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Überblick
191.109 Dependable Systems

→ Bitte ueber TISS zur LVA registrieren (Ankuendingen werden ueber TISS 

verschickt). 

Vortragende

• Poledna, Stefan

• Puschner, Peter

• Steiner, Wilfried

Einführung in die Laborübung: wird ebenfalls per TISS/TUWEL bereitgestellt

Naechster Pruefungstermin: voraussichtlich April
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Inhalt der LVA

• Dependable systems and incidents

• Basic concepts and terminology 

• Fault-tolerance and Modeling

• Processes and Certification Standards 

• Failure modes and models

• System aspects of dependable computers 
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Dependable Systems

Part 1: Dependable systems and incidents
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Contents

• Dependability Problem Statement

• Examples of dependable systems and incidents

• The Therac-25 accidents 

• Unintended Acceleration Incidents

• Reasons for low dependability

• Concept of coupling and interactive complexity
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Dependability Problem Statement

Our society depends on a broad variety of computer controlled systems 

where failures are critical and may have severe consequences on 

property, environment, or even human life.

Aims of this lectures

• to understand the attributes and concepts of dependability,

• to understand reasons for low dependability and

• gain knowledge on how to build dependable computer systems
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America’s New Rocket:

Space Launch System
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The Future of Human Space Exploration
NASA’s Building Blocks to Mars

Earth Reliant Proving Ground Earth Independent

Missions: 6 to 12 months
Return: hours

Missions: 1 month up to 12 months
Return: days

Missions: 2 to 3 years
Return: months

Mastering the 

fundamentals aboard 

the International Space 

Station

Developing planetary 

independence by 

exploring Mars, its 

moons, and other deep 

space destinationsU.S. companies provide 

affordable access to 

low Earth orbit

Pushing the boundaries in 

cis-lunar space

The next step: traveling beyond low-Earth 

orbit with the Space Launch System rocket 

and Orion crew capsule
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Launch Abort 
System

Crew 
Module /
CM Adapter

ESA
Service
Module

The Orion Spacecraft
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2 Orbits   |   20,000 MPH entry   |   3,600 Mile Apogee   |   28.6 Deg Inclination

EFT-1 WILL EXERCISE 10 TOP LOSS OF CREW RISKS

LAUNCH
LANDING

3,600 Miles

This year NASA will fly a spacecraft built for humans 

farther than any has traveled in over 40 years.

Launched Dec/05, 2014

https://www.nasa.gov/specials/orionfirstflight/

https://www.nasa.gov/specials/orionfirstflight/
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Crew Module 
Functional Testing Underway;  On Track for May Delivery
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Service Module 
Assembly Complete – Ready for Integration
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Launch Abort System
Assembly Complete – Ready for Integration
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48 Network end points  | 3 planes of connectivity for every device

Time Triggered Gigabit Ethernet
The Backbone of Orion’s State of the Art, High Reliability Avionics System
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▪ Increase the European competitiveness by delivering the solution that 

could be used worldwide

▪ Develop an ITAR-free and radiation hardened 10/100-Base-T Ethernet 

transceiver  (PHY) for the space market 

▪ ASIC will be used in a harsh environment which can produce undesired

effects on electronic devices

▪ Enable Ethernet based technologies to become an international space 

standard in future applications

▪ TRL 7 – a system prototype demonstration in a space environment

(the test campaign presented in the project covers all the elements 

required to guarantee a proper performance of the device under space 

environment)
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Examples of dependable systems and 

incidents
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“Fly-by-wire”

• pilot commands are transmitted as electrical commands

• a flight control system (FCS computer) is used 

• the pilot flies the FCS and the FCS flies the plane

• military planes require FCS to get artificial stability 

• for civilian use the advantages are: 

− weight savings

− enhanced control qualities

− enhanced safety
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Fly-by-Wire Incidents

The SAAB JAS Gripen:

• 1989: Crash after sixth test flight due to exceeded stability margins 

at critical frequency, software was updated

• 1993: Crash on a display flight over the Water Festival in 

Stockholm, 

again due to pilot commands the plane became instable

• the cycle time of the Gripen FCS is 200 ms

• the probability of instability was estimated by the engineers as 

“sufficiently low”

The Airbus A320:

• 4 hull losses (plane crashes) 

• all crashes are attributed to a mixture of pilot and computer or 

interface failures
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A332, en-route, Atlantic Ocean, 

2009

• Jun/1, 2009

• Airbus A330-200 being operated by Air France on a 

scheduled passenger flight from Rio de Janeiro to Paris CDG 

as AF447

• exited controlled flight and crashed into the sea with the loss 

of the aircraft and all 228 occupants

• loss of control followed an inappropriate response by the 

flight crew to a transient loss of airspeed indications in the 

cruise which resulted from the vulnerability of the pitot heads 

to ice crystal icing.

21

http://www.skybrary.aero/index.php/A332,_en-route,_Atlantic_Ocean,_2009
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Patriot vs. Scud

During gulf war a Scud missile broke through the Patriot anti-missile 

defense barrier and hit American forces killing 28 people and injuring 98.

A software problem

• time is represented as an 32 bit integer and converted to 24 bit real 

number

• with the advent of time this conversion loses accuracy

• tracking of enemy missiles becomes therefore faulty

• the software problem was already known, and the update was 

delivered the next day
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Critical Infrastructure Incidents

Bank of America financial system:

• development during 4 years costs $20 millions

• $60 millions in overtime expenses

• $1.5 billion in lost business

• system was abandoned after nearly one year in service

Airport of Denver, Colorado

• one of the largest airports worldwide

• intelligent luggage transportation system with 4000 “Telecars”, 35 km rails, 

controlled by a network of 100 computers with 5000 sensors, 400 radio 

antennas, and 56 barcode readers

• due to software problems about one year delay which costs 

1.1 million $ per day
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More Examples
Harsh environment:

• The “bug”: On a Mark II in 1945 a moth came between relay contacts

• train cars were changed form external to disc brakes, trains vanished from 

display

• near a broadcast transmission tower it was possible to "hear rock and roll on 

the toaster"

• an overripe tomato hung over an answering machine, dripping tomato juice 

into the machine which caused repeated call to the emergency line

• pigeons may deposit a "white dielectric substance" in an antenna horn

Examples may seem funny but:

• system are designed to endure within a given operational conditions

• it is very hard to anticipate the operational conditions correctly

• illustrates difficulties of good system design
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Which other (recent) incidents are you aware of?
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The Therac-25 accidents
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The Therac-25 accidents
Therac-25 is a machine for radiation therapy (to treat cancer) 

Between June 1985 and January 1987 (at least) six patients received 

severe overdoses:

• two died shortly afterwards

• two might have died but died because of cancer

• the remaining two suffered of permanent disabilities 

Functional principle

• Therac is a “dual-mode” machine 

• electron beams are used for surface tumors

• X-ray for deep tumors

• “scanning magnets” are used to spread the beam and vary the 

beam energy
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X-ray and Electron Mode

• a tungsten target and a 

“beam flattener” is moved 

in the path to the rotating 

turntable

• the target generates the X-

rays but absorbs most of 

the beam energy

• the required energy has to 

be increased by a factor of 

100, compared to electron 

mode
Typical Therac-25 facility
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1985

3rd: Marietta, Georgia, overdose. 
Later in the month, Tim Still calls AECL and asks if overdose by Therac-25 is possible. 

26th: Hamilton, Ontario, Canada, overdose; AECL notified and determines microswitch failure was 
the cause. 

AECL makes changes to microswitch and notifies users of increased safety. 
Independent consultant (for Hamilton Clinic) recommends potentiometer on turntable. 

Georgia patient files suit against AECL and hospital. 

8th: Letter from Canadian Radiation Protection Bureau to AECL asking for additional hardware 
interlocks and software changes. 

Yakima, Washington, clinic overdose.

1986

Attorney for Hamilton clinic requests that potentiometer be installed on turntable. 
31st: Letter to AECL from Yakima reporting overdose possibility. 

24th: Letter from AECL to Yakima saying overdose was impossible and no other incidents had 
occurred. 

Jun

Jul

Sep

Oct

Nov

Dec

Jan

Feb

Major Event Time Line
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21st: Tyler, Texas, overdose. AECL notified; claims overdose impossible and no other accidents 
had occurred previously. AECL suggests hospital might have an electrical problem.

7th: Tyler machine put back in service after no electrical problem could be found. 
11th: Second Tyler overdose. AECL again notified. Software problem found.
15th: AECL files accident report with FDA. 

2nd: FDA declares Therac-25 defective. Asks for CAP and proper renotification of Therac-25 users. 

13th: First version of CAP sent to FDA. 

23rd: FDA responds and asks for more information. 
First user group meeting. 

26th: AECL sends FDA additional information. 

30th: FDA requests more information. 

12th: AECL submits revision of CAP. 

Therac-20 users notified of a software bug. 
11th: FDA requests further changes to CAP. 
22nd: AECL submits second revision of CAP.

Mar

Apr

May

Jun

Jul

Aug

Sep

Nov

Dec
FDA = US Food and Drug 

Administration
CAP = Corrective Action Plan

Major Event Time Line (cont. 1986)
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17th: Second overdose at Yakima. 
26th: AECL sends FDA its revised test plan. 

Hamilton clinic investigates first accident and concludes there was an overdose. 
3rd: AECL announces changes to Therac-25. 
10th: FDA sends notice of adverse findings to AECL declaring Therac-25 defective under US 
law and asking AECL to notify customers that it should not be used for routine therapy. 
Health Protection Branch of Canada does the same thing. This lasts until August 1987. 

Second user group meeting. 
5th: AECL sends third revision of CAP to FDA. 

9th: FDA responds to CAP and asks for additional information. 

1st: AECL sends fourth revision of CAP to FDA. 
26th: FDA approves CAP subject to final testing and safety analysis. 

5th: AECL sends final test plan and draft safety analysis to FDA. 

Third user group meeting.
21st: Fifth (and final) revision of CAP sent to FDA.

1988

29th: Interim safety analysis report issued.

3rd: Final safety analysis report issued.

Jan

Feb

Mar

Apr

May

Jun

Jul

Jan

Nov

Major Event Time Line (cont. 1987)
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Lessons learned from Therac-25 

accident:

• Accidents are seldom simple

• Accidents are often blamed to single source

• Management inadequacies, lack of following incident reports

• Overconfidence in software

• Involvement of management, technicians, users, and 

government

• Unrealistic risk assessment

• Less-than-acceptable software-engineering practices
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Who would ride on an autonomous car?

33
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Unintended Acceleration Incidents
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Unintended Acceleration Examples

35

I will show a video with accidents for the next 5 minutes.

In case anyone prefers to leave the room, that is of course possible!

https://www.youtube.com/watch?v=cOWdWHSgI-4

https://www.youtube.com/watch?v=cOWdWHSgI-4
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Toyota Unintended Acceleration Incident

2007/Sep: Toyota recall to fasten floor mats

2009/Aug: Toyota Lexus ES 350 sedan crash

• unintended acceleration reached 100 mph

• four passengers died, 911 emergency phone call during event

• crash was blamed on wrong floor mats causing pedal entrapment

2009/Oct: Extended floor mat recalls

2010/Jan: Sticky gas pedal recall

2010/Feb: US congressional investigation

2010/May: CBS News “Toyota Unintended Acceleration has killed 89”

2010-2011: NASA investigation of unintended acceleration
• conclusion: no electronic-based cause for unintended high-speed acceleration

• tight timeline and limited information

2012/Dec: Toyota settlement for $1.6 Billion USD

http://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
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Toyota Unintended Acceleration Incident 
(cont.)

2013/Oct: Bookout/Schwarz Trial

• 2007 crash of a 2005 Toyota Camry

• Dr. Koopman & Mr. Barr testified as software experts

• Testified about defective safety architecture and software defects

Jury awarded $3 million compensation

Key technical element of criticism is the Electronic Throttle Control System 

(ECTS)

http://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
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Electronic Throttle Control System (ETCS)

http://www.nhtsa.gov/staticfiles/nvs/pdf/NASA-UA_report.pdf
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ETCS Criticism

Safety architecture

• Shortcomings in failsafes

• Shortcomings in the watchdog design

• Non-independent Fault-Containment Regions

Software Quality

• 256,600 Non-Commented Lines of C source

• 9,273 – 11,528 global variables (ideally 0 writable globals)

• Spagetti code, untestable functions according to McCabe 

cyclomatic complexity metric

• Use of recursion, no mitigation for stack overflow

• Concurrency issues
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ETCS Criticism (cont)

Certification

• Critical SW is typically developed by following 

standardized processes, e.g., MISRA SW Guidelines

• Toyota does not claim to have followed MISRA

• Mike Barr’s team found 80,000 violations of MISRA C



Course: Dependable Systems 2020, © Stefan Poledna, All rights reserved

Who would ride on an autonomous car?

42
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System Classification by VDA

43

Machine

Human

Human

Machine

Classification according to VDA
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Electronic Control Units

44
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Vehicle-Wide Virtualization

45

ECU3

ECU4

Actuator

ECU1

ECU2

Actuator

Actuator

Actuator

ECU7

ECU8

ECU5

ECU6

Actuator

Actuator

ECU 1 Network (Backbone Link)

Task Task Task

Guest OS GuestOS

Hypervisor

Hardware / Network IO 

ECU 2

ECU 8

Task

OS

Hardware / Network IO

TaskTask
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Reasons for low dependability
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What would you think are reasons for low dependability?
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• Chips with everything:

Computers are increasingly used for all types of devices and 

services.

