”.

• the system is dived up into different components in the form

of a block diagram

• failure modes are identified for all components

• causes, consequences and the significance of failures are

assessed for each failure mode

47

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Failure Modes and Effect Analysis (FMEA) (cont.)

• an investigation is made into how the failure can be detected

• if necessary, recommendations for suitable control measures

are made

• analysis is supported by tabular sheets (e.g. IEC

standard 1985)

• failure mode, effects and criticality analysis (FMECA) puts

special emphasis on the criticality aspect

48

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

An example FMEA hazard assessment

49

Severity of consequence Probability of occurrence Probability of detection

10 Very severe 10 High 500 10-6 10 Unprobable

System operation has to be It is almost certain that the It is impossible or at very in-

9 abandoned or even a safety 9 failure will occure with high probable that the failure can

critical state may be reached probability be detected

8 Severe 8 Moderate 50 10-6 9 Very low

Failure causes disturbance of The component is similiar to com- It is possible to detect the fault

end user (no safety critical 7 ponent designs which already have before the system fails

7 failures or violations of regu- caused problems in the past

lations) 8 Small

6 Moderate 6 Small 5 10-6 7

Failure causes inconvenience of The component is similiar to com-

5 the end user, restricted system 5 ponent designs which have caused 6

operation will be perceived by problems in the past, but the extend

4 the customer 4 of problems was relatively low 5 Moderate

3 Minor 3 Very small 100 10-9 4

Failure causes only minor incon- The component is similiar to com- 3

venience of the end user, only ponent designs which had very

2 minor restrictions of the system low failure rates in the past

operation are perceiveable 2 High

1 Improbable 1 Improbable 1 10-9 1 Very High

It very improbable that the failure It is very improbable that a failure It is certain that the faults gets de-

will be perceived by the end user ocurrs tected before the system fails

Hazard assessment

criterias

according to VDA

(Verein Deutscher

Automobilhersteller)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

An example FMEA hazard assessment (cont.)

50

Function Failure Mode Cause Effect Controls

speed sensor open connector or no operation supplier quality control and 9 4 3 108

harness possible end of line testing

computer no operation computer supplier quality control 9 3 3 81

possible and end of line testing

sensor no operation sensor supplier quality control, 9 4 3 108

possible module and end of line testing

short to connector or no operation supplier quality control and 9 2 3 54

supply harness possible end of line testing

computer no operation computer supplier quality control 9 2 3 54

possible and end of line testing

sensor no operation sensor supplier quality control, 9 2 3 54

possible module and end of line testing

short to connector or no operation supplier quality control and 9 1 3 27

ground harness possible end of line testing

computer no operation computer supplier quality control 9 1 3 27

possible and end of line testing

sensor no operation sensor supplier quality control, 9 1 3 27

possible module and end of line testing

Severity

Probability

Dedection

Product

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Cause-consequence analysis

Combination of fault tree analysis and event tree analysis

• starts at a critical event

• works forward by using event tree analysis (consequences)

• works backward by using fault tree analysis (causes)

• very flexible

• well documented method

51

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of Safety Analysis

Methods

52

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of Safety Analysis

Methods

53

Method

Preliminary
hazards analysis

Hazards and
operability study

Action error
analysis

Advantages

A required first step.

Suitable for large chemical plants.
Results in a list of actions, design
changes and cases identified for
more detailed study. Enhances the
information exchange between
system designers, process designers
and operating personnel.

Gives the computer system designer
proposals for proper interface
design. Helps the personnel or users
to monitor the process during
operation and helps to prevent
operator mistakes.

Restrictions and deficiencies

None.

Technique is not well standardized
and described in the literature. Most
often applied to continuos
processes.

AEA is an analysis of the technical
system, and does not analyze the
behavior of operators. The thoughts
and intentions of human beings, i.e.
the reasons for mistakes, are not
considered.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of Safety Analysis

Methods (cont.)

54

Method

Fault tree
analysis

Event tree
analysis

Advantages

Well accepted technique. Very good
for finding failure relationships. A
fault oriented technique which looks
for the ways a system can fail.
Makes it possible to verify
requirements, which are expressed
as quantitative risk values.

Can identify effect sequences and
alternative consequences of failures.
Allows analysis of systems with
stable sequences of events and
independent events.

Restrictions and deficiencies

Large fault trees are difficult to
understand, bear no resemblance to
system flow charts, and are
mathematically not unique. It
assumes that all failures are of
binary nature, i.e. a component
completes successfully or fails
completely.

Fails in case of parallel sequences.
Not suitable for detailed analysis
due to combinatorial explosion.
Pays no attention to extraneous,
incomplete, early or late actions.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of Safety Analysis

Methods (cont.)

55

Method

Failure modes
and effects
analysis

Cause-
consequence
analysis

Advantages

Easily understood, well accepted,
standardized technique. Non-
controversial, non-mathematical.
Studies potential failures and their
effects on the function of the system.

Extremely flexible and all-
encompassing methodology. Well
documented. Sequential paths for
critical events are clearly shown.

Restrictions and deficiencies

Examines non-dangerous failures
and is therefore time consuming.
Often combinations of failures and
human factors not considered. It is
difficult to consider multiple and
simultaneous failures.

Cause-consequence diagrams
become too large very quickly (as
FTA, ETA). They have many of the
disadvantages of fault tree analysis.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Problems with software safety

analysis
• relatively new field

• lack of systematic engineering discipline

• no agreed or proven methodologies

• time and cost

• complexity

(understanding of the problem domain, separation of knowledge)

• discrete nature of software

(difficulties with large discrete state spaces)

• real-time aspects

(concurrency and synchronization)

• (partially) invalid assumption of independent failures

56

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 6: System aspects of dependable computers

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• System design considerations

• Fault-tolerance: systematic vs. application-specific

• The problem of Replica Determinism

• Services for replicated fault-tolerant systems

• Basic Services

• Clock Synchronization Services

• Communication Services

• Replica Control Services

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System design considerations

3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

System design considerations

Fault-tolerance is not the only means for dependability.