• Interface design:

Complex systems must have a “friendly” interface that is easy to 

understand and must not confuse or mislead the user.

• The “system” includes the operator:

The total system requires some functions to be carried out by the 

operator. 

• The “system” includes the documentation:

Operator failures may occur due to hard to understand or 

misleading documentation. 

• The “system” includes its operating procedures:

Just as the operator and the documentation are regarded as part of 

the system, so must the procedures for using it. 

Reasons for low dependability
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Reasons for low dependability (cont)

• “System” failures are human failure:

Not only the operator, but other humans and ultimately the designer 

are causing system failures. 

• Complexity:

Problem inherent complexity—not solution induced complexity—is 

hard to handle.

• System Structure:

Unsuitable system structures can lead to low dependability

• Wrong assessment of peak load scenario:

Systems can only be designed to handle a priori known peak load 

scenarios. 

• Wrong assessment of fault hypothesis:

Systems can only be designed to handle a priori known fault 

hypothesis.
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Reasons for low dependability (cont.)

• Low dependability of components:

“A system is as strong as its weakest link” 

• Misunderstanding of application:

Customer and system manufacturer have different understandings 

of the services

• Incomplete problem description:

Unintended system function due to incomplete problem description 

• Coupling and interactive complexity:

cf. next slide

• Discontinuous behavior of computers:

cf. foil after slide 

• No system is fool-proof
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Concept of coupling and interactive 

complexity

The concept of coupling and interactive complexity is a model to 

explain what type of systems are potentially hazardous [Perrow 1984].

• Tightly coupled systems:

In a tightly coupled system components affect one another 

automatically with great rapidity, so that errors propagate too quickly 

for a human operator to detect, contain and correct them.

• Interactive complex systems:

In an interactive complex system components interact in many ways 

simultaneously, so that the behavior of the system (as a whole) is 

inherently difficult to understand. 
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Problem of discontinuous behavior
or the Problem of Software

• discrete computers are symbol manipulating machines

• symbols are represented in binary form of 0´s and 1´s

• computers are finite state machines

• large state space (combinatorial explosion)

• mapping of actual state and input to new state

• in contrast to analogue systems there is no continuos trajectory 

• discontinuous trajectories are intractable by simple mathematics

• is worse than chaotic behavior (of analog systems)

• continuous or analog systems have an infinite number of stable 

states while discrete systems have only a small (finite) number of 

stable states
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Dependable Systems

Part 2: Basic Concepts and Taxonomy
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Contents

• The Basic Concepts

• The Threats to Dependability and Security 

(Fault – Error – Failure) 

• The Means to Attain Dependability 

• Error Recovery and Redundancy

• On the Importance of the Specification

2
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The Basic Concepts

3

Avizienis, Algirdas, J-C. Laprie, Brian Randell, and Carl Landwehr. "Basic 

concepts and taxonomy of dependable and secure computing." IEEE 

transactions on dependable and secure computing 1, no. 1 (2004): 11-33.
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Dependability Definitions

4

How would you define a dependable system?
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Dependability Definitions

Original: Dependability is the ability to deliver service that can 

justifiably be trusted.

Alternate: Dependability of a system is the ability to avoid 

service failures that are more frequent and more severe than 

is acceptable.

5
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System Function, Behavior,

Structure, and Service

A system is an entity that interacts with other entities, i.e., other 

systems.

For a particular system A, the sum of all the other systems 

system A is interacting with is referred to as the environment

of system A.

The system boundary is the common frontier between a 

system and its environment.

6
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System Function, Behavior,

Structure, and Service (cont.)

The function of a system is what the system is intended to do.

The function is described in the functional specification.

The behavior of a system is what the system does to implement 

its function and is described by a sequence of states.

7
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System Function, Behavior,

Structure, and Service (cont.)

The structure of a system is what enables it to generate the 

behavior.

In terms of a structure, a system is composed of components

bound together to interact. 

Components are systems which can be composed of other 

components.

Alternatively, a component is said to be atomic, in case the 

inner structure of the component is of no interest.

8
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System Function, Behavior,

Structure, and Service (cont.)

A system is the provider of a service to one or many users.

Users are, again, systems. 

The service interface between the provider and the one or 

many users is the respective part of the provider’s system 

boundary.

The part of the provider’s total state that is perceivable at the 

service interface is its external state. The remaining part is 

its internal state.

The interface of the user at which the user receives the service 

is the use interface. 

9
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System Function, Behavior, 

Structure, and Service (cont.)

Recursive nature of the depends (     ) relation

• service users depend on the services provided by the system 

(server)

10

physical 

process

operator

system 

(server)

component 

(server)

component 

(server)
component 

(server)

component 

(server)

component 

(server)

interface interface interface
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Definitions of Failure – Error – Fault 

Correct service is delivered when the service implements the 

system function.

A (service) failure is an event that occurs when the delivered 

service deviates from correct service. 

• Thus, a failure is a transition from correct service to incorrect 

service.

The different kinds of incorrect service delivery are referred to as 

the failure mode and these modes are ranked according to 

failure severity. 

11
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Definitions of Failure – Error – Fault

(cont.) 

A service failure means that at least some external state of the 

provider service deviates from the correct state. 

This deviation is called the error (i.e., a deviation from the current 

state from the correct state).

The adjudged or hypothesized cause of an error is called a fault. 

12
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Attributes of Dependability

Reliability: continuity of correct service.

Availability: readiness for correct service.

Maintainability: ability to undergo modifications and repairs. 

Safety: absence of catastrophic consequences on the user(s) 

and the environment.

Integrity: absence of improper system alterations.

13
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Reliability vs. Availability

Reliability is the probability that the system will conform to its 

functional specification throughout a period of duration t.

Availability is the percentage of time for which the system will 

conform to its specification (also considering repair actions).

→ Availability is a function of reliability and maintainability.

14
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Reliability vs. Availability (cont.)

15

Can you think of an example system that needs to be highly-

available but reliability is less of an issue?
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Reliability vs. Availability (cont.)

Factory automatization:

• the computer has to assure proficient manufacturing 

• availability is most important parameter

• reliability is not that important

Satellite:

• once put into operation there is no possibility for 

maintenance

• mission reliability is most important parameter

16
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Reliability vs. Safety

Reliability is the probability that the system will conform to its 

functional specification throughout a period of duration t.

Safety is the probability that the system will not exhibit specific 

undesired behaviors throughout a period of duration t.

→ In general, not all deviations from the functional specification 

imply specific undesired behaviors in the sense of the safety 

definition.

. 

17
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Reliability vs. Safety (cont.)

18

What would be an example of a loss of reliability does/does not 

lead to a safety incident?
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Reliability vs. Safety (cont.)

• Railway signalling:

− red signal is a safe system state

− safe system state is unreliable

− safety ≠ reliability

• Fly-by-wire airplane control:

− after take off there is no safe (non-functional) system state

− safety  reliability

(degraded modes of operation are possible)

• often there is a conflict between safety and reliability 

. 

19
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Reliability vs. Safety (cont.)

• often there is a conflict between safety and reliability 

→ Why?

. 

20
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Attributes of Security

Confidentiality: the absence of unauthorized disclosure of 

information. 

+ Integrity (as before)

+ Availability (as before)

21
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The Threats to Dependability and Security 

Details on: Fault, Error, Failure 

22
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Life Cycle of a System

• Development Phase, including

• initial system conception

• system design, development, verification, and validation

• Use Phase, including

• service delivery

• service outage (service not available)

• service shutdown (service not needed)

• maintenance

23
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Faults

Recap:

The adjudged or hypothesized cause of an error is called a 

fault. 

24
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Faults – eight elementary fault 

classes

Classification into eight elementary fault classes:

• Phase of creation or occurrence (development vs. use phase)

• System boundaries (internal vs. external)

• Phenomenological cause (natural vs. human-made)

• Dimension (hardware vs. software)

• Objective (malicious vs. non-malicious)

• Intent (deliberate vs. non-deliberate)

• Capability (accident vs. incompetence)

• Persistence (permanent vs. transient)

25
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What would a Software Flaw (i.e., a “bug”) 

be classified as?

Classification into eight elementary fault classes:

• Phase of creation or occurrence (development vs. use phase)

• System boundaries (internal vs. external)

• Phenomenological cause (natural vs. human-made)

• Dimension (hardware vs. software)

• Objective (malicious vs. non-malicious)

• Intent (deliberate vs. non-deliberate)

• Capability (accident vs. incompetence)

• Persistence (permanent vs. transient)

26
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Example Faults: Software Flaws

Software flaws (may) have the following aspects (in red):

• Phase of creation or occurrence (development vs. use 

phase)

• System boundaries (internal vs. external)

• Phenomenological cause (natural vs. human-made)

• Dimension (hardware vs. software)

• Objective (malicious vs. non-malicious)

• Intent (deliberate vs. non-deliberate)

• Capability (accident vs. incompetence)

• Persistence (permanent vs. transient)

27
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Faults – combined fault classes 

• A particular fault will typically fall into multiple of the eight 

elementary fault classes. 

• Since three of the elementary fault classes are of particular 

importance, we use them to derive combined fault classes:

• Phase of creation or occurrence (development vs. use 

phase) → Development Faults

• System boundaries (internal vs. external) → Interaction 

faults

• Dimension (hardware vs. software) → Physical faults

28
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Failures

Recap:

A (service) failure is an event that occurs when the delivered 

service deviates from correct service. 

• Thus, a failure is a transition from correct service to incorrect 

service.

29
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Failure Mode Classification –

Overview

• Domain: 

• content, early timing failure, late timing failure, halt failure, 

erratic failure

• Detectability: 

• signaled failures, unsignaled failures

• Consistency: 

• consistent failure, inconsistent failure

• Consequences: 

• minor failure, ..., catastrophic failure

30
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Failure Mode Classification –

Domain 

• Content 

• Early timing failure 

• Late timing failure 

• Halt failure

− the external state becomes constant, i.e., system activity 

is no longer perceptible to the users

− silent failure mode is a special kind of halt failure in that 

no service at all is delivered

• Erratic failure

− not a halt failure, e.g., a babbling idiot failure
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Failure Mode Classification –

Consistency 

When there are more than one users of a service. 

• Consistent failure: 

• All users experience the same incorrect service.

• Inconsistent failure

• Different users experience different incorrect services.
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Failure Mode Classification –

Consequences, e.g., Aircraft
Minor: 10E-5 per flight hour or greater

no significant reduction of aeroplane safety, a slight reduction in the 

safety margin

Major: between 10E-5 and 10E-7

significant reduction in safety margins or functional capabilities, 

significant increase in crew workload or discomfort for occupants

Hazardous: between 10E-7 and 10E-9

large reduction in safety margins or functional capabilities, causes 

serious or fatal injury to a relatively small number of occupants

Catastrophic: less than 10E-9

these failure conditions would prevent the continued safe flight and 

landing of the aircraft
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Error

Recap:

A service failure means that at least some external state of the 

provider service deviates from the correct state. 

This deviation is called the error (i.e., a deviation from the 

current state from the correct state).

34
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Error

• An error is detected if its presence is indicated by an error 

message or error signal.

• Errors that are present but not detected are latent errors.

• Whether or not an error actually leads to a failure depends on 

the following facts: 

• the system composition and the existence of redundancy 

(intentional or unintentional redundancy)

• the system activity after the introduction of an error

(the error may get overwritten) 

• the definition of a failure by the user’s viewpoint
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Fault – Error – Failure Chain

fault → error

• a fault which has not been activated by the computation process is dormant

• a fault is active when it produces an error

error → failure

• an error is latent when it has not been recognized

• an error is detected by a detection algorithm/mechanism

failure → fault

• a failure occurs when an error “passes through” and affects the service 

delivered

• a failure results in a fault for the system which contains or interacts with the 

component

36
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Examples for fault/failure chain

• Program error (software):

− a dormant fault in the written software (instruction or data)

− upon activation the fault becomes active and produces an 

error (system state)

− if the erroneous data affects the delivered service, a 

failure occurs

• Electromagnetic interference (hardware):

− leads to faulty input value (either digital or analog)

− by reading the input the fault becomes active and 

produces an error

− if the erroneous input value is processed and becomes 

visible at the interface a failure occurs
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Fault/failure state transition chart

(or dormant fault)

fault activation

error processing

error 
state

failure

failure - 
accident

service restoration

error pa
sse

s

error passes

correct 
state
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The Means to Attain Dependability

39
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Means to Attain Dependability and 

Security

Fault prevention: means to prevent the occurrence or 

introduction of faults.

Fault tolerance: means to avoid service failures in the presence 

of faults.

Fault removal: means to reduce the number and severity of 

faults.

Fault forecasting: means to estimate the present number, the 

future incidence, and the likely consequences of faults. 
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Fault prevention

• hardware components:

− environment modifications (temperature)

− quality changes, use “better” components 

− component integration level, higher integration

− derating, reduction of electrical, thermal, mechanical, and 

other environmental stresses

• software components:

− software engineering methodologies

− OOD and OO languages

− design rules 

− CASE tools

− formal methods 
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Fault removal
• verification:

to check, whether the system adheres to the specification. 