To achieve given dependability goals the following aspects need

consideration (usually in the order given here):

• perfection low

• maintenance

• fault-tolerance design complexity

• systematic fault-tolerance

• application-specific fault-tolerance high

4

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Perfection vs. fault-tolerance
Perfection is easier than fault-tolerance:

• if it is possible to attain a given dependability goal by means of

perfection then use perfection in favor of fault-tolerance

• perfection leads to conceptual simpler systems

• lower probability of design faults

• does not require error detection, damage confinement and

assessment, error recovery and fault treatment to tolerate faults

• steady reliability improvement of hardware components supports

perfection

But, perfection is limited:

• perfection is limited by the dependability of individual components

• very high dependability goals can only be reached by maintenance or

by fault-tolerant systems

5

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Maintenance vs. fault-tolerance
Maintenance is easier than fault-tolerance:

• if it is possible to attain a given dependability goal (availability) by

means of maintenance then use maintenance in favor of fault-tolerance

• maintenance adds to system complexity, but is still considerable simpler

than fault-tolerance

• maintenance has lower probability of design faults than FT

• maintenance requires error detection and damage confinement, but no

error recovery and fault treatment at system level

• there is also trade off between maintenance and reliability (connector

vs. solder joint), i.e., some maintenance measures may reduce reliability

But, maintenance is limited:

• maintenance is limited by the dependability of individual components

• applicability of maintenance is limited (cf. next slide)

6

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Limitations of maintenance
• maintenance (without fault-tolerance) is only applicable if

system down times are permitted

• fail-stop or fail-safe systems allow down times:

(train signaling, anti-lock braking system, …)

• fail-operational systems do not allow down times:

(fly-by-wire, reactor safety system, …)

• only restricted reliability and safety improvements by

preventive maintenance

• preventive maintenance is only reasonable if:

• replacement units have constant or increasing failure rate

• infant mortality is well controlled and failure rates are

sufficiently low

7

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The maintenance procedure
The maintenance procedure consists of the following phases:

• error detection

• call for maintenance

• maintenance personnel arrival

• diagnosis

• supply of spare parts

• replacement of defect components

• system test

• system re-initialization

• resynchronization with environment

8

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Aspects of maintenance
• maintenance costs vs. system costs

• error latency period, error propagation and error diagnosis

• maintenance personnel

(number, education, equipment, location, service hours, etc.)

• spare part supply, stock or shipment

• Maintainability of a system depends on the:

– quality and availability of documentation

– including test plans

– design of the system structure with maintenance in mind

– implementation of appropriate error messages

– size and interconnection of replacement units

– accessibility of replacement units

– mechanical stability of replacement units

9

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Determining factors for SRU size

The size of the smallest replaceable unit (SRU) is determined by the

following factors:

factor (increases) SRU size

qualification of service personnel decreases

effort for diagnosis decreases

cost of SRU increases

spare part costs1 increases

maintainability increases

maintenance duration decreases

1Cost for parts which are used to construct SRU’s
10

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Diagnosis support for maintenance
• diagnosis support is very important and therefore needs to be

considered during system design

• self diagnosis with meaningful messages

• needs to completely cover the error domain

• maintenance documentation:

• symptom → cause and affected SRU

• error symptom/cause matrix indicates for each symptom

all possible SRU’s that may cause the symptom

• sparse matrices indicate good diagnosability

• expert system support for diagnosis

• duration of diagnosis is important for MTTR

11

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance: systematic vs.

application-specific

12

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Application-specific fault-tolerance

• the computer system interacts with some physical process, the

behavior of the process is constrained by the law of physics

• these laws are implemented by the computer system to check

its state for reasonableness

• for example:

• the acceleration/deceleration rate of an engine is

constrained by the mass and the momentum that affects

the axle

• signal range checks for analog input signals

• reasonableness checks are based on application knowledge

• fail-stop behavior can be implemented based on

reasonableness checks

13

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Application-specific fault-tolerance
• the laws of physics constraining the process can be used to

perform state estimations in case some component has failed

• for example:

• if the engine temperature sensor fails, a simple state

estimation could assume a default value

• a better state estimation can be based on the ambient

temperature of the engine, engine load and thermostatic

behavior of the engine

• the speed of a vehicle can be estimated if the engine speed

and the transmission ratio is known

• state estimations are based on application knowledge

• fail-operational behavior can be implemented based on

reasonableness checks and state estimations

14

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Systematic fault-tolerance
• does not use application knowledge, makes no assumptions

on the physical process or controlled object

• uses replicated components instead

• replicas must be designed to deliver corresponding results in

the absence of faults

• if among a set of replicated components, some—but not all—

fail then there will be divergence among replicas

• information on divergence is used for fault detection

• The problem of replica determinism: due to the limited

accuracy of any sensor that maps continuous quantities onto

computer representable discrete numbers it is impossible to

avoid nondeterministic behavior.
15

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Systematic fault-tolerance (cont.)

• systematic fault-tolerance requires agreement protocols due

to replica nondeterminism

• the agreement protocol has to guarantee that correct replicas

return corresponding results

• fail-stop behavior can be implemented by using the

information of divergent results, i.e., when replicas diverge

then the system stops

• fail-operational behavior can be implemented by using

redundant components, i.e., NooM: “N-out-of-M” replicas

provide corresponding results (e.g., TMR – 2oo3)

16

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of fault-tolerance

techniques

17

Systematic fault-tolerance

• replication of components

• divergence among replicas in case of

faults

• no reasonableness checks necessary

• requires replica determinism

• no application knowledge necessary

• exact distinction between correct and

faulty behavior

Application-specific fault-tolerance

• no replication necessary

• —

• reasonableness checks for fault

detection

• —

• depends on application knowledge

• fault detection is limited by a gray

zone

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of fault-tolerance

techniques (cont.)

18

Systematic fault-tolerance

• no state estimations necessary

• independence of application areas

• service quality is independent of

whether replicated components are

faulty or not

• correct system function depends on

the number of correct replicas and

their failure semantics

• only backward recovery

Application-specific fault-tolerance

• state estimations for continued service

• missing or insufficient reasonableness

checks for some application areas

• quality of state estimations is lower than

quality delivered during normal

operation

• correct system function depends on the

severity of faults and on the capability of

reasonableness checks and state

estimations

• forward and backward recovery

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparison of fault-tolerance

techniques (cont.)

19

Systematic fault-tolerance

• additional costs for replicated

components (if no system inherent

replication is available)

• no increase in application complexity

• considerable increase of system level

complexity

• separation of fault-tolerance and

application functionality

• fault-tolerance can be handled

transparently to the application

Application-specific fault-tolerance

• no additional costs for replicated

components

• considerable increase in application

complexity

• no increase of system level

complexity

• application and fault-tolerance are

closely intertwined

• — // —

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Systematic and application-specific fault-tolerance

• under practical conditions there will be a compromise between

systematic and application-specific fault-tolerance

• usually cost, safety and reliability are the determining factors to choose

a proper compromise

• software complexity plays an important role:

• for complex systems software is almost unmanageable without

adding fault-tolerance (fault containment regions and software

robustness)

• therefore systematic fault-tolerance should be applied in favor of

application-specific fault-tolerance to reduce the software

complexity

• systematic fault-tolerance allows to test and to validate the

mechanisms independently of the application software (divide

and conquer)

20

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The problem of Replica Determinism

21

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The problem of Replica Determinism
• For systematic fault-tolerance it is necessary that replicated

components show consistent or deterministic behavior in the

absence of faults.

• If for example two active redundant components are working

in parallel, both have to deliver corresponding results at

corresponding points in time.

• This requirement is fundamental to differentiate between

correct and faulty behavior.

• At a first glance it seems trivial to fulfill replica determinism

since computer systems are assumed to be examples of

deterministic behavior, but in the following it is shown that

computer systems behave only almost deterministically.

22

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior
• Inconsistent inputs:

If inconsistent input values are presented to the replicas then

the results may be inconsistent too.

• a typical example is the reading of replicated analogue

sensor read(S1) = 99.99 °C, read(S2) = 100.00 °C

• Inconsistent order:

If service requests are presented to replicas in different order

then the results will be inconsistent.

23

S1

S2

S3

s1 s2

s1 s2

s1 s2

s0

s0

s0

external event e

service state

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior (cont.)

• Inconsistent membership information:

Replicas may fail or leave groups voluntarily or new replicas

may join a group.

If replicas have inconsistent views about group membership

it may happen that the results of individual replicas will differ.

24

S1

S2

S10

S11

S12

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior (cont.)

• Nondeterministic program constructs:

Besides intentional nondeterminism, like random number

generators, some programming languages have

nondeterministic program constructs for communication and

synchronization (Ada, OCCAM, and FTCC).

25

task server is

entry service_1();

...

entry service_n();

end server;

task body server is

begin

select

accept service_1() do

action_1();

end;

...

or

accept service_n() do

action_n();

end;

end select;

end server;

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior (cont.)

• Local information:

If decisions with a replica are based on local knowledge

(information which is not available to other replicas) then the

replicas will return different results.

• system or CPU load

• local time

• Timeouts:

Due to minimal processing speed differences or due to slight

clock drifts it may happen that some replicas locally decide to

timeout while others do not.

26

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior (cont.)

• Dynamic scheduling decisions:

Dynamic scheduling decides in which order a series of

service requests are executed on one or more processors.

This may cause inconsistent order due to:

• non-identical sets of service requests

• minimal processing speed differences

27

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior (cont.)

• Message transmission delays:

Variabilities in the message transmission delays can lead to

different message arrival orders at different servers (for point-

to-point communication topologies or topologies with routing).

28

S1

S2

S3

s1

r1 r2

r2 r1

S4 s2
t

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The consistent comparison problem:
• computers can only represent finite sets of numbers

• it is therefore impossible to represent the real numbers exactly, they

are rather approximated by equivalency classes

• if the results of arithmetic calculations are very close to the border of

equivalency classes, different implementations can return

diverging results

• different implementations are caused by: N-version programming,

different hardware, different floating point libraries, different compilers

• for example the calculation of (a – b)2 with floating point

representation with a mantissa of 4 decimal digits and rounding where

a = 100 and b = 0.005 gives different result for mathematical

equivalent formulas.

(a – b)2 = 1.000 104

(a – b)2 = a2 –2ab + b2 = 9.999 103

29

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fundamental limitations to replication
The real world abstraction limitation:

• dependable computer systems usually interface with

continuous real-world quantities:

quantity SI-unit

distance meter [m]

mass kilogram [kg]

time second [s]

electrical current ampere [A]

• these continuous quantities have to be abstracted (or

represented) by finite sets of discrete numbers

• due to the finite accuracy of any interface device, different

discrete representations will be selected by different

replicas

30

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fundamental limitations to replication (cont.)

The impossibility of exact agreement:

• due to the real world abstraction limitation it is impossible

to avoid the introduction of replica non-determinism at the

interface level

• but it is also impossible to avoid the once introduced

replica nondeterminism by agreement protocols

completely

• exact agreement would require ideal simultaneous

actions, but in the best case actions can be only

simultaneous within a time interval d

31

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fundamental limitations to replication (cont.)

Intention and missing coordination:

• replica nondeterminism can be introduced intentionally

• or unintentionally by omitting some necessary

coordinating actions

32

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Replica control

• Due to these fundamental limitations to replication it is

necessary to enforce replica determinism which is called

replica control.

33

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Internal vs. external replica control

Internal replica control:

• avoid nondeterministic program constructs, uncoordinated timeouts,

dynamic scheduling decisions, diverse program implementations,

local information, and uncoordinated time services

• can only be enforced partially due to the fundamental limitations to

replication

External replica control:

• control nondeterminism of sensor inputs

• avoid nondeterminism introduced by the communication service

• control nondeterminism introduced by the program execution on the

replicated processors by exchanging information

34

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Def.: Replica Determinism

Correct replicas show correspondence of service outputs

and/or service states under the assumption that all servers

within a group start in the same initial state, executing

corresponding service requests within a given time interval.

• this generic definition covers a broad range of systems

• correspondence and within a given time interval needs to be

defined according to the application semantics

35

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Groups, resiliency and replication

level

• Replicated entities such as processors are called groups.

• The number of replicas in a group is called replication level.

• A group is said to be n-resilient if up to n processor failures

can be tolerated.

36

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Services for replicated fault-tolerant

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

37

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Services for replicated fault-tolerant

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

38

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

• Membership:

Every non-faulty processor within a group has timely and

consistent information on the set of functioning processors

which constitute the group.

• Agreement:

Every non-faulty processor in a group receives the same

service requests within a given time interval.

• Order:

Explicit service requests as well as implicit service requests,

which are introduced by the passage of time, are processed

by non-faulty processors of a group in the same order.

39

Basic services for replicated fault-

tolerant systems

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Services for replicated fault-tolerant

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

40

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Logical Clocks
• all members in a group observe the same events in the same

order

• this applies to process internal events and external events such

as service requests and faults

• external events need to be reordered according to the internal

precedence relation and individual processing speeds

41

P1

P2

P3

3210 e

te t

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Logical Clocks

42

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system." Communications of the

ACM 21, no. 7 (1978): 558-565.

We want to define a

“happened before” relation

between events in the

distributed system (→) that

defines a partial order of

events and captures potential

causality, but excludes

external clandestine channels.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Logical Clocks

43

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system." Communications of the

ACM 21, no. 7 (1978): 558-565.

Def.: The relation → on a set of

events in a distributed system is the

smallest relation satisfying the

following three relations:

1. If a and b are events performed

by the same process, and a is

performed before b then a → b.

2. If a is the event of sending of a

message by one process and b

the receiving of the same

message by another process,

then a → b.

3. Transitivity: if a → b and b → c,

then a → c.

Two distinctive events are said to

be concurrent if neither a → b

nor b → a.

Can you find examples px→ ry in the figure?

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Logical Clocks (cont.)

Logical Clocks implement a distributed algorithm over local variables (i.e.,

the logical clocks LC) that satisfies the following clock condition:

Clock Condition: a → b then LC(a) < LC(b)
(we cannot expect the converse condition to hold as well)

An algorithm implementing logical clocks (i.e. satisfying the Clock

Condition):

1. Each process Pi increments LCi between two

successive events.

2. If event a is the sending of a message m by process Pi, then the

message m contains a timestamp Tm= LCi(a). Upon receiving a

message m, process Pj sets LCj greater than or equal to its

present value and greater than Tm.

44

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example

45

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system." Communications of the

ACM 21, no. 7 (1978): 558-565.

1 1 1

2

3

2

3

4

5

6

7

6

2

5

6

1. Each process P (and Q,R)

increments its LC between two

successive events

2. If event a is the sending of a

message m by process P, then

the message m contains a

timestamp Tm= LCP(a). Upon

receiving a message m,

process Q sets LCQ greater

than or equal to its present

value and greater than Tm.