− Static analysis: inspections, walk-throughs, data flow 

analysis, complexity analysis, compiler 

checks, correctness proofs, petri net models, 

finite state automata. 

− Dynamic Analysis: testing, black-box, white-box, conformance, 

fault-finding, functional, timeliness, structural, 

deterministic, random or statistical

• diagnosis:

diagnosing the fault which prevented the verification from succeeding 

• correction:

perform corrective actions to remove the fault  regression 

verification
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Fault forecasting

• performing an evaluation of the system with respect to faults

• evaluation of aspects such as:

– reliability

– availability

– maintainability

– safety

• see chapter “Fault-tolerance and modelling” 
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Fault tolerance

There are four phases, which, taken together, provide the 

general means by which faults are prevent from leading to 

system failures.

• error detection:

errors are the manifestations of faults, which need to be 

detected to act upon

• damage confinement and assessment:

before any attempt is made to deal with the detected error, it 

is necessary to assess and confine the extent of system state 

damage
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Fault tolerance (cont.)

• error recovery:

error recovery is used to transform the currently erroneous 

system state into 

a well defined error-free system state

• fault treatment and continued service:

even if the error-free system state has been recovered it is 

often necessary to perform further actions to prevent the fault 

from being activated again
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Error Recovery and Redundancy

46
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Error recovery

There are two possibilities to transform the currently erroneous system 

state into an error-free system state:

• Backward recovery:

− system state is reset to a previously store error-free system 

state

− re-execution of failed processing sequence

− typical for data base systems

(it is not possible to predict valid system states) 

• Forward recovery:

− system state is set to a new error-free system state

− typical for real-time systems with period processing patterns

(it is possible to predict valid system states) 
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Redundancy

A system requires some kind of redundancy to tolerate faults. This 

redundancy can be implemented in three different domains:

• Domain of information:

redundant information e.g. error correcting codes, robust data 

structures

• Domain of space:

replication of components, e.g. 2 CPU’s, UPS (uninterruptable 

power supply) 

• Domain of time:

replication of computations, e.g. calculate results by same (or 

different) algorithm a second time, sending messages more than 

once



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance in the domain of 

information

• error correcting codes:

– for all error correcting codes (ECC) 

(2t + p + 1) ≤ d

d .. Hamming distance of code

t ... number of single bit errors to be tolerated

p .. number of additional errors that can be detected

101

111
001

000

010

110

011

100

3 bit code, d = 1
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Fault-tolerance in the domain of 

information (cont.)

• robust data structures:

– store the number of elements

– redundant pointers

(e.g. double linked chains with status)

– status or type information 

(e.g. authenticated objects)

– checksum or CRC

• application specific knowledge

50

authetific.

object

pointer to authentificated object
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Fault-tolerance in the domain of 

space

• active redundancy

– parallel fail-silent components       – voting, triple modular

redundancy (TMR)

C1

C3

C2 V

C1

Cn

C2

. . .
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Fault-tolerance in the domain of 

space (cont.)

passive or standby redundancy

– hot standby:

standby component is operating

– cold standby:

standby components starts only

in case of a failure

52
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Fault-tolerance in the domain of 

time
Allows tolerance of temporary faults

• multiple calculation:

– a function is calculated n times with the same inputs

– the result is checked by an acceptance test 

– or the multiple results are voted

• sending messages multiple times:

– message transmission is repeated n times

– retransmission only in case of failures

(positive acknowledge retransmit PAR)

– retransmission always n times

(reduces temporal uncertainty for real-time systems)
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On the Importance of the 

Specification

54
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Specification

The definition of all dependability attributes is based on 

specifications. A good specification must be:

• exact

• consistent

• complete

• authoritative

Importance of specification

Together with the analysis of possible behavior and its 

consequences, system specification is the most difficult 

part of building a dependable system.
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Specification (cont.)

Multiple levels of specifications

To consider the different aspects and attributes of dependable 

systems, usually different levels of specifications exists.

An example

level specification

functional “all commands have to be carried out correctly”

reliability “either correct commands or warning indicator”

safety “recorded info may not be corrupt”
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The underground train

The underground train

• an electronically controlled underground train had the 

following buttons:

− to open and close doors

−to start the train

• it was specified that “the train only may start if and only if the 

start button is pressed and all doors are closed”

• a driver blocked the start train button by means of a tooth 

pick to start the train immediately if the doors were closed
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The underground train (cont.)

What happened?

• one day a door was blocked and the driver went back to 

close the door, and of course, the train left the station without 

the driver

What went wrong?

• it was the drivers fault to block the start button with a 

tooth pick

• but it was also a specification fault since the correct 

specification should have read: “the train only may start if 

and only if the start button changes it state to start and all 

doors are closed”

• in that example it made a big difference whether state or 

event-semantics are implemented
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Dependable Systems

Part 3: Fault-Tolerance and Modelling
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Contents

• Reliability: Basic Mathematical Model

• Example Failure Rate Functions

• Probabilistic Structural-Based Modeling: Part 1

• Maintenance and Repair: Basic Mathematical Model

• Probabilistic Structural-Based Modeling: Part 2

• Open issues of probabilistic structural based models 

• Reliability growth models

• Comparison of probabilistic modeling techniques

• Limits of validation for ultra-high dependability

• Example: Hardware Design Analysis at TTTech

2
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Reliability:

Basic Mathematical Model

3
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Failure Probability Q(t) 

Reliability R(t)

• Failure Probability Q(t), probability that the system will 

not conform to its specification throughout a period of 

duration [0:t].

• Reliability R(t), probability that the system will conform to its 

specification throughout a period of duration [0:t].

• R(0) = 1 R(∞) = 0

• R(t) = 1 – Q(t)

4
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Failure Probability Density Function

• Def.: The failure density f(t) at time t is defined by the 

number of failures during t.

5
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Failure Rate

• Def.: The failure rate (t) at time t is defined by the number of 

failures during t in relation to the number of correct 

components at time t.

• The dimension of failure rate is FIT (failures in time)

• x FIT = x failures per 109 hours

6

    

(t) =
f (t)

R(t)

= −
dR(t)

dt

1

R(t)
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Example Failure Rates in FIT
(according to IEC TR 62380)

▪ Resistor                         0.1 FIT

▪ Capacitor (ceramic)       2 FIT

▪ Capacitor (electrolytic)  7 FIT

▪ Diode                             9 FIT

▪ Inductor                          6 FIT

▪ Transistor (low power)    8 FIT

▪ Transistor (high power)  46 FIT

▪ Varistor 1 FIT

▪ Switching regulator        22 FIT

▪ Comparator IC                5 FIT

▪ Flash (46 MBit)           105 FIT

▪ EEPROM (512 kBit)      33 FIT

▪ CPU (180 MHz, Dualcore)

300 FIT (Hard Errors) /

2700 FIT (Soft Errors)

▪ High-side powerswitch 25 FIT

▪ Shift Register IC (8 Bit)    8 FIT

▪ 8 to 1 analog multiplexer IC

8 FIT

▪ CAN transceiver 7 FIT

▪ RS232 transceiver 9 FIT

▪ LIN transceiver 7 FIT

▪ Ethernet PHY                41 FIT

▪ Signal transformator 34 FIT

7
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Example Failure Rate Functions

8
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Constant Failure Rate

Used to model the normal-life period of the bathtub curve

• failure rate

• probability density function

• reliability

Reliability for constant failure rate

    (t) = 

    f (t) = e−t

    R(t) = e−t 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

R(t)
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Weibull distributed failure rate

Used to model infant mortality and wear out period of components. 

 < 1: failure rate is decreasing with time

 = 1: constant failure rate

 > 1: failure rate is increasing with time

• failure rate

• probability density function

• reliability

10

Reliability for weibull distributed failure rate

1 2 3 4 5

0.2

0.4

0.6

0.8
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t

R(t)

 = 1

 = 2

 = 0.5

    (t) = (t)−1

    f (t) = (t)−1e−(t)


    R(t) = e−(t)

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Lognormal distributed failure rate

For semiconductors the lognormal distribution fits more data collections 

than any other and is assumed to be the proper distribution for 

semiconductor life. 

• failure rate

• probability density function

• reliability

11
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Probabilistic Structural-Based 

Modeling: Part 1

12
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Assumptions

• Identifiable (independent) components,

• Each component is associated with a given failure rate,

• Model construction is based on the structure of the 

interconnections between components.

13
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Example Modelling Paradigms

• Simple block diagrams

• Arbitrary block diagrams

• Markov models

• Generalized Stochastic Petri Nets (GSPN)

14
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Simple block diagrams

• assumption of independent components

• combination of series or parallel connected components

15

R1(t) Rn(t)R2(t) . . .

    

Rseries (t) = Ri (t)
i=1

n



Qseries (t) = 1− Rseries (t) = 1− Ri (t)
i=1

n



= 1− 1− Qi (t)( )
i=1

n


    

Qparallel (t) = Qi (t)
i=1

n



Rparallel (t) = 1− Qparallel (t) = 1− Qi (t)
i=1

n



= 1− 1− Ri(t)( )
i=1

n



R1(t) Rn(t)R2(t)
. . .

Series Connection Parallel Connection
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Simple block diagrams (cont.)

16

Constant failure rate

Series connection

• the resulting failure rate for the 

system is still constant

    (t) = 

    R(t) = e−t

    

Rseries (t) = Ri (t)

i=1

n

 = e−it

i=1

n



= e

−t i

i=1

n



Reliability of 1,2 and 4 series connected 

components with constant failure rate

(1 = 2 = 3 = 4)

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

n = 1
n = 2

n = 4

R(t)
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Simple block diagrams (cont.)

17

Parallel connection

for 3 parallel components this gives:

under the assumption 1 = 2 = 3 it follows

the resulting failure rate is no longer constant

    

Rparallel (t) = 1− 1− Ri (t)( )
i

n



= 1− 1− e
−it( )

i

n



    

Rparallel (t) = 1− 1− e
−1t( )1− e

−2t( )1− e
−3t( )( )

= e
− 1t + e

−2t
+ e

−3t
+ e

− (1 +2 +3 )t
−

e−(1+2)t − e−(1+3)t − e−(2 +3)t

    
Rparallel (t) = 3 e−t − e−2t( )+ e−3t

Reliability of 1,2 and 4 parallel connected 

components with constant failure rate

(1 = 2 = 3 = 4)

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

t

R(t)

n = 4

n = 2

n = 1
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Simple block diagrams (cont.)

Pros:

• can be used to model arbitrary combinations of series and parallel 

connected components

• easy mathematics for constant failure rates

Cons:

• assumption of independent failures 

• maintenance cannot be modeled

• restricted to series/parallel connection

• only for active redundancy and fail-silence

18

R1(t) R3(t)

R2(t)

R4(t)

R5(t)

R6(t)
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Arbitrary block diagrams

no restriction to series/parallel connections

19

RE(t)

RA(t)

RC(t)

RB(t)

RD(t)

Inclusion/exclusion principle

1: A B +
2: B E +
3: D E +
4: C D +

12: A B E –
13: A B D E –
14: A B C D –
23: B D E –
24: B C D E –
34: C D E –

123: A B D E +
124: A B C D E +
134: A B C D E +
234: B C D E +

1234: A B C D E –

    

Rblock(t) = RAB + RBE + RDE + RCD −

RABE − RABCD − RBDE − RCDE +

RABCDE

    RABC = Rseries (A,B,C)
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Arbitrary block diagrams (cont.)

Active redundancy and voting

20

• for TMR 2 out of 3 components have 

to function correctly

• under the assumption of identical failure rates

• for general voting systems where c out of n components have to 

function correctly

    

RTMR(t) = R(CA ,CB ,CC , t) + R(CA ,CB CC ,t) +

R(CA ,CC CB ,t) + R(CB ,CC C A ,t)

CA

CC

CB V

)()(3)()( 23 tQtRtRtRTMR +=

    

RNMR(t) =
n

k

 

 
 

 

 
 

k=c

n

 e−t( )
k

1 − e−t( )
n −k
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Arbitrary block diagrams (cont.)

Parallel fail silent components vs. majority voting

Neglected issues:

• coverage of fail silence assumption

• reliability of voter

21

n = 1 single component

n = 2 two parallel components

n = (3,2) voting, 2 out of 3

n = (5,2) voting, 2out of 5  

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

t

R(t)

n = 1

n = (3,2)

n = 2

n = (5,2)
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Arbitrary block diagrams (cont.)

Passive redundancy

• probability that A is performing correctly

plus conditional probability that B is

performing correctly and A has failed

22

• under the assumption of constant failure rates A = B

    
R(t) = R(CA) + R(CB C A)

    

R(t) = e− t + RB( t − x + x)
RA (x) − RA (x + x) x

x
x =0

t



x → 0: e−t + RB (t − x)

x =0

t

 f (x)dx

= e−t + e− ( t− x)

x =0

t

 e−xdx

= e−t (1+ t)

CA

CB

s
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Arbitrary block diagrams (cont.)