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Logical Clocks (cont.)

• The algorithm defines no total order since independent

processes may use the same timestamp for different events.

• A possible solution is to break ties by using a lexicographical

process order.

• Logical clocks have no gap-detection property.

• Gap-detection:

Given a local process with local clock LC and given two

events e and e’ with clock values LC(e) < LC(e’) (and only

this information) and let’s further assume that we record all

events and their timestamps on LC. Then, when looking at

this list determine whether some other event e’’ is missing in

this list such that LC(e) < LC(e’’) < LC(e’).

46

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Logical Clocks (cont.)

• The gap-detection property is necessary for stability and a

bounded action delay, i.e., before an action is taken it has to

be guaranteed that no earlier messages are delivered

• Stability and action delay are based on potential causality,

two events e and e’ are potential causal related if e → e’.

• Vector clocks are an extension of logical clocks which have

gap-detection property.

47

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Vector Clocks
• vector clocks are an extension of logical clocks which have

gap-detection property

• An algorithm implementing vector clocks:

(1) Each process Pi increments VCi

between two successive events

(2) Upon receiving a message m, a

process Pj sets all vector elements

VCj to the maximum of VCj and

Tm, where Tm is message m’s vec-

tor clock timestamp. Afterwards

the element VCj[j] is incremented.

• Potential causality for vector clocks e → e’  VC(e) < VC(e’)

−VC < VC’  (VC ° VC’)  (i:1 Š i Š n: VC[i] Š VC’[i])

48

(1,0,0)

t

(2,1,0) (3,1,3) (4,1,3) (5,1,3) (6,1,3)

(0,1,0)

(1,2,4)

(4,3,4)

(0,0,1)(1,0,2)(1,0,3)(1,0,4)(1,0,5) (5,1,6)

P1

P2

P3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

In an ensemble of clocks, the precision P is

defined as the maximum distance between

any two synchronized non-faulty clocks at

any point in real time.

Perfect Clock Early ClockLate Clock

Round i Round i+1

Clocktime Node A

Round i Round i+1

Clocktime Node B

Event e1P

Real-Time Clocks

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Real-Time Clocks
• all processors have access to a central real-time clock or

• all processors have local real-time clocks which are

approximately synchronized

• the synchronized clocks define a global time grid where

individual clocks are off at most by one tick at any time

instant t

• the maximum deviation among clocks is called precision

• t-precedent events (events that are at least t real-time steps

apart) can be causally related regardless of clandestine

channels

50

3210 e

te
t

4 5
P1

P2

P3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Comparing Real-Time and Logical Clocks

real-time clocks logical clocks

synchronous system model asynchronous system model

higher synchronization overhead little delays and synchronization

overhead if only system internal events

are considered

needs to achieve consensus on the external events need to be reordered

systematic clock error of one tick in accordance to logical time

stability within one clock tick unbounded duration for stability,

requires consistent cut or vector clock

potential causality for t-precedent potential causality only for closed

external events systems

bounded action delay (total order) unbounded action delay (no total order)

51

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Services for replicated fault-tolerant

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

52

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Communication Services

The following arguments motivate the close interdependence of fault-

tolerant computer systems, communication and replica control:

• fault-tolerant systems are built on the assumption that individual

components fail independently

• this assumptions requires the physical and electrical isolation of

components at the hardware level

• these properties are best fulfilled by a distributed computer system

where nodes are communicating through message passing but

have no shared resources except for the communication media

• furthermore it has to be guaranteed that faulty nodes are not able to

disturb the communication of correct nodes and that faulty nodes

are not allowed to contaminate the system

53

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved
54

Network Architecture

Space Aerospace

Automotive

… and many more …

TTEthernet

AFDX

Time-Sensitive Networking

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Requirements for networks for dependable cyber-physical systems:

• Real-Time message deliver (often < 1ms)

• High Dependability (Safety, Reliability)

− Failure probability as low as 10-9 (sometimes even less)

− No single point of failure (sometimes even no dual)

• Mixed time- and safety-criticality

− Share a single network between different application
types.

• High Performance

− Aerospace is at 100Mbit/sec, will transit to 1Gbit/sec

− Automotive has a need for > 1Gbit/sec already (bc. AD)

• Security (rather new requirement)

55

Network Architecture

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Services for replicated fault-tolerant

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

56

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Central Replica Control

• Strictly central replica control principle:

• there is one distinguished processor within a group called

leader or central processor

• the leader takes all nondeterministic decisions

• the remaining processors in the group, called followers,

take over the leaders decisions

57

G1 G2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Central Replica Control (cont.)

• Strictly central replica control requires a communication

service assuring reliable broad- or multicast.

• Reliable broadcast: A distinguished processor, called the

transmitter, sends its local service request to all other

processors in the group, fulfilling the following properties:

• Consistency: All correct processors agree on the same

value and all decisions are final.

• Non-triviality: If the transmitter is non faulty, all correct

processors agree on the input value sent by the

transmitter.

• Termination: Each correct processor decides on a value

within a finite time interval .

58

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

• Failures and Replication

• semi-active and passive replication

• the leading processor is required to be fail restrained

• byzantine or performance failures of the leader cannot be

detected by other processors in the group (“heartbeat” or

“I am alive” messages)

• to tolerate t failures with crash or omission semantics

t + 1 processors are necessary

59

Central Replica Control (cont.)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Distributed Replica Control

• Strictly distributed replica control principle:

• there is no leader role, each processor in the group

performs exactly the same way

• to guarantee replica determinism the group members

have to carry out a consensus protocol on

nondeterministic decisions

60

G1 G2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Distributed Replica Control (cont.)

• Any (partially) distributed replica control strategy requires a

communication service assuring consensus.

• Consensus: Each processor starts a protocol with its local

input value, which is sent to all other processors in the group,

fulfilling the following properties:

• Consistency: All correct processors agree on the same

value and all decisions are final.

• Non-triviality: The agreed-upon input value must have

been some processors input (or is a function of the

individual input values).

• Termination: Each correct processor decides on a value

within a finite time interval.

61

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Failures and Replication

• active replication

• no restricted failure semantics of processors

• to tolerate t crash or omission failures t + 1 processors are necessary

• to tolerate t performance failures 2t + 1 processors are necessary

• e.g., if a faulty message is too early 2t would be insufficient to

identify the correct timing

• to tolerate t byzantine failures 3t + 1 processors are necessary

• for crash or omission failures it is sufficient to take 1 processor result

62

Distributed Replica Control (cont.)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Replica Control Strategies
Active replication:

• all processors in the group are carrying out the same service

requests in parallel

• strictly distributed approach, nondeterministic decisions need to

be resolved by means of an agreement protocol

• the communication media is the only shared resource

• Advantages:

• unrestricted failure semantics

• no single point of failure

• Disadvantages:

• requires the highest degree of replica control

• high communication effort for consensus protocols

• problems with dynamic scheduling decisions and timeouts

63

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Replica Control Strategies (cont.)