Passive vs. active redundancy

Neglected issues:

• coverage of fail silence assumption

• reliability of switch

23

n = 1 single component

n = 2 two parallel components

n = (3,2) voting, 2 out of 3

n = 1 + 1 one passive backup  

0 1 2 3 4 5
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n = 1 + 1
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Arbitrary block diagrams (cont.)

Passive redundancy with an unreliable switch

• assumption that the switch functions correctly with  

probability Rs(t)

• the system reliability is the probability that A is performing 

correctly plus the conditional probability that B is performing 

correctly and A has failed and the switch still functions 

correctly

24

    

R(t) = e− t + RB(t − x + x) Rs (t) RA(x) − RA(x − x) 
x =0

t



= e− t + e− (t −x) e
− st

e−xdx

x =0

t



CA

CB

s
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Arbitrary block diagrams (cont.)

Passive red. with limited error detection coverage

• assumption that errors of component A are not always 

detected, the error detection coverage is given by c

• the system reliability is the probability that A is performing 

correctly plus the conditional probability that B is performing 

correctly and A has failed and A’s error has been detected

25

    

R(t) = e− t + c RB (t − x + x) RA(x) − RA(x − x) 
x =0

t



= e− t + c e− (t − x)e−xdx

x =0

t



CA

CB

s
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Arbitrary block diagrams (cont.)

Perfect vs. imperfect passive redundancy

• under practical conditions it is impossible to build an ideal

passive replicated system

• an unreliable switch with s = 0.5 or a switch with error 

detection coverage of 80% reduces the system reliability below 

that of active redundant components

26

n = 1 + 1 one passive backup

n = 2 two parallel components

n = 1 +0.8 1 error detection coverage 80%

n = 1 +0.5 1 reliability of switch is 0.5
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Maintenance and Repair

27



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Single parametric measures

▪Mean time to failure:

▪Mean time to repair:

▪Mission reliability:
Rm = R(tm)  tm ... mission duration

▪ (Steady state) 

availability:

28

    

MTTF = t f (t)dt

0





    

MTTR = t fr(t)dt

0





  
A =

MTTF

MTTF + MTTR
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Mean time to failure

▪ Constant failure rate:

▪ Serial Connected Components

▪ Parallel connected components:

▪ Weibull distributed failure rate:

▪ Passive redundancy:

29

    

MTTF = t f (t)dt = t e−tdt =
1


0




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


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 1 + 2 + +  n
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1


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1

2
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1

3
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1

1

+
1

 2
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1
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MTTF = t(t)−1e−(t)


dt =
(1+ −1)


0




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Repair

▪ Repair rate

• repair rate (t) analogous 

to failure rate

• most commonly constant 

repair rates (t) = 

▪Mean time to repair

• analogous to mean time 

to failure

30

    
MTTR =

1


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Mission reliability

• assumption of a mission time tm

• during mission there is no possibility of maintenance or repair

• typical examples are space flights or air planes

• suitability of architectures depends on mission time

31
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Availability

• the percentage of time for which the system will conform to 

its specification

• also called steady state or instantaneous availability

• without maintenance and repair 

• Mission availability

32

    

t → :

A =
MTTF

MTBF
=

MTTF

MTTF + MTTR
mean time between failures (MTBF)

    MTTR = : A = 0

    

t → tm :

Am =
1

tm

R(t)dt

t =0

tm


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Probabilistic Structural-Based 

Modeling: Part 2

33



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models

• Suitable for modeling of:

• arbitrary structures

(active, passive and voting redundancy)

• systems with complex dependencies

(assumption of independent failures is no longer necessary)

• coverage effects 

• Markov property: 

• The system behavior at any time instant t is independent of 

history (except for the last state).

• Restriction to constant failure rates 

34
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Markov models
The two phases for Markov modeling

• Model design:

− identification of relevant 

system states 

− identification of transitions 

between states

−construction of Markov graph 

with transition rates

• Model evaluation:

−Differential equation

−Solution of equation gives R(t)

– explicit (by hand)

– Laplace transformation

– numeric solution (tool based)

− Integration of differential 

equation gives MTTF

– system of linear equations

35
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Markov models (cont.)

Example model for active redundant system

Two parallel connected components A and B 

with maintenance. Failure rates are A and B, 

repair rates are A and B. 

Identification of system states:               Construction of Markov Graph

36

RA(t)

RB(t)

1: A correct B correct P1(t)
2: A failed B correct P2(t)
3: A correct B failed P3(t)
4: A failed B failed P4(t)

A

A
B

41

2

3B

A

B
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Markov models (cont.)

Active redundancy with identical components

37

• failure rates: A = B =  repair rates: A = B = 

• Identification of system states: ▪ Construction of Markov Graph

1: A correct B correct P1(t)

2: one failed one correct P2(t)

3: A failed B failed P3(t)

• Differential equations:

 
1 2 3



)(
)(

)()()(2
)(

)()(2
)(

2
3

21
2

21
1

tP
dt

tPd

tPtP
dt

tPd

tPtP
dt

tPd







=

+−=

+−=
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Markov models (cont.)

MTTF evaluation from Markov model

38

• In a Markov model the MTTF is given by the period during which the 

system exhibits states that correspond to correct behavior.

• for the active redundant example system:

• state probabilities for t = 0 and t = 

    

MTTF = P1(t) + P2(t)( )
t=0



 dt = T1 + T2

T1 = P1(t)dt

t=0



 T2 = P2(t)dt

t =0





    

P1(0) = 1 P1() = 0

P2 (0) = 0 P2 () = 0

P3 (0) = 0 P3() = 1
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Markov models (cont.)

MTTF evaluation from Markov model (cont.)

39

• integration of differential equation

• solution of linear equation system

    

d P1(t)

dt
= − 2P1(t) + P2(t)

d P2(t)

dt
= 2P1(t) − ( +  )P2(t)

d P3(t)

dt
= P2(t)

    

0 − 1 = −2T1 + T2

0 − 0 = 2T1 − ( + )T2

1− 0 = T2



221

2221
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22
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22

1

22

1





















+=+=

+=
+

=
+

=

=

TTMTTF

TT

T

    

P1(0) = 1 P1() = 0

P2 (0) = 0 P2 () = 0

P3 (0) = 0 P3() = 1
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Markov models (cont.)

Effect of maintenance

40

• repair and failure rate:

• for 2 active redundant components the MTTF is improved by a factor 34

• for 2 passive redundant components the MTTF is improved by a factor 51

  
 =

1

1000
[h]  =

1

10
[h]

without maintenance with maintenance

R(t) MTTF h R(t) MTTF        h

2 components in series 500 500

single component 1000 1000

2 components in parallel 1500 — 51500

one passive backup 2000 — 102000

    e
−2t

  
1

2

  e
−t

  
1


    2e−t − e−2t
  
3

2

    e
−t (1+ t)   

2


    e
−2t

  
1

2

  e
−t

  
1


  
3

2
+



22

  
2


+


2
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Markov models (cont.)

Effect of failure semantics and assumption coverage

41

• comparing a system with two active replicated components to a TMR systems shows 

that under ideal conditions active replication has a higher reliability

• But: active replication is based on 

the assumption that components

are fail silent

– assumption coverage ???

• TMR voting is based on the assump-

tion of fail consistent components

– assumption coverage  1

(if properly constructed) 

0 0.5 1 1.5 2 2.5 3
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0.8
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t

R(t)
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Markov models (cont.)

Effect of failure semantics and assumption coverage

42

• modeling of the TMR was reasonable since assumption 

coverage of fail consistent behavior  1

• modeling of the active redundant system was idealistic since 

assumption coverage of fail silent behavior < 1

• Markov model:

 ..  failure rate for active redundant parallel connected 

components

c ..  assumption coverage for fail silent behavior

c 
1 2 3

( − c)



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Markov models (cont.)

Effect of failure semantics and assumption coverage

43

• failure rate of a single component:   = 100 FIT  

System Description MTTF

n = 2, 0.999 two parallel components, coverage of fail silent assumption 99.9% 14.99 106

n = 2, 0.90 two parallel components, coverage of fail silent assumption 90% 14.00 106

n = 2, 0.70 two parallel components, coverage of fail silent assumption 70% 12.00 106

n = 2, 0.50 two parallel components, coverage of fail silent assumption 50% 10.00 106

n = (2, 3) TMR system, coverage of fail consistent assumption 100% 8.33 106

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

t  [h 106]

R(t)
n = 2, 0.999 
n = 2, 0.90 

n = 2, 0.70 
n = 2, 0.50 

n = (2, 3)
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Markov models (cont.)

Effect of failure semantics and assumption coverage

44

• comparing parallel components to a TMR systems shows that the reliability 

of the parallel system is superior for reasonable assumption coverages

• Safety:

from the viewpoint of safety both systems needs to be reevaluated

• R(t) = S(t)

In an example, a system consists of two parallel components. The system 

reliability is equal to the system safety when the system may potentially 

cause a hazard if it does not function correctly.

• R(t) < S(t)

In an example, a system consists of a TMR systems. The reliability is not 

equal to the safety when the system can enter a safe state although it is not 

functioning correctly, e.g. all three components disagree.
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Markov models (cont.)
Safety of a TMR system

45

• to model the safety of a TMR system it needs to be differentiated 

between incorrect function and the unsafe system state

• Markov model:

 .. failure rate for single component

c .. probability of coincident failures of two components

1 .. 3 correct components

2 .. 2 correct, 1 failed comp.

3 .. 1 correct, 2 failed comp. 

4 .. 3 failed components

5 .. unsafe state,  2 coincident

component failures

3

2(1 –c)

1

5

32 4
3(1 –c)

2c
3c

3ccorrect 

function

system failure
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Markov models (cont.)
Effect of assumption coverage on safety

46

• failure rate of a single component:   = 100 FIT  

System Description MTTFS

n = (2, 3), 10 10-6 TMR system, probability of two coincident failures 10 10-6 333.34 109

n = (2, 3), 4 10-3 TMR system, probability of two coincident failures 4 10-3 861.71 106

n = (2, 3), 0.5 TMR system, probability of two coincident failures 0.5 13.33 106

n = 2, 0.999 two parallel comp., coverage of fail silent assumption 99.9% 14.99 106

n = 2, 0.90 two parallel comp., coverage of fail silent assumption 90% 14.00 106

0.2
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0.6

0.8

1

S(t)

0 2 4 6 8 10 12 14 t  [h 106]

n = (2, 3), 10 10 -6 
n = (2, 3), 4 10 -3

n = 2, 0.999 

n = 2, 0.90 
n = (2, 3), 0.5

coincidence probability of 

two even distributed numbers

16 bit 10 10-6

8 bit 4 10-3

1 bit 0.5



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Generalized Stochastic Petri Nets 

(GSPN)

48

• because of the very limited mechanisms available, Markov models become 

easily very complex 

• Petri Nets provide much richer mechanisms, they can be used to model and 

analyze arbitrary systems, algorithms and processes

• basic Petri Nets — which were restricted to discrete behavior only — can be 

extended to “Generalized Stochastic Petri Nets” by allowing transition 

delays to be either deterministically equal to zero or exponentially 

distributed random variables, or to be random variables with different 

distributions

• it was shown that stochastic Petri Nets are isomorphic to continuous 

Markov chains, i.e. for each stochastic Petri Net there exists a functional 

equivalent Markov chain (and vice versa)
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Generalized Stochastic Petri Nets
Example

49

Single-writer/multiple-reader access to a shared resource with single access. 

pi ... places

ti ... transitions

i ... transition priorities

• the 3 tokens in place p1 represents customers that may request the 

resource

• firing t1 starts the protocol

• t2 indicates “read” and t3 “write” access, respectively

• the single token in p5 represents the resource

p1

p2

p3

p4

p5

p6

p7

K

K = 3

t1

t2

t3 t5

t4 t6

t7

1

1

1

2

2

2

2
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Generalized Stochastic Petri Nets
Modeling  

To model and analyze a system by means of GSPN the following steps have to 

be carried out:

• model construction: usually by means of structured techniques, bottom-up or 

top-down

• model validation: structural analysis, possibly formal proves of some behavioral 

properties

• definition of performance indices: definition of markings and transition firings 

(deterministically or stochastic)

• conversion to Markov chain: generation of reachability set and reachability graph 

to obtain the Markov chain

• solution of the Markov chain

Tool support for all steps exists. Conversion to a Markov chain and solution can 

be automated completely. 

50
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Generalized Stochastic Petri Nets
Model simulation vs. analytical solutions

• generalized stochastic petri nets are well suited for simulation

• transition rates are not restricted to be deterministic or 

exponentially distributed

• complex models are computationally expensive

(simulation step width and simulation duration) 

• too large simulation step width can result in meaningless 

results (variance of result is too big) 

51
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Open issues of probabilistic 

structural based models 

52
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Open issues of probabilistic 

structural based models 

• large gap between system and model

• model construction is time consuming, error prone and 

unintuitive

• small changes in the architecture result in considerable 

changes in the model 

• model validation for ultra-high dependability 

53
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Probabilistic structural modeling 

and software 
Probabilistic structural based models are not well suited for software. 

They are rather well suited to analyze hardware architectures and 

design alternatives. 