Semi-active replication:

• intermediate approach between distributed and centralized

• the leader takes all nondeterministic decisions

• the followers are executing in parallel until a potential

nondeterministic decision point is reached

• Advantages:

• no need to carry out a consensus protocol

• lower complexity of the communication protocol (compared to

active replication)

• Disadvantages:

• restricted failure semantics, the leader’s decisions are single

points of failures

• problems with dynamic scheduling decisions and timeouts

64

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Replica Control Strategies (cont.)

Passive replication:

• only one processor in the group – called primary – is active

• the other processors in the group are in standby

• checkpointing to store last correct service state and pending

service requests

• Advantages:

• requires the least processing resources

• standby processors can perform additional tasks

• highest reliability of all strategies (if assumption coverage = 1)

• Disadvantages:

• restricted failure semantics (crash or fail-stop)

• long resynchronization delay

65

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Replica Control Strategies (cont.)

Lock-step execution:

• processors are executing synchronized

• the outputs of processors are compared after each single

operation

• typically implemented at the hardware level with identical

processors

• Advantages:

• arbitrary software can be used without modifications for fault-

tolerance (important for commercial systems)

• Disadvantages:

• common clock is single point of failure

• transient faults can affect all processors at the same point in the

computation

• high clock speed limits number and distance of processors

• restricted failure semantics
66

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Dependable Systems

Part 7: System Aspects of dependable computers

(cont.)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• Consensus

• Interactive Consistency Algorithms

• Broadcast Properties and Algorithms

• Checkpointing

• Stable Storage

• Diagnosis

• Fault-Tolerant Software

2

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Consensus

3

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Consensus

• Each processor starts a protocol with its local input value,

which is sent to all other processors in the group, fulfilling the

following properties:

• Consistency: All correct processors agree on the same

value and all decisions are final.

• Non-triviality: The agreed-upon input value must have

been some processors input (or is a function of the

individual input values).

• Termination: Each correct processor decides on a value

within a finite time interval.

4

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Consensus (cont.)

• The consensus problem under the assumption of byzantine

failures was first defined in 1980 in the context of the SIFT

project which was aimed at building a computer system with

ultra-high dependability. Other names are

• byzantine agreement or byzantine general problem

• interactive consistency

5

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Impossibility of deterministic

consensus in asynch. systems

• asynchronous systems cannot achieve consensus by a

deterministic algorithm in the presence of even one crash

failure of a processor

• it is impossible to differentiate between a late response and a

processor crash

• by using coin flips, probabilistic consensus protocols can

achieve consensus in a constant expected number of rounds

• failure detectors which suspect late processors to be crashed

can also be used to achieve consensus in asynchronous

systems

6

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Byzantine Failure Behaviour

n  3t + 1 processors are necessary to tolerate t failures

7

0 1

Maj(0, 0, 1) = 0 Maj(0, 1, 1) = 1

Round 1:

0

0

1

1

F

0 1

Maj(0, 0, 1) = 0 Maj(0, 1, 1) = 1

Round 2:

0

0

1

1

F

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

▪Situation:

What is the color of the house?

Green

No Failure

Don’t Know

Fail-Silence Failure

Green

Fail-Consistent Failure

Red Green

Green

8

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Situation:

What is the color of the house?

Static Situation – one Truth

Situation:

What is the color of the ball ?

Dynamic Situation – >one Truth

9

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

HOT COLD

N2

HOT
HOT N3

COLD
COLD

N1

Faulty

N1: COLD

N2: HOT

N3: COLD

==========

à COLD

N1: HOT

N2: HOT

N3: COLD

==========

à HOT

A distributed system that measures

the temperature of a vessel shall raise

an alarm when the temperature

exceeds a certain threshold.

The system shall tolerate the arbitrary

failure of one node.

How many nodes are required?

How many messages are required?

HOT

COLD

Time

T
e

m
p

e
ra

tu
re

In general, three nodes are

insufficient to tolerate the arbitrary

failure of a single node.

The two correct nodes are not always

able to agree on a value.

A decent body of scientific literature

exists that address this problem of

dependable systems, in particular

dependable communication.

10

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Time

N2

00:01

N3

00:04

N1

Faulty

00:0400:01

00:04

00:01
N1: 00:04

N2: 00:01

N3: 00:04

==========

à 00:04

N1: 00:01

N2: 00:01

N3: 00:04

==========

à 00:01

P
er

fe
ct
 C

lo
ck

Real Time

C
o

m
p

u
te

r
T

im
e

Slow Clock

Fast Clock

R.int

M
e

s
s
a

g
e

 E
x
c
h

a
n

g
e

R.int

M
e

s
s
a

g
e

 E
x
c
h

a
n

g
eA distributed system in which all

nodes are equipped with local clocks,

all clocks shall become and remain

synchronized.

The system shall tolerate the arbitrary

failure of one node.

How many nodes are required?

How many messages are required?

In general, three nodes are

insufficient to tolerate the arbitrary

failure of a single node.

The two correct nodes are not always

able to bring their clocks into close

agreement.

A decent body of scientific literature

exists that address this problem of

fault-tolerant clock synchronization.

11

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Interactive Consistency Algorithms

12

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Assumptions about the message

passing system

A1: Every message that is sent by a processor is delivered

correctly by the message passing system to the

receiver.

A2: The receiver of a message knows which node has sent

a message.

A3: The absence of messages can be detected.

13

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Recursive Algorithm for n •>=3t + 1

ICA(t):

1. The transmitter sends its value to all the other n – 1 processors.

2. Let vi be the value that processor i receives from the transmitter, or else be the

default value if it receives no value. Node i acts as the transmitter in algorithm

ICA(t – 1) to send the value to each other of the other n – 2 receivers.

3. For each processor i, let vj be the value received from processor j (j !=i)

in step 2. Processor i uses the value Majority(v1, … , vn – 1).

ICA(0):

1. The transmitter sends its value to all the other n – 1 processors.

2. Each processor uses the value it receives from the transmitter, or uses the

default value, if it receives no value.

14

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example (n=4, t=1)

Case 1, one of the receivers is faulty:

• all correct processors decide x

Case 2, the transmitter is faulty:

• depending on the majority

function all processors decide

either x, y or z

15

transmitter
x

F

x

x
x

x

y

x
y

x
x

transmitter
F

x

x
y

x

z

y
z

z
y

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Interactive consistency with signed

messages
• if a processor sends x to some processor it appends its signature,

denoted x : i

• when some processor receives this message and passes it further

then x : i : j

• the algorithm for n ≥ t + 1

• Vi is the set of all received messages which is initially Vi = 0

• The function Choice(Vi) selects a default value if Vi = 0, it selects v if Vi = {v}

in other cases it could select a median or some other value.

16

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Interactive consistency with signed

messages (cont.)

SM(t):

1. The transmitter signs its value and sends it to all other nodes

2. i:

(A) If processor i receives a message of the form v : 0 from the

transmitter then (i) it sets Vi = {v}, and (ii) it sends the message

v : 0 : i to every other processor.