• for software there are no well defined individual components

• complexity of software structures is very high

• for software the assumption of independent failures is too strong

−one CPU for many processes

−one address range for many functions

• real-time aspects are not captured

• parallelism and synchronization is not considered

(except for GSPN’s)

54
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Reliability growth models

55
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Reliability growth models

• no assumption on identifiable components and system structure 

• based on the idea of an iterative improvement process:

− testing → correction → re-testing

• major goals of reliability growth models:

− disciplined and managed process for reliability improvement

− extrapolating the current reliability status to future results

− assessing the magnitude of the test, correction and re-test 

effort

• allows modeling of wearout and design faults

• can be used for hardware and software as well 

56
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Reliability growth models (cont.)

Software

• typically continuous time reliability growth

− the software is tested

− the times between successive failures are recorded

− failures are fixed

• observed execution time data t1, t2, t3, ... ti – 1 are realizations of the 

random variables T1, T2, T3, ... Ti – 1

• based on these data the unobserved Ti, Ti + 1, ... should be 

predicted (e.g. Ti = MTTF)

But:

• accuracy of models is very variable

• no single model can be trusted to behave well in all contexts

57
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Reliability growth models (cont.)

The prediction system

Software reliability growth models are prediction systems which are 

comprised of:

• The probabilistic model

which specifies the distribution of any subset Tj’s conditional 

on a unknown parameter 

• A statistical inference procedure

for  involving use of available data (realizations of Tj’s)

• A prediction procedure

combining the above two points to allow to make probability 

statements about future Tj’s

58
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Comparison of probabilistic 

modeling techniques

59
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Comparison of probabilistic 

modeling techniques

60

simple block 
diagrams

arbitrary block 
diagrams

markov chains

simple and easy to understand 
model, easy to calculate for 
constant failure rates

can be used to model arbitrary 
structures

can model arbitrary structures, no 
restriction to independent failures, 
complex dependencies can be ex-
pressed, modeling of coverage 
and maintenance, good tool 
support 

restricted to series and parallel 
connection, assumption of inde-
pendent failures, maintenance 
can-not be modelled, only for 
active redundant systems, not well 
suited for software

same restrictions as with simple 
block diagrams, except series and 
parallel connection, not well suited 
for software

compared to GSPN higher model 
complexity, restriction to constant 
failure rates, not well suited for 
software

Method Advantages Restrictions and deficienies
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Comparison of probabilistic 

modeling techniques (cont.)

61

generalized 
stochastic petri nets

reliability growth 
models

error seeding

much richer mechanisms for 
modeling, allows combination of 
discrete and stochastic behavior, 
good tool support, can be used to 
model algorithmic issues of 
software

suited for prediction of software 
reliability, does not make 
assumptions on the system 
structure, based on relatively easy 
obtainable experimental data

very easy procedure, takes few 
assumptions on the system

it is difficult to verify that the model 
agrees with reality (as for any 
complex model)

accuracy of models is very 
variable, no general applicable 
model, user must analyze different 
models to select suitable one

computational complexity (seeded 
errors by number of test cases), 
error size needs to be controlled

Method Advantages Restrictions and deficienies
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Limits of validation for ultra-high 

dependability

62
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Limits of validation for ultra-high 

dependability

• 10-9 catastrophic failure conditions per hour for civil transport 

airplanes

• experimental system evaluation is impossible for critical 

applications 

• modeling is therefore the only possibility to validate ultra-high 

dependability

63
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Limits of validation for ultra-high 

dependability (cont.)

• Limits for reliability growth models:

−If we want to have an assurance of high dependability, using 

information obtained from the failure process, then we need to 

observe the system for a very long time.

• Limits of testing:

−If we see a period of 109 hours failure free operation a MTTF of 

109 hours can be expected without bringing any apriori believe to 

the problem.

−If a MTTF of 106 is required and only 103 hours of test are carried 

out, Bayesian analysis shows that essentially we need to start with 

a 50:50 believe that the system will attain a MTTF of 106.  

64
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However, it is important to recognize that this 
is a theoretical lower bound, based on perfect 
performance of vehicles.
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https://qz.com/1419747/waymos-self-driving-cars-have-logged-10-million-miles/

https://arstechnica.com/cars/2018/02/waymo

-now-has-a-serious-driverless-car-rival-gms-

cruise/
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Limits of validation for ultra-high 

dependability (cont.)

• Limits of other sources of evidence:

−Step-wise evolution, simple design, over-engineering can be 

used only to a limited extent to obtain confidence because there is 

no continuous system model and there are no identifiable stress 

factors. 

• Limits of past experience:

−For software there is no clear understanding of how perceived 

differences in the design or design methodology affect 

dependability.

• Limits of structural modelling:

−There are obvious limitations with respect to design faults, and 

software in particular since the assumption of failure 

independence does not hold. 
67
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Limits of validation for ultra-high 

dependability (cont.)

• Limits of formal methods and proofs:

“We believe that proofs may eventually give ‘practically complete’ 

assurance about software developed for small but well-understood 

application problems, but the set of these problems is now empty 

and there is no way of foreseeing whether it will grow to be of some 

significance.”

(Littlewood and Strigini, 1993) 

68
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Example: Hardware Design 

Analysis at TTTech

69
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Design Analysis Goals

▪ Failure Rate Prediction

• Calculation of component FIT and MTBF values

▪ IEC TR 62380 Reliability Data Handbook

• provides elements to calculate failure rate of mounted 

electronic components

• Reliability data is taken from field data

• Failures rates include the influence of component mounting 

processes

70



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

▪ Advantages:
• Per component predefined 

analysis method

• Analysis within the schematic

• Component parameter changes 

are automatically adopted in the 

design analysis

• Analysis's  can be sequenced 

and use results from preceding 

calculations

Mission 

Profile

Schematic

is central

document

Component 

Database

Datasheets

Additional 

Parameters:

e.g. Voltage

Design Analysis
• Integrated algebra tool

• Predefined calculation sheets

• Predefined calculation method for 

each component type

Parameters Results

Component

specific

parameters

Application

specific

parameters

Schematic Topology

specific

parameters
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Dependable Systems

Part 4: Certification – Processes  and Standards 
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Contents

• Generic Characteristics

• Example: TTTech´s Software Development

• Example: Traceability in the Development of an Ethernet 

Switch

• Certificates

• Standards

• Safety Integrity Levels (SIL)

• Automotive SIL (ASIL)

• Design Assurance Levels (DAL)

• The Safety Case

2
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Generic Characteristics of 

Development Processes for 

Dependable Systems

3
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Objectives of Development 

Processes

• The aim of development processes is to minimize the 

likelihood of development faults, i.e., faults that occur during 

the creation of the system (HW, SW, etc.)

• For example: since the introduction of the DO-178B standard 

“Software Considerations in Airborne Systems and 

Equipment Certification” in the 1990s, not a single lethal 

incident has occurred that would trace back to a software 

development fault. 

4
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Typical activities in such 

development processes
• Requirements Capturing

• High-Level Requirements 

Document

• Low-Level Requirements 

Document

• Conceptual Design Document

• Detailed Design (i.e., implem-

entation)

• Verification and Validation

• Peer review and auditing

• Key property of the 

documents: traceability

5
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Verification and Validation

• Verification is the process to check whether a product 

satisfies its requirements.

• Validation is the process to check if the product satisfies its 

purpose. 

• Why is verification different from validation?

→ Sometimes, a product’s purpose is not fully described 

by its requirements. 

6
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Example: TTTech´s Software 

Development

7
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▪ The flowchart to the left shows how

software processes are implemented

at TTTech.

▪ Each development process creates an 

artifact as output (documents or code).

▪ Software Verification Cases and

Procedures (SVCP) are developed in 

parallel to the refinement steps of the

development process.

▪ All development, planning and

verification artifacts are peer reviewed

prior to release.

▪ The Testing Process creates the

Software Verification Results (SVR) as

objective evidence for the correct

implementation of all high- and low-

level requirements.

▪ SQAR, SW Quality Assurance Record

▪ SQARI, SW Quality Assurance Record 

Index
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Example: Traceability in the 

Development of an Ethernet Switch

9
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[PURPOSE]

This test case checks if the switch ip drops incoming RC 

frames that ageded out inside the IP.\\

[AUTHOR]

AST

[RESULT]

PASS

[REQUIREMENTS]

\ReqRef{MNI-3700}

\ReqRef{VLU-4650}

\ReqRef{DCI-2745}

[PRECONDITIONS]

\footnotesize

\begin{verbatim}

The test assumes the following configuration is loaded:

General Parameters Table:

- static cots routing       := 1

- dynamic cots routing      := 0

- ct marker                 := 0xDEADBEEF

- ct mask                   := 0xFFFFFFFF

- rc latency                := 500 (4us) - has the resolution 

of system clock, which is 8 ns

if R.tdma_frame >= SERDES_PORTS_NO then

V.age_time := ONE_SECOND;                                                     --\ReqRef{VLU-4650}

else

V.age_time := cdi.age_time(stdvec_to_int(R.tdma_frame));          --\ReqRef{VLU-4650}

end if;

elsif R.start_tdma_buffer_d = '1' then

V.tdma_frame := ismi.tdma_frame;                                                   --\ReqRef{VLU-4650}

if ctci.valid = '1' and R.one_time = '1' then

V.ramo_lbl_to_link_ram_addr := ctci.tail_index;                           --\ReqRef{MNI-3660}, 

Requirement

Conceptual Design

Implementation

Test



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Certificates

11



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

What is being certified?

▪ Product

• a regulatory body 

approves that a 

product has certain 

characteristics.

• e.g., type certificate of 

an airplane 

▪ Company

• a regulatory body 

approves that a given 

company follows given 

standards. 

• e.g., ISO 9001

12
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Certificates Examples

• Type Certificate (Aerospace):

• is issued to signify the airworthiness of an aircraft 

manufacturing design, 

• is issued by a regulating body (e.g., FAA, EASA).

13
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Standards

14
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Main Aspects of Development 

Processes

• Requirements on the development process in particular:

• specification

• design

• verification

• Requirements on the safety management. 

15
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Example Standards

• IEC 61508 – “Functional Safety”

• ISO 26262 – “Road vehicles – Functional safety”

• ARP 4754 – “Certification Considerations for Highly-

Integrated or Complex Aircraft Systems”

• DO 178B/C – “Software Considerations in Airborne Systems 

and Equipment Certification”

16
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Terminology

• Certification-related standards have been developed in 

parallel to the academic work. Thus, the terminology as 

introduced by Avizienis et al. and used in this course, does 

not always apply. 

• Certification-related standards introduce their individual terms 

and definitions.

18
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Safety Life Cycle Considerations

• A complete framework for the safety life cycle consists of:

• definition of different life cycle phases

• specification of which activities to perform in each phase

• specification of which inputs to provide to each of the 

activities

• requirement on which results to achieve.

• Standards vary with respect to their framework completeness.

• e.g., IEC 61508 defines a complete framew. (see next slide)

• e.g., DO 178 defines only the results to be achieved 

19
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We will discuss later how some of

these parts tie into each other.
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SW/HW Development Life Cycle

• Standards also vary in imposing requirements on the SW/HW 

development life cycle. 

• e.g., IEC 61508 does not require any particular SW 

development process

• e.g., ISO 26262 defines a V-Model as a reference 

software development process (see next slide).

21
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Safety Integrity Levels

23
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Safety Integrity Levels 

(IEC 61508)
• 3.5.1 safety function:

• function to be implemented by an E/E/PE safety-related system or other 

risk reduction measures, that is intended to achieve or maintain a safe 

state for the EUC [Equipment Under Control], in respect of a specific 

hazardous event (see 3.4.1 and 3.4.2)

• 3.5.4 safety integrity: 

• probability of an E/E/PE safety-related system satisfactorily performing 

the specified safety functions under all the stated conditions within a 

stated period of time

• 3.5.8 safety integrity level SIL:

• discrete level (one out of a possible four), corresponding to a range of 

safety integrity values, where safety integrity level 4 has the highest 

level of safety integrity and safety integrity level 1 has the lowest

24
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Safety Integrity Levels 

(IEC 61508) cont.

25

Is the result of a risk assessment

(IEC 61508 – part 5).
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Safety Integrity Levels 

(IEC 61508) cont.

mode of operation: way in which a safety function operates, which may be 

either

• low demand mode: where the safety function is only performed on 

demand, in order to transfer the EUC into a specified safe state, and 

where the frequency of demands is no greater than one per year; or

• high demand mode: where the safety function is only performed on 

demand, in order to transfer the EUC into a specified safe state, and 

where the frequency of demands is greater than one per year; or

• continuous mode: where the safety function retains the EUC in a safe 

state as part of normal operation

26
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Safety Integrity Levels 

(IEC 61508) cont.

average probability of dangerous failure on demand (PFDavg):

• mean unavailability (see IEC 60050-191) of an E/E/PE 

safety-related system to perform the specified safety function 

when a demand occurs from the EUC or EUC control system

average frequency of a dangerous failure per hour (PFH)

• average frequency of a dangerous failure of an E/E/PE safety 

related system to perform the specified safety function over a 

given period of time

27



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Integrity Levels 

(IEC 61508) cont.

• NOTE 3: Tables 2 and 3 relate the target failure measures, as allocated to a 

safety function carried out by an E/E/PE safety-related system, to the safety 

integrity level. It is accepted that it will not be possible to predict 

quantitatively the safety integrity of all aspects of E/E/PE safety-related 

systems. Qualitative techniques, measures and judgements will have to be 

made with respect to the precautions considered necessary to ensure that 

the target failure measures are achieved...