(B) If processor i receives a message of the form v : 0: j1 : j2 : … : jk
and v is not in Vi, then (i) it adds v to Vi, and (ii) if k < t it sends the

message : 0 : j1 : j2 : … : jk : i to every other node

processor than j1, j2, … , jk.

3. i: when processor i receives no more messages, it considers the final value

as Choice(Vi).

• The function Choice(Vi) selects a default value if Vi = 0, it selects v if Vi = {v}

in other cases it could select a median or some other value.

17

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Example (n=3, t=2)

• we again consider the case of the faulty transmitter:

• because of the signed messages it becomes clear that the

transmitter is faulty

18

x : 0

F

y : 0

x : 0 : 1

y : 0 : 2

V1 = {x, y} V2 = {x, y}

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Complexity of consensus

• ICA(t) and SM(t) require t + 1 rounds of message exchange

• t + 1 rounds are optimal in the worst case, the lower bound for early

stopping algorithms is min(f + 2, t + 1)

• for ICA(t) the number of messages is exponential in t, since

(n – 1)(n – 2) … (n – t – 1) are required O(nt), similarly the message

complexity for SM(t) is exponential

• the lower bound is O(nt), for authentification detectable byzantine

failures, performance or omission failures the lower bound

is O(n + t2)

• practical experience has shown that the complexity and resource

requirements of consensus under a byzantine failure assumption

are often prohibitive (up to 80% overhead for SIFT project)

19

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Broadcast Algorithms

20

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Terminology and Concepts

21

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliable broadcast

• A distinguished processor, called the transmitter, sends its local

service request to all other processors in the group, fulfilling the

following properties:

− Consistency: All correct processors agree on the same value

and all decisions are final.

− Non-triviality: If the transmitter is non faulty, all correct

processors agree on the input value sent by the transmitter.

− Termination: Each correct processor decides on a value within

a finite time interval.

• Reliable broadcast is a building block for the solution of a broad class

of problems in fault-tolerant computer systems

• Often there are additional requirements to reliable broadcast

protocols (cf. next slides)

22

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

FIFO Broadcast

• FIFO Broadcast = Reliable Broadcast + FIFO order

• FIFO Order: If a process broadcasts m before the same

process broadcasts m’, then no correct process delivers m’

unless it has previously delivered m.

23

P1

P2

P3

b(m)

d(m)

d(m)

d(m)

b(m')

d(m')

d(m')

d(m')

non-FIFO Broadcast Problem with FIFO Broadcast

P1

P2

P3

b(m)

d(m)

d(m)

d(m) b(m')

d(m')

d(m')

d(m')

b(m) … broadcast message m d(m) … deliver message m

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Causal Broadcast
• Causal Broadcast = Reliable Broadcast + Causal order

• (Potential) Causal Order: If the broadcast of m causally (à)

precedes the broadcast m’, then no correct process delivers

m’ unless it has previously delivered m.

24

Causal Broadcast Problem with Causal Broadcast

P1

P2

b(x:= x + 1)

x:= x + 1
x:= 2x

b(x:= 2x)
x:= 2x
x:= x + 1

x = 5

x = 5

x = 12

x = 11

P1

P2

P3

b(m)

d(m)

d(m)

d(m) b(m')

d(m')

d(m')

d(m')

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Atomic Broadcast

• Atomic Broadcast = Reliable Broadcast + Total order

• Total Order: If correct processes P1 and P2 deliver m and m’,

then P1 delivers m before m’ if and only if P2 delivers m

before m’.

25

P1

P2

b(x:= x + 1)

x:= x + 1
x:= 2x

b(x:= 2x)

x = 5

x = 5

x = 12

x:= x + 1
x:= 2x

x = 12

Atomic Broadcast Atomic Broadcast is not FIFO

P1

P2

P3
b(m)

d(m)

d(m)

d(m)b(m')

d(m')

d(m')

d(m')

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Extensions of Atomic Broadcast
FIFO Atomic Broadcast = Reliable Broadcast + FIFO Order + Total Order

Causal Atomic Broadcast = Reliable Broadcast + Causal Order+ Total Order

Relationships among broadcast protocols:

26

Atomic

Broadcast

FIFO Atomic

Broadcast

Causal Atomic

Broadcast

Reliable

Broadcast

FIFO

Broadcast

Causal

Broadcast

FIFO Order

Causal Order

FIFO Order

Causal Order

Total Order

Total Order

Total Order

only synchronous

systems

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliable broadcast protocol

• Diffusion algorithm: To R-broadcast m, a process p sends

m to itself. When a process receives m for the first time it

relays m to all its neighbors, and then R-delivers it.

broadcast(R, m):

send(m) to p

deliver(R, m):

upon receive(m) do

if p has not previously executed deliver(R, m)

then

send(m) to all neighbors

deliver(R, m)

• in synchronous systems the diffusion algorithm may be used

as well, but it additionally guarantees real-time timeliness

27

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Atomic Broadcast Protocols
• Transformation: any {Reliable, FIFO, Causal} Broadcast

algorithm that satisfies real-time timeliness can be

transformed to {Atomic, FIFO Atomic, Causal Atomic}

Broadcast.

−broadcast(A*, m):

broadcast(R*, m)

−deliver(A*, m):

upon deliver(R*, m) do

schedule deliver(A*, m) at time TS(m) + 

• TS(m) is the timestamp of message m

• the maximum delay for message transmission is 

• if two messages have the same timestamp then ties can be

broken arbitrarily, e.g. by increasing sender id's

28

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

FIFO and Causal Broadcast

• FIFO Transformation: Reliable broadcast can be

transformed to FIFO broadcast by using sequence numbers.

• Causal Transformation: All messages that are delivered

between the last broadcast and this send operation are

“piggy-packed” when sending a message.

−broadcast(C, m):

broadcast(F, rcntDlvrs || m)

rcntDlvrs:= ⊥

−deliver(C, –):

upon deliver(F, m1, m2, … ml) do

for i:= 1 .. l do

if p has not previously executed deliver(C, mi)

then

deliver(C, mi)

rcntDlvrs:= rcntDlvrs || mi

• rcntDlvrs is the sequence of messages that p C-delivered

since its previous C-broadcast

29

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Checkpointing

30

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Backward or rollback recovery
• systematic fault-tolerance is often based on backward recovery to recover a

consistent state

• in distributed systems a state is said to be consistent if it could exist in an

execution of the system

• Recovery line: A set of recovery points form a consistent state–called

recovery line–if they satisfies the following conditions:

(1) the set contains exactly one recovery point for each process

(2) No orphan messages: There is no receive event for a message m

before process Pi’s recovery point which has not been sent before

process Pj’s recovery point.

(3) No lost messages: There is no sending event for a message m before

process Pi’s recovery point which has not been received before

process Pj’s recovery point.