• NOTE 4 For hardware safety integrity it is necessary to apply quantified 

reliability estimation techniques in order to assess whether the target safety 

integrity, as determined by the risk assessment, has been achieved, taking 

into account random hardware failures (see IEC 61508-2, 7.4.5).

28
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Safety Integrity Levels 

(IEC 61508) cont.

• Determination of the safety integrity of a safety function is non-

trivial as it highly depends on expert knowledge in the 

application area. 

• Various methods are informally presented in IEC to determine 

the safety integrity (and consequently also the SIL).

• Examples are: ALARP (as low as reasonable possible), and the 

quantitative method (IEC 61508 – part 5). 

29
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Safety Integrity Levels 

(IEC 61508) cont.

31

Is the result of a risk assessment

(IEC 61508 – part 5).
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Safety Integrity Levels 

(IEC 61508) cont.

• Once the SIL of a given safety function is determined, IEC 

61508 (part 2, 3) defines particular requirements. IEC 61508 

is product prescriptive, i.e., it requires that the end product 

implements specific features:

32

IEC 61508 – part 7
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Safety Integrity Levels 

(IEC 61508) cont.

• IEC 61508 part 7 gives an overview of techniques and measures, e.g. C.3.3 

Failure assertion programming

33
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Automotive SIL (ASIL)

34
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Automotive Safety Integrity Levels

(ISO 26262)
• IEC 61508 determines the SIL levels by consideration of the 

consequence of the hazardous event and by the probability of 

occurrence of this event.

• The equivalent parameters in ISO 26262 are:

• Severity:

• estimate of the extent of harm to one or more individuals 

that can occur in a potentially hazardous situation

• Exposure (actually – the probability of exposure)

• state of being in an operational situation that can be 

hazardous if coincident with the failure mode under analysis

35
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Automotive Safety Integrity Levels

(ISO 26262) cont.

• ISO 26262 defines in addition also a third parameter: the 

controllability. 

• Controllability:

• ability to avoid a specified harm or damage through the timely 

reactions of the persons involved, possibly with support from 

external measures 

• E.g., in current series implementations of driver assistance systems, 

the driver is requested to be alert such that he/she can take over in 

case of an emergency. Typically the driver needs to get in contact 

with the steering wheel every few seconds. This increases and 

enforces the controllability.

36
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Automotive Safety Integrity Levels

(ISO 26262) cont.

• Classes of Severity:

• Classes of Probability of Exposure:

• Classes of Controllability:

37
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Automotive Safety Integrity Levels

(ISO 26262) cont.

• QM: Quality Management – there are no hazards associated with 

the given application

• ASIL A: lowest automotive safety integrity level, moderate additional 

requirements towards the development process 

(on top of QM), example sub-system: retractable hardtop for 

convertibles

• ASIL B: example sub-system: head & tail lights 

• ASIL C: example sub-system: electric drivetrain 

• ASIL D: highest automotive safety integrity level, rigorous 

development process requirements, example sub-system: EPS 

(electro-mechanical power steering)

38
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Automotive Safety Integrity Levels

(ISO 26262) cont.

39
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Determination of ASIL
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Light/moderate 

injury

Severe / 

lifethreatening

injury (survival

possible)

Lifethreatening / 

fatal injury

(survival

uncertain)

Very low

probability
Low

(<1% of operating time)
Medium

(1-10% of operating time)

High

(>10% of operating time)

Simply controllable

( ≥ 99% of drivers

are able to control)

Normally controllable

( ≥ 90% of drivers

are able to control)

Difficult to

control or

uncontrollable
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ARP 4754, 4761, DO 178, 

DO 254

42
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SAE ARP 4754A
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▪ Aircraft level functional requirements
are allocated to aircraft systems

▪ Iterative analysis with Functional
Hazard Assessment (FHA)

• Determines severity of failures

▪ Development of System Architecture

• Allocation, Redundancy, Partitioning, 
etc.

▪ Preliminary System Safety
Assessment (PSSA) of design, 
iteratively (top-down)

• Determines Safety Requirements
and

• Development Assurance Levels

▪ Allocation of requirements to
hardware and software items

▪ HW/SW item development
according to DO-254 and DO-178B, 
respectively

▪ System Safety Assesments (SSAs)
analyze implementation (bottom-up)

SAE ARP 4754

44
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Common Cause Analysis
▪ Common Cause Analysis (CCA) targets design errors that may invalidate

subsystem failure independence assumptions required by the (P)SSA.

• Zonal Safety Analysis:

should examine each physical zone of the aircraft to ensure that equipment

installation and potential physical interference with adjacent systems do not violate

the independence requirements of the systems.

• Particular Risk Assessment: 

should examine those common events or influences that are outside the system(s) 

concerned but which may violate independence requirements. These particular

risks may also influence several zones at the same time, whereas zonal safety

analysis is restricted to each specific zone.

• Common Mode Analysis:

provides evidence that the failures assumed to be independent are truly

independent. The analysis also covers the effects of design, manufacturing, and

maintenance errors and the effects of common component failures.
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Functional Hazard Analysis (FHA) 

from ARP 4754

46

ARP 4761, p.18
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Failure Mode Classification –

Consequences, e.g., Aircraft
Minor: 10E-5 per flight hour or greater

no significant reduction of aeroplane safety, a slight reduction in the 

safety margin

Major: between 10E-5 and 10E-7

significant reduction in safety margins or functional capabilities, 

significant increase in crew workload or discomfort for occupants

Hazardous: between 10E-7 and 10E-9

large reduction in safety margins or functional capabilities, causes 

serious or fatal injury to a relatively small number of occupants

Catastrophic: less than 10E-9

these failure conditions would prevent the continued safe flight and 

landing of the aircraft

47
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Design Assurance Levels

(ARP, DO 178, DO 254)
• Design Assurance Levels are determined only by the effects on the aircraft:

• DAL A: Catastrophic

• DAL B: Hazardous failure condition

• DAL C: Major

• DAL D: Minor

• DAL E: No Effect

• DO 178 and DO 254 are process prescriptive,

• i.e., the DAL defines which processes need to be executed and how.

• DO 178 and DO 254 are not product prescriptive,

• i.e., the DAL does not require specific functions in an end product

48
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Assurance Cases / Safety Cases

49
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Definitions

• “An assurance case provides arguments to justify certain 

claims about a system, based on evidence concerning both 

the system and the environment in which it operates.” 

[Rushby]

• A safety case is a special kind of assurance case in which 

the claims being argued concern safety properties. 

50
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Prescriptive Method vs. 

Performance-Oriented Method

• Prescriptive methods can be product prescriptive and/or 

process prescriptive.

• We have discussed IEC 61508 and ISO 26262 as product 

prescriptive methods.

• We have discussed DO 178b/c and DO 254 as project 

prescriptive methods.

• In performance-oriented methods, “the certification authority 

specifies a threshold of acceptable performance and a 

means for assuring that the threshold has been met. [...] it is 

up to the assurer to decide how to accomplish that goal.” 

[Leveson]. 

51
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Dependable Systems

Part 5: Failure Modes and Models



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Contents

• Recap from Part 2: Canonical Failure Classification

• Failure Mode Hierarchy

• Fault-Hypothesis, Failure Semantics, and Assumption 

Coverage

• Failure Hypothesis Estimation 

• Overview of Safety Analysis Methods

• Comparison of Safety Analysis Methods

2
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Recap from Part 2: Canonical 

Failure Classification

3
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Failures

Recap:

A (service) failure is an event that occurs when the delivered 

service deviates from correct service. 

• Thus, a failure is a transition from correct service to incorrect 

service.

4
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Failure Mode Classification –

Overview

• Domain: 

• content, early timing failure, late timing failure, halt failure, 

erratic failure

• Detectability: 

• signaled failures, unsignaled failures

• Consistency: 

• consistent failure, inconsistent failure

• Consequences: 

• minor failure, ..., catastrophic failure

5
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Failure Mode Classification –

Domain 

• Content 

• Early timing failure 

• Late timing failure 

• Halt failure

− the external state becomes constant, i.e., system activity 

is no longer perceptible to the users

− silent failure mode is a special kind of halt failure in that 

no service at all is delivered

• Erratic failure

− not a halt failure, e.g., a babbling idiot failure

6
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Failure Mode Classification –

Consistency 

When there are more than one users of a service. 

• Consistent failure: 

• All users experience the same incorrect service.

• Inconsistent failure

• Different users experience different incorrect services.

7
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Failure Mode Classification –

Consequences, e.g., Aircraft
Minor: 10E-5 per flight hour or greater

no significant reduction of aeroplane safety, a slight reduction in the 

safety margin

Major: between 10E-5 and 10E-7

significant reduction in safety margins or functional capabilities, 

significant increase in crew workload or discomfort for occupants

Hazardous: between 10E-7 and 10E-9

large reduction in safety margins or functional capabilities, causes 

serious or fatal injury to a relatively small number of occupants

Catastrophic: less than 10E-9

these failure conditions would prevent the continued safe flight and 

landing of the aircraft

8
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Failure Mode Hierarchy

9



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Based on the strength of the assumptions the failure modes form a 

hierarchy. 

• byzantine failures are based on the weakest assumption 

(a non-assumption)

• fail-stop failures are based on the strongest assumptions

(only correct results, information about the last correct state in case 

of a failure) 
10

Byzantine

Performance

Authentification detectable byzantine

Omission

Crash

Fail-stop

Universe of possible behavior    

Fail uncontrolled behavior
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Failure Example

11

Faulty ECU

Without protection, the switch 

forwards all frames from the attack. At some magnitude of attack, the switch 

starts loosing frames from other, 

independent applications. 
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Based on the strength of the assumptions the failure modes form a 

hierarchy. 

• byzantine failures are based on the weakest assumption 

(a non-assumption)

• fail-stop failures are based on the strongest assumptions

(only correct results, information about the last correct state in case 

of a failure) 
12

Byzantine

Performance

Authentification detectable byzantine

Omission

Crash

Fail-stop

Universe of possible behavior    

Fail uncontrolled behavior
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Failure Mode Hierarchy (cont.)

• Byzantine or arbitrary failures:

there is no restriction on the behavior at the system interface, 

this mode is often called fail-uncontrolled 

(“two-faced” behavior, forging of messages)

• Authentification detectable byzantine failures:

the only restriction on the behavior at the system interface is 

that messages of other systems cannot be forged

(this failure mode applies only to distributed systems)

13
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Failure Mode Hierarchy (cont.)

• Performance failures:

under this failure mode systems deliver correct results in the 

value domain,  in the time domain results may be early or 

late (early or late failures)

• Omission failures: 

a special class of performance failures where results are 

either correct or infinitely late  (for distributed systems 

subdivision in send and receive omission failures)

14
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Failure Mode Hierarchy (cont.)

• Crash failures:

a special class of omission failures where a system does not 

deliver any subsequent results if it has exhibited an omission 

failure once

(the system is said to have crashed) 

• Fail-Stop failures:

besides the restriction to crash failures it is required that 

other (correct) systems can detect whether the system has 

failed or not and can read the last correct state from a stable 

storage

15
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Fault-Hypothesis, Failure Semantics, 

and Assumption Coverage

16
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Fault-Hypothesis, etc. 
Concepts

• Fault hypothesis:

The fault hypothesis specifies anticipated faults which a 

server must be able to handle (also fault assumption).

• Failure semantics: 

A server exhibits a given failure semantics if the probability of 

failure modes which are not covered by the failure semantics 

is sufficiently low. 

• Assumption coverage: 

Assumption coverage is defined as the probability that the 

possible failure modes defined by the failure semantics of a 

server proves to be true in practice conditions on the fact that 

the server has failed.
17
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Fault-Hypothesis, etc. (cont.)

Importance of assumption coverage

• The definition of a proper fault hypothesis, failure semantics 

and achievement of sufficient coverage is one of the most 

important factors.

• If the fault hypothesis (or failure semantics) is violated a 

system may fail as a whole.

18
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Fault-Hypothesis, etc. (cont.)

Assumption Coverage Example

If component 1 or 2 violates its failure semantics the system 

fails, although it was designed to tolerate 1 component failure.

19

Component 1

Component 2

Voter

input 1

input 2

output

crash semantics

crash semantics

Why?
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Fault-Hypothesis, etc. (cont.)

The Titanic or: violated assumption coverage

• The fault hypothesis:

The Titanic was built to stay afloat if less or equal to 4 of the 

underwater departments were flooded.

• Rationale of fault hypothesis:

This assumption was reasonable since previously there had 

never been an incident in which more than four 

compartments of a ship were damaged.

• But:

Unfortunately, the iceberg ruptured five spaces, and the 

following events went down to history.

20
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Failure Hypothesis Estimation 

21
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Life-characteristics curve (Bathtub curve)

• For semiconductors, out of three terms describing the life 

characteristics only infant mortality and the constant-failure-

rate region are of concern 

22

Life-characteristics curve, showing the three components of failure
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Semiconductor failure rate

• a typical failure rate distribution for semiconductors shows 

that wear out is of no concern

23

Semiconductor failure rate
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Stress Tests

• semiconductor failures are stress dependent

• the most influential stress factor is temperature

24
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Stress Tests (cont.)