31

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The domino effect

• the consistency requirement for recovery lines can cause a

flurry of rollbacks to recovery points in the past

• to avoid the domino effect:

• coordination among individual processors for checkpoint

establishment

• restricted communication between processors

32

P1

P2

P3

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

recovery line

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

A distributed checkpointing and rollback algorithm

• this protocol allows lost messages

• there are two kinds of checkpoints:

– permanent: they cannot be undone

– tentative: they can be undone or changed to permanent

• the checkpointing algorithm works in two phases:

(1) An initiator process Pi takes a tentative checkpoint and requests all

processes to take tentative checkpoints. Receiving processes can

decide whether to take a tentative checkpoint or not and send their

decision to the initiator. There is no other communication until phase 2

is over.

(2) If the initiator process Pi learns that all tentative checkpoints have been

taken then it reverts its checkpoint to permanent and requests others

do the same.

• this protocol ensures that no orphan messages are in the recorded state

(processes are not allowed to send messages between phase 1 and 2)

33

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

A distributed checkpointing and rollback algorithm (cont.)

• it is not always necessary to record the state of a processor during

checkpointing:

• the set {c12, c21, c32} is also a consistent set, hence it is not necessary for P2

to take checkpoint c22, but the set {c12, c21, c31} would be inconsistent

• each process assigns monotonically increasing numbers to the messages it

sends:

last_recdi(j) last message number that i received from j after i took a

checkpoint

first_senti(j) first message number that i sent to j after i took a checkpoint

• if Pi requests Pj to take a tentative checkpoint it adds last_recdi(j) to the

message

• Pj takes a checkpoint only if last_recdi(j) ≥ first_sendj(i)

34

P1

P2

P3

c11 c12

c21 c22

c31 c32

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

• furthermore if Pi has not received a message from Pj since its

last checkpoint then there is no need for Pj to establish a new

checkpoint if Pi establishes one

• to make use of this Pi maintains a set ckpt_cohorti which

contains the processes from which received messages since

its last checkpoint

upon receipt from i “take tentative checkpoint” || last_recdi(j) do

if willing_to_ckptj and (last_recdi(j) ≥ first_sendj(i)) then

take tentative checkpoint

for all r in ckpt_cohorti do

send to r “take tentative checkpoint” || last_recdj(r)

for all r in ckpt_cohorti await(willing_to_ckpt)

if any r in ckpt_cohorti and (willing_to_ckptr = “no”) then

willing_to_ckptj:= “no”

send to r willing_to_ckptj
upon receipt from i m:= “make checkpoint permanent” or

m:=“undo tentative checkpoint”

execute command in m

for all r in ckpt_cohorti send to r m

35

A distributed checkpointing and rollback algorithm (cont.)

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Synchronous checkpointing
• based on synchronized clocks check points are established with a fixed

period p by all processes, where  is the clock synchronization precision and

 temporal uncertainty of message transmission

• if a message is sent during [T –  – , T] it will be received before T +  + 

• to achieve a consistent state two possibilities exists:

− prohibit message sending during interval  after checkpoint

establishment

− establish checkpoint earlier, at kp –  –  and log messages during the

critical instant

36

P1

P2

c1n

c2n



c1n+1

p

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Stable Storage

37

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Stable Storage
• stable storage is an important building block for many operations in

fault-tolerant systems (fail-stop systems, dependable transaction

processing, …)

• there are two operations which should work correctly despite of

faults (as covered by the fault hypothesis):
−procedure writeStableStorage(address, data)

−procedure readStableStorage(address) returns (status, data)

• many failures can be handled by coding (CRC’s) but other types

cannot be handled by this technique:

−Transient failures: The disk behaves unpredictably for a short

period of time.

−Bad sector: A page becomes corrupted, and the data stored

cannot be read.

−Controller failure: The disk controller fails.

−Disk failure: The entire disk becomes unreadable.

38

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Disk shadowing
• a set of identical disk images is maintained on separate disks

• in case of two disks this technique is called disk mirroring

• for performance and availability reasons the disks should be

“dual-ported” (e.g. Tandem system)

39

Disk 1 Disk 2

Disk Controller 1

Disk Controller 2

CPU 2CPU 1

MTTFmirror =

MTTF

2

MTTF

MTTR

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Redundant Array of Inexpensive Disks (RAID)
• data is spread over multiple disks by “bit-interleave” (individual bits

of a data word are stored on different disks)

• in the following example single bit failures can be tolerated since a

parity bit is stored on a check disk and disks are assumed to detect

single bit failures

• RAID’s provide high reliability and I/O throughput (parallel

read/write)

G .. data disks C .. check disks

40

MTTFRAID =

MTTF

G +C

MTTF (G +C − 1)

MTTR

Data Disks

a0 a1 a2 a3a0 a1 a2 a3 a0 a1 a2 a3b0 b1 b2 b3 a0 a1 a2 a3c0 c1 c2 c3 a0 a1 a2 a3d0 d1 d2 d3 a0 a1 a2 a3C0 C1 C2 C3

Check Disks

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Diagnosis

41

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault diagnosis in distributed systems

• Problem: Each non-faulty component has to detect the failure of other components in a

finite time.

• while it is the goal to identify all failed components there are theoretical upper bounds

on the number of failed components that can be identified

• PMC model:

– a system S is composed out of n components C = {c1, c2, … , cn}

– components are either correct or faulty as a whole, they are the lowest level of

abstraction that is considered

– each component is powerful enough to test other components

– tests involve application of stimuli and the observation of responses, tests are

assumed to be complete and correct

– correct components always report the status of the tested components correctly

– faulty components can return incorrect results of the tests conducted by them

(byzantine failure assumption)

42

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Syndromes

• each component belonging to C is assigned a particular

subset of C to test (no component tests itself)

• the complete set of test assignments is called connection

assignments, it is represented by a graph G = (C, E)

– each node in C represents a component

– each edge represents a test such that (ci, cj) iff ci tests cj.

– each edge is assigned an outcome aij,

aij = 0 if ci is correct and cj is correct

aij = 1 if ci is correct and cj is faulty

aij = x if ci is faulty (x is in {0|1})

• the set of all test outcomes is call the syndrome of S

43

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

An example system
• the system consists of five components, it is assumed that c1

is faulty

• the syndrome for this system is a 5 bit vector (a12, a23, a34,

a45, a51) = (x, 0, 0, 0, 1) (x is in {0|1})

• t-diagnosable: A system is t fault diagnoseable if, given a

syndrome, all faulty units in S can be identified, provided that

the number of faulty units does not exceed t.

• a system S with n components is t-diagnoseable if n ≥ 2t + 1

and each component tests at least t others, no two units test

each other
44

c1

c2

c3c4

c5

a12 = x

a23 = 0

a34 = 0

a45 = 0

a51 = 1

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Central diagnosis algorithms

• A simple algorithm is to take an arbitrary component and

suspect it to be either correct or faulty. Based on this guess,

and the test results of other components are labeled, if a

contradiction occurs, the algorithm backtracks. Complexity

O(n3)

• the best known algorithm has a complexity of O(n2.5)

45

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The adaptive DSD algorithm

• an adaptive distributed system-level diagnose algorithm that

is round based

• it stabilizes within n rounds and has no bound on t, provided

the communication is reliable

• each component i holds an array TESTED_UPi

• TESTED_UPi[k] = j: component i has received information

from a correct component saying that k has tested j to be

fault free

46

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The adaptive DSD algorithm (cont.)

• each component executes the following algorithm

periodically
t:= i

repeat

t:= (t + 1) mod n

request t to forward TESTED_UPt to i

until (i test t as “fault free”)

TESTED_UPi[i]:= t

for j:= 1 to n – 1

if i ≤ t

TESTED_UPi[j]:= TESTED_UPt[j]

• the algorithm stops if the first fault free component is found

• this component is marked as fault free in TESTED_UPi[i]

• the information of TESTED_UPt is copied to TESTED_UPi

which forwards the diagnostic information in reverse order

through the system

47

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

The adaptive DSD algorithm (cont.)

• if a component wants to diagnose the system state it

executes the following algorithm:
for j:= 1 to n STATEi[j]:= “faulty”

t:= i

repeat

STATEi[t]:= “fault-free”

t:= TESTED_UPi[t]

until t = i

• the diagnosis algorithm constructs a cycle that contains all

correct components

• if the length of the cycle is l then after l rounds all vectors

TESTED_UP will be updated

• since the cycle is constructed by ascending component

indices, the repeat loop in the algorithm collects all correct

components and updates STATE accordingly

48

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-Tolerant Software

49

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault tolerant software

• to tolerate software faults the system must be capable to

tolerate design faults

• in contrast, for hardware it is typically assumed that the

design is correct and that components fail

• software requires design diversity

• But: especially for software, perfection is much easier and

better understood than fault-tolerance

50

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Exception handling
• to detect erroneous states of software modules the exception mechanism

can be used (software and hardware mechanisms for detection of

exceptional states)

• a procedure (method) has to satisfy a pre condition before delivering its

intended service which has to satisfy post conditions afterwards

• the state domain for a procedure can be subdivided:

• an exception mechanism is a set of language constructs which allows to

express how the standard continuation of module is replaced when an

exception is raised

• exception handlers allow the designer to specify recovery actions

(forward or backward recovery)
51

anticipated

exceptional domain

unanticipated

exceptional domain

standard

domain

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

N-Version Programming
• n non-identical replicated software modules are applied

• instead of an acceptance test a voter takes a m out of n or majority

decision

• majority voting can tolerate (n – 1)/2 failures of modules

• modeling of n-version programming is equivalent to active

redundant systems with voting

• driver program to invoke different modules (different processes for

module execution), wait for results and voting

• require more resources than recovery blocks but less temporal

uncertainty (response time of slowest module)

52

P1

P2

P3

V

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

N-Version Programming (cont.)

• n-version programming is approach to systematic fault-tolerance:

– there is no application specific acceptance test necessary

– exact voting on every bit is systematic

• But: problem of replica nondeterminism:

– the real-world abstraction limitation is no problem

(all modules get exactly the same inputs from driver program)

– consistent comparison problem: diverse implementations, different

compilers, differences in floating point arithmetic, multiple correct

solutions (n roots of nth order equation), …

• Problems:

– there is no systematic solution for the consistent comparison problem

– either very detailed specification with many agreement points (limits

diversity)

– or approximate voting to consider nondeterminism (application-specific)

53

Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

N self-checking programming

• n versions are executed in parallel (similar to N-version

programming)

• each module is self-checking, an acceptance test is used

(similar to recovery blocks)

• mixture of application specific and systematic fault-tolerance

• requires no backward recovery and no voting

54

P1

P2

P3

C

C

C

	Überblick
	1. Dependable systems and incidents
	Aims of this lecture
	Reasons for low dependability
	Concept of coupling and interactive complexity
	Problem of discontinuous behavior or the problem of software

	2. Basic Concepts and Taxonomy
	Definition of Dependability
	Definition of a System, Behavior, Structure, and Services
	Definition of Correct Service and Failure Mode
	Attributes of Dependability
	Reliability vs. Availability
	Reliability vs. Safety

	Attributes of Security
	Life Cycle of a System
	Faults classes
	Failure Mode Classification
	Domain
	Consistency
	Consequences

	Fault -> Error -> Failure Chain
	Means to attain dependability and security
	Fault Prevention
	Fault Removal
	Fault Forecasting
	Fault Tolerance

	Backward / Forward Error Recovery
	Redundancy
	in domain of information
	in domain of space
	in domain of time

	Specifications

	3. Fault-Tolerance and Modeling
	Def. Failure probability and reliability
	Def. Failure probability density function
	Def. Failure rate
	Constant failure rate
	Weibull distributed failure rate
	Lognormal distributed failure rate
	Maintenance and repair
	Single parametric measures
	Mean time to failure
	Repair
	Mission reliability
	Availability

	Probabilistic structural-based modeling
	Assumptions of Probabilistic structural-based modeling
	Simple block diagrams
	Arbitrary block diagrams
	Markov models
	Generalized Stochastic Petri Nets (GSPN)
	Open issues of probabilistic structural based models

	Reliability growth models
	Comparison of probabilistic modeling techniques
	Limits of validation for ultra-high dependability

	4. Certification - Processes and Standards (lt. vowi kaum prüfungsrelevant)
	5. Failure Modes and Models
	Failure mode hierarchy
	Byzantine or arbitrary failures
	Authentification detectable byzantine failures
	Performance failures
	Onmission failures
	Crash failures
	Fail-Stop failures

	Fault-hypothesis
	Failure-hypothesis estimation
	Bathtub curve
	Stress tests
	Arrhenius equation

	Safety analysis
	Preliminary hazard analysis - PHA
	Hazards and Operability Study - HAZOP
	Action Error Anaylsis - AEA
	Fault Tree Analysis - FTA
	Event Tree Analysis - ETA
	Failure Modes and Effect Analysis - FMEA
	Cause-consequence analysis
	Comparison of safety analysis methods
	Problems with software safety analysis

	6. System aspects of dependable computers
	System design considerations
	Perfection vs. fault-tolerance
	Maintenance vs. fault-tolerance
	Limitations of maintenance
	The maintenance procedure
	Aspects of maintenance
	Determing factors for SRU size

	Diagnosis support for maintenance

	Fault-tolerance: systematic vs. application-specific
	Application-specific fault-tolerance
	Systematic fault-tolerance
	Comparison of fault-tolerance techniques

	The problem of Replica Determinism
	Replica control
	Internal vs. external replica control

	Definition of Replica Determinism
	Basic services for replicated fault-tolerant systems
	Logical clocks
	Vector clocks
	Real-time clocks
	Comparison of real-time and logical clocks
	Communication services
	Central Replica Control
	Distributed Replica Control
	Replica Control Strategies

	7. System aspects of dependable computers 2
	Consensus
	Interactive consistency algorithms
	Broadcast algorithms
	Checkpointing
	Stable storage
	Diagnosis
	Fault-tolerant software