Arrhenius equation

• the basic relationship between the activation rate of failures 

and temperature is described by the Arrhenius equation

25

Arrhenius plot (EA = 1 eV)

R0 .. constant

T .. absolute temperature (K)

EA .. activation energy (eV)

k .. Boltzmann’s constant 8.6 10-5 eV/K

    R = R0e
−

EA

kT
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Stress Tests (cont.)

Accelerated stress testing of semiconductors

• to remove freaks and infant-mortality failures (screening)

• to determine the expected failure rate

Accelerated conditions:

accelerated temperature lowering of temperature

cycling of temperature high temperature and current

temperature and voltage stress  particles

temperature, voltage and high voltage gradients

humidity stress

26
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Stress Tests (cont.)

Software stress

• For software there is no sound empirical and mathematical basis to 

use stress as a method to characterize the behavior of components. 

• it is currently unknown how to characterize stress for software

• it is impossible to carry out accelerated stress tests to examine 

failure rates for software

• for software there is no such relation as the Arrhenius equation 

which describes the activation rate of failures

• there is no general possibility to “over-engineer” a system to 

handle conditions which are more stressful

27
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Hardware/Software 

Interdependence

• software depends on hardware:

• software requires hardware to execute

(e.g. Intel’s Pentium bug)

• hardware depends on software:

• VLSI design uses software tools 

• PCB layout and routing by software tools

• EMC analysis by software tools

• hardware testers are software driven 

28
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Overview of Safety Analysis 

Methods

29
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Safety Analysis (cont.)

Concepts

System Safety: is a subdiscipline of system engineering that 

applies scientific, management, and engineering principles to 

ensure adequate safety, throughout the operational life cycle, 

within the constraints of operational effectiveness, time and cost.

Safety: has been defined as “freedom from those conditions that 

can cause death, injury, occupational illness, or damage to or 

loss of equipment or property”. safety has to be regarded as a 

relative term.

Software Safety: to ensure that the software will execute within a 

system context without resulting in unacceptable risk

30
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Safety analysis
Overview

• includes complete life cycle of project/product

(specification, design, maintenance, modification, ... )

• definition of responsibilities

• communication with other groups

• complete documentation

• analysis of complex processes

• management procedures

(specialists, meetings, action reviews, time schedule, ... )

31
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Safety Analysis (cont.)

Major topics of Safety analysis 

• which (hazard analysis)

• how (accident sequencing)

• how likely (quantitative analysis)

32
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Safety Analysis (cont.)

Safety analysis methodologies

• Preliminary Hazards Analysis (PHA)

• Hazards and Operability Study (HAZOP)

• Action Error Analysis (AEA)

• Fault Tree Analysis (FTA)

• Event Tree Analysis (ETA)

• Failure Modes and Effect Analysis (FMEA)

Failure Modes, Effect and Criticality Analysis (FMECA)

• Cause-consequence analysis

33



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Preliminary hazard analysis (PHA)

• The first step in any safety program is to identify hazards and 

to categorize them with respect to criticality and probability

• define system hazards

• define critical states and failure modes

• identify critical elements

• determine consequences of hazardous events

• estimate likelihood of hazardous events

• issues to be analyzed in more detail

34
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Safety Analysis (cont.)

Hazards and Operability Study (HAZOP)

Based on a systematic search to identify deviations that may 

cause hazards during system operation

Intention: for each part of the system a specification of the 

“intention” is made

Deviation: a search for deviations from intended behavior which 

may lead to hazards

Guide Words: Guide words on a check list are employed to 

uncover different types of deviations

(NO, NOT, MORE, LESS, AS WELL AS, PART OF, 

REVERSE, OTHER THAN)

Team: the analysis is conducted by a team, comprising different 

specialists
35
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Safety Analysis (cont.)

Example for HAZOP

• Intention: pump a specified amount of A to reaction tank B. 

Pumping of A is complete before B is pumped over.

36

NO or NOT

– the tank containing A is empty

– one of the pipe’s two valves V1 or V2 is closed

– the pump is blocked, e.g. with frozen liquid

– the pump does not work (switched off, no power, ... )

– the pipe is broken

CONSEQUENCE is serious, a possible explosion

MORE

– the pump has a too high capacity

– the opening of the control valve is too large

CONSEQUENCE not serious, tank gets overfilled

AS WELL AS

– valve V3 is open, another liquid or gas gets pumped

– contaminants in the tank

–A is pumped to another place (leak in the connecting 

pipe)

CONSEQUENCE is serious, a possible explosion

. . .

A

C

B

V1

V3
V2

V5

V4
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Safety Analysis (cont.)

Action Error Analysis (AEA)

Considers the operational, maintenance, control and supervision 

actions performed by human beings. The potential mistakes in 

individual actions are studied. 

• list steps in operational procedures (e.g. “press button A”)

• identification of possible errors for each step, using a check-list of 

errors

• assessment of the consequences of the errors

• investigations of causes of important errors

(action not taken, actions taken in wrong order, erroneous actions, 

actions applied to wrong object, late or early actions, ... )

• analysis of possible actions designed to gain control over these 

process

• relevant for software in the area of user interface design
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https://www.theguardian.com/world/2015/jul/02/transasia-crash-pilot-pulled-wrong-

throttle-shut-down-sole-engine

https://en.wikipedia.org/wiki

/Kegworth_air_disaster
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Safety Analysis (cont.)

Fault Tree Analysis (FTA)

A graphical representation of logical combinations of causes that 

may lead to a hazard (top-event). Can be used as a quantitative 

method. 

• identification of hazards (top-events)

• analysis to find credible combinations which can lead to the 

top-event

• graphical tree model of parallel and sequential faults

• uses a standardized set of symbols for Boolean logic

• expresses top-event as a consequence of AND/OR 

combination of basic events

• minimal cut set is used for quantitative analysis
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Safety Analysis (cont.)

Symbols used in fault tree analysis

40
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Safety Analysis (cont.)

An Example for fault tree analysis

In a container two chemicals react with each other over a period of 10 hours at a 

temperature of 125 °C. If the temperature exceeds 175 °C toxic gas is emitted. 

The temperature is controlled by a computer system. 

41

Relay
Valve

Alarm

Computer 

system

T = 125°C

Power Supply
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Safety Analysis (cont.)

An Example for fault tree analysis (cont.)

Identification of the top-event: 

Emission of poisonous gas 

is the top event

42

The upper part of the fault tree
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Safety Analysis (cont.)

An Example for fault tree analysis (cont.)

Subtree for temperature

measurement failure

43
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Safety Analysis (cont.)

An Example for fault tree analysis (cont.)

Subtree for heating 

cut off failure

44
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Autonomous Driving Example

45

Failure of the 
Computer 

Vision System
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Safety Analysis (cont.)

Event Tree Analysis (ETA)

Models the potential consequences of faults which are 

considered as events. Can be used as a quantitative method. 

• identification of basic events

• start with basic events and describe possible consequences 

of this event

• binary decision for consequences of events

• opposite of FTA which starts with top events

46
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Safety Analysis (cont.)

Failure Modes and Effect Analysis (FMEA)

A common method where the designer in a systematical way 

has to answer the questions “How can the component fail?” and 

“What happens then?”. 

• the system is dived up into different components in the form 

of a block diagram

• failure modes are identified for all components

• causes, consequences and the significance of failures are 

assessed for each failure mode 

47



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Safety Analysis (cont.)

Failure Modes and Effect Analysis (FMEA) (cont.)

• an investigation is made into how the failure can be detected

• if necessary, recommendations for suitable control measures 

are made

• analysis is supported by tabular sheets (e.g. IEC 

standard 1985)

• failure mode, effects and criticality analysis (FMECA) puts 

special emphasis on the criticality aspect

48
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Safety Analysis (cont.)

An example FMEA hazard assessment

49

Severity of consequence Probability of occurrence Probability of detection

10 Very severe 10 High 500 10-6 10 Unprobable

System operation has to be It is almost certain that the It is impossible or at very in-

9 abandoned or even a safety 9 failure will occure with high probable that the failure can

critical state may be reached probability be detected

8 Severe 8 Moderate 50 10-6 9 Very low

Failure causes disturbance of The component is similiar to com- It is possible to detect the fault

end user (no safety critical 7 ponent designs which already have before the system fails

7 failures or violations of regu- caused problems in the past

lations) 8 Small

6 Moderate 6 Small 5 10-6 7

Failure causes inconvenience of The component is similiar to com-

5 the end user, restricted system 5 ponent designs which have caused 6

operation will be perceived by problems in the past, but the extend

4 the customer 4 of problems was relatively low 5 Moderate

3 Minor 3 Very small 100 10-9 4

Failure causes only minor incon- The component is similiar to com- 3

venience of the end user, only ponent designs which had very

2 minor restrictions of the system low failure rates in the past

operation are perceiveable 2 High

1 Improbable 1 Improbable 1 10-9 1 Very High

It very improbable that the failure It is very improbable that a failure It is certain that the faults gets de-

will be perceived by the end user ocurrs tected before the system fails

Hazard assessment

criterias

according to VDA 

(Verein Deutscher

Automobilhersteller) 
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Safety Analysis (cont.)

An example FMEA hazard assessment (cont.)

50

Function Failure Mode Cause Effect Controls

speed sensor open connector or no operation supplier quality control and 9 4 3 108

harness possible end of line testing

computer no operation computer supplier quality control 9 3 3 81

possible and end of line testing

sensor no operation sensor supplier quality control, 9 4 3 108 

possible module and end of line testing

short to connector or no operation supplier quality control and 9 2 3 54

supply harness possible end of line testing

computer no operation computer supplier quality control 9 2 3 54

possible and end of line testing

sensor no operation sensor supplier quality control, 9 2 3 54 

possible module and end of line testing

short to connector or no operation supplier quality control and 9 1 3 27

ground harness possible end of line testing

computer no operation computer supplier quality control 9 1 3 27

possible and end of line testing

sensor no operation sensor supplier quality control, 9 1 3 27 

possible module and end of line testing

Severity

Probability

Dedection

Product
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Safety Analysis (cont.)

Cause-consequence analysis

Combination of fault tree analysis and event tree analysis

• starts at a critical event

• works forward by using event tree analysis (consequences)

• works backward by using fault tree analysis (causes)

• very flexible

• well documented method

51
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Comparison of Safety Analysis 

Methods

52
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Comparison of Safety Analysis 

Methods

53

Method

Preliminary 
hazards analysis

Hazards and 
operability study

Action error 
analysis

Advantages

A required first step.

Suitable for large chemical plants. 
Results in a list of actions, design 
changes and cases identified for 
more detailed study. Enhances the 
information exchange between 
system designers, process designers 
and operating personnel. 

Gives the computer system designer 
proposals for proper interface 
design. Helps the personnel or users 
to monitor the process during 
operation and helps to prevent 
operator mistakes.

Restrictions and deficiencies

None.

Technique is not well standardized 
and described in the literature. Most 
often applied to continuos 
processes. 

AEA is an analysis of the technical 
system, and does not analyze the 
behavior of operators. The thoughts 
and intentions of human beings, i.e. 
the reasons for mistakes, are not 
considered. 
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Comparison of Safety Analysis 

Methods (cont.)

54

Method

Fault tree 
analysis

Event tree 
analysis

Advantages

Well accepted technique. Very good 
for finding failure relationships. A 
fault oriented technique which looks 
for the ways a system can fail. 
Makes it possible to verify 
requirements, which are expressed 
as quantitative risk values.

Can identify effect sequences and 
alternative consequences of failures. 
Allows analysis of systems with 
stable sequences of events and 
independent events. 

Restrictions and deficiencies

Large fault trees are difficult to 
understand, bear no resemblance to 
system flow charts, and are 
mathematically not unique. It 
assumes that all failures are of 
binary nature, i.e. a component 
completes successfully or fails 
completely. 

Fails in case of parallel sequences. 
Not suitable for detailed analysis 
due to combinatorial explosion. 
Pays no attention to extraneous, 
incomplete, early or late actions. 
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Comparison of Safety Analysis 

Methods (cont.)

55

Method

Failure modes 
and effects 
analysis

Cause-
consequence 
analysis

Advantages

Easily understood, well accepted, 
standardized technique. Non-
controversial, non-mathematical. 
Studies potential failures and their 
effects on the function of the system. 

Extremely flexible and all-
encompassing methodology. Well 
documented. Sequential paths for 
critical events are clearly shown. 

Restrictions and deficiencies

Examines non-dangerous failures 
and is therefore time consuming. 
Often combinations of failures and 
human factors not considered. It is 
difficult to consider multiple and 
simultaneous failures. 

Cause-consequence diagrams 
become too large very quickly (as 
FTA, ETA). They have many of the 
disadvantages of fault tree analysis. 
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Problems with software safety 

analysis
• relatively new field

• lack of systematic engineering discipline

• no agreed or proven methodologies

• time and cost

• complexity 

(understanding of the problem domain, separation of knowledge)

• discrete nature of software

(difficulties with large discrete state spaces)

• real-time aspects

(concurrency and synchronization)

• (partially) invalid assumption of independent failures
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Dependable Systems

Part 6: System aspects of dependable computers
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Contents

• System design considerations

• Fault-tolerance: systematic vs. application-specific

• The problem of Replica Determinism

• Services for replicated fault-tolerant systems

• Basic Services

• Clock Synchronization Services

• Communication Services

• Replica Control Services

2
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System design considerations

3
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System design considerations

Fault-tolerance is not the only means for dependability.

To achieve given dependability goals the following aspects need 

consideration (usually in the order given here):

• perfection low

• maintenance

• fault-tolerance design complexity

• systematic fault-tolerance

• application-specific fault-tolerance       high

4
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Perfection vs. fault-tolerance
Perfection is easier than fault-tolerance:

• if it is possible to attain a given dependability goal by means of 

perfection  then use perfection in favor of fault-tolerance

• perfection leads to conceptual simpler systems

• lower probability of design faults

• does not require error detection, damage confinement and 

assessment, error recovery and fault treatment to tolerate faults

• steady reliability improvement of hardware components supports 

perfection

But, perfection is limited:

• perfection is limited by the dependability of individual components

• very high dependability goals can only be reached by maintenance or 

by fault-tolerant systems

5
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Maintenance vs. fault-tolerance
Maintenance is easier than fault-tolerance:

• if it is possible to attain a given dependability goal (availability) by 

means of maintenance then use maintenance in favor of fault-tolerance

• maintenance adds to system complexity, but is still considerable simpler 

than fault-tolerance

• maintenance has lower probability of design faults than FT

• maintenance requires error detection and damage confinement, but no 

error recovery and fault treatment at system level

• there is also trade off between maintenance and reliability (connector 

vs. solder joint), i.e., some maintenance measures may reduce reliability

But, maintenance is limited: 

• maintenance is limited by the dependability of individual components

• applicability of maintenance is limited (cf. next slide)

6
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Limitations of maintenance
• maintenance (without fault-tolerance) is only applicable if 

system down times are permitted

• fail-stop or fail-safe systems allow down times: 

(train signaling, anti-lock braking system, …)

• fail-operational systems do not allow down times: 

(fly-by-wire, reactor safety system, …)

• only restricted reliability and safety improvements by 

preventive maintenance

• preventive maintenance is only reasonable if:

• replacement units have constant or increasing failure rate

• infant mortality is well controlled and failure rates are 

sufficiently low

7
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The maintenance procedure
The maintenance procedure consists of the following phases:

• error detection

• call for maintenance

• maintenance personnel arrival

• diagnosis

• supply of spare parts

• replacement of defect components

• system test

• system re-initialization

• resynchronization with environment

8
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Aspects of maintenance
• maintenance costs vs. system costs

• error latency period, error propagation and error diagnosis

• maintenance personnel

(number, education, equipment, location, service hours, etc.)

• spare part supply, stock or shipment

• Maintainability of a system depends on the:

– quality and availability of documentation

– including test plans

– design of the system structure with maintenance in mind

– implementation of appropriate error messages 

– size and interconnection of replacement units

– accessibility of replacement units

– mechanical stability of replacement units

9
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Determining factors for SRU size

The size of the smallest replaceable unit (SRU) is determined by the 

following factors:

factor (increases) SRU size

qualification of service personnel decreases

effort for diagnosis decreases

cost of SRU increases

spare part costs1 increases

maintainability increases

maintenance duration decreases

1Cost for parts which are used to construct SRU’s 
10
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Diagnosis support for maintenance
• diagnosis support is very important and therefore needs to be 

considered during system design 

• self diagnosis with meaningful messages

• needs to completely cover the error domain

• maintenance documentation: 

• symptom → cause and affected SRU

• error symptom/cause matrix indicates for each symptom 

all possible SRU’s that may cause the symptom

• sparse matrices indicate good diagnosability

• expert system support for diagnosis

• duration of diagnosis is important for MTTR

11



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Fault-tolerance: systematic vs. 

application-specific

12
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Application-specific fault-tolerance

• the computer system interacts with some physical process, the 

behavior of the process is constrained by the law of physics

• these laws are implemented by the computer system to check 

its state for reasonableness

• for example:

• the acceleration/deceleration rate of an engine is 

constrained by the mass and the momentum that affects 

the axle

• signal range checks for analog input signals

• reasonableness checks are based on application knowledge 

• fail-stop behavior can be implemented based on 

reasonableness checks

13
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Application-specific fault-tolerance
• the laws of physics constraining the process can be used to 

perform state estimations in case some component has failed

• for example:

• if the engine temperature sensor fails, a simple state 

estimation could assume a default value

• a better state estimation can be based on the ambient 

temperature of the engine, engine load and thermostatic 

behavior of the engine

• the speed of a vehicle can be estimated if the engine speed 

and the transmission ratio is known

• state estimations are based on application knowledge 

• fail-operational behavior can be implemented based on 

reasonableness checks and state estimations

14
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Systematic fault-tolerance
• does not use application knowledge, makes no assumptions 

on the physical process or controlled object

• uses replicated components instead 

• replicas must be designed to deliver corresponding results in 

the absence of faults

• if among a set of replicated components, some—but not all—

fail then there will be divergence among replicas

• information on divergence is used for fault detection

• The problem of replica determinism: due to the limited 

accuracy of any sensor that maps continuous quantities onto 

computer representable discrete numbers it is impossible to 

avoid nondeterministic behavior.
15
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Systematic fault-tolerance (cont.)

• systematic fault-tolerance requires agreement protocols due 

to replica nondeterminism 

• the agreement protocol has to guarantee that correct replicas 

return corresponding results

• fail-stop behavior can be implemented by using the 

information of divergent results, i.e., when replicas diverge 

then the system stops

• fail-operational behavior can be implemented by using 

redundant components, i.e., NooM: “N-out-of-M” replicas 

provide corresponding results (e.g., TMR – 2oo3)

16
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Comparison of fault-tolerance 

techniques

17

Systematic fault-tolerance

• replication of components

• divergence among replicas in case of 

faults

• no reasonableness checks necessary

• requires replica determinism

• no application knowledge necessary

• exact distinction between correct and 

faulty behavior

Application-specific fault-tolerance

• no replication necessary

• —

• reasonableness checks for fault 

detection

• —

• depends on application knowledge 

• fault detection is limited by a gray 

zone
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Comparison of fault-tolerance 

techniques (cont.)

18

Systematic fault-tolerance

• no state estimations necessary

• independence of application areas

• service quality is independent of 

whether replicated components are 

faulty or not

• correct system function depends on 

the number of correct replicas and 

their failure semantics

• only backward recovery

Application-specific fault-tolerance

• state estimations for continued service

• missing or insufficient reasonableness 

checks for some application areas

• quality of state estimations is lower than 

quality delivered during normal 

operation

• correct system function depends on the 

severity of faults and on the capability of 

reasonableness checks and state 

estimations

• forward and backward recovery
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Comparison of fault-tolerance 

techniques (cont.)

19

Systematic fault-tolerance

• additional costs for replicated 

components (if no system inherent 

replication is available)

• no increase in application complexity

• considerable increase of system level 

complexity

• separation of fault-tolerance and 

application functionality

• fault-tolerance can be handled 

transparently to the application

Application-specific fault-tolerance

• no additional costs for replicated 

components

• considerable increase in application 

complexity

• no increase of system level 

complexity

• application and fault-tolerance are 

closely intertwined

• — // —
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Systematic and application-specific fault-tolerance

• under practical conditions there will be a compromise between 

systematic and application-specific fault-tolerance

• usually cost, safety and reliability are the determining factors to choose 

a proper compromise

• software complexity plays an important role:

• for complex systems software is almost unmanageable without 

adding  fault-tolerance (fault containment regions and software 

robustness)

• therefore systematic fault-tolerance should be applied in favor of 

application-specific fault-tolerance to reduce the software 

complexity

• systematic fault-tolerance allows to test and to validate the 

mechanisms independently of the application software (divide 

and conquer)

20
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The problem of Replica Determinism

21
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The problem of Replica Determinism
• For systematic fault-tolerance it is necessary that replicated 

components show consistent or deterministic behavior in the 

absence of faults.

• If for example two active redundant components are working 

in parallel, both have to deliver corresponding results at 

corresponding points in time.

• This requirement is fundamental to differentiate between 

correct and faulty behavior.

• At a first glance it seems trivial to fulfill replica determinism 

since computer systems are assumed to be examples of 

deterministic behavior, but in the following it is shown that 

computer systems behave only almost deterministically.

22
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Nondeterministic behavior
• Inconsistent inputs:

If inconsistent input values are presented to the replicas then 

the results may be inconsistent too.

• a typical example is the reading of replicated analogue 

sensor read(S1) = 99.99 °C, read(S2) = 100.00 °C

• Inconsistent order:

If service requests are presented to replicas in different order 

then the results will be inconsistent. 

23
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Nondeterministic behavior (cont.)

• Inconsistent membership information:

Replicas may fail or leave groups voluntarily or new replicas 

may join a group. 

If replicas have inconsistent views about group membership 

it may happen that the results of individual replicas will differ.

24
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Nondeterministic behavior (cont.)

• Nondeterministic program constructs:

Besides intentional nondeterminism, like random number 

generators, some programming languages have 

nondeterministic program constructs for communication and 

synchronization (Ada, OCCAM, and FTCC). 

25

task server is 

entry service_1();

...

entry service_n();

end server;

task body server is

begin

select 

accept service_1() do

action_1();

end;

...

or

accept service_n() do

action_n();

end;

end select;

end server;
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Nondeterministic behavior (cont.)

• Local information:

If decisions with a replica are based on local knowledge 

(information which is not available to other replicas) then the 

replicas will return different results. 

• system or CPU load

• local time

• Timeouts:

Due to minimal processing speed differences or due to slight 

clock drifts it may happen that some replicas locally decide to 

timeout while others do not. 

26



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Nondeterministic behavior (cont.)

• Dynamic scheduling decisions:

Dynamic scheduling decides in which order a series of 

service requests are executed on one or more processors. 

This may cause inconsistent order due to:

• non-identical sets of service requests

• minimal processing speed differences 

27
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Nondeterministic behavior (cont.)

• Message transmission delays:

Variabilities in the message transmission delays can lead to 

different message arrival orders at different servers (for point-

to-point communication topologies or topologies with routing). 

28
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The consistent comparison problem:
• computers can only represent finite sets of numbers

• it is therefore impossible to represent the real numbers exactly, they 

are rather approximated by equivalency classes

• if the results of arithmetic calculations are very close to the border of 

equivalency classes, different implementations can return 

diverging results

• different implementations are caused by: N-version programming, 

different hardware, different floating point libraries, different compilers

• for example the calculation of (a – b)2 with floating point 

representation with a mantissa of 4 decimal digits and rounding where 

a = 100 and b = 0.005 gives different result for mathematical 

equivalent formulas.

(a – b)2 = 1.000 104

(a – b)2 = a2 –2ab + b2 = 9.999 103

29
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Fundamental limitations to replication
The real world abstraction limitation:

• dependable computer systems usually interface with 

continuous real-world quantities:

quantity SI-unit

distance meter [m]

mass kilogram [kg]

time second [s]

electrical current ampere [A]

• these continuous quantities have to be abstracted (or 

represented) by finite sets of discrete numbers 

• due to the finite accuracy of any interface device, different 

discrete representations will be selected by different 

replicas 

30
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Fundamental limitations to replication (cont.)

The impossibility of exact agreement:

• due to the real world abstraction limitation it is impossible 

to avoid the introduction of replica non-determinism at the 

interface level 

• but it is also impossible to avoid the once introduced 

replica nondeterminism  by agreement protocols 

completely

• exact agreement would require ideal simultaneous 

actions, but in the best case  actions can be only 

simultaneous within a time interval d

31
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Fundamental limitations to replication (cont.)

Intention and missing coordination:

• replica nondeterminism can be introduced intentionally

• or unintentionally by omitting some necessary 

coordinating actions 

32
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Replica control

• Due to these fundamental limitations to replication it is 

necessary to enforce replica determinism which is called 

replica control. 

33
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Internal vs. external replica control 

Internal replica control:

• avoid nondeterministic program constructs, uncoordinated timeouts,  

dynamic scheduling decisions, diverse program implementations, 

local information, and uncoordinated time services

• can only be enforced partially due to the fundamental limitations to 

replication 

External replica control:

• control nondeterminism of sensor inputs

• avoid nondeterminism introduced by the communication service

• control nondeterminism introduced by the program execution on the 

replicated processors by exchanging information 
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Def.: Replica Determinism

Correct replicas show correspondence of service outputs 

and/or service states under the assumption that all servers 

within a group start in the same initial state, executing 

corresponding service requests within a given time interval.

• this generic definition covers a broad range of systems 

• correspondence and within a given time interval needs to be 

defined according to the application semantics 
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Groups, resiliency and replication 

level

• Replicated entities such as processors are called groups.

• The number of replicas in a group is called replication level.

• A group is said to be n-resilient if up to n processor failures 

can be tolerated.
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Services for replicated fault-tolerant 

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services
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Services for replicated fault-tolerant 

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services
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• Membership: 

Every non-faulty processor within a group has timely and 

consistent information on the set of functioning processors 

which constitute the group. 

• Agreement: 

Every non-faulty processor in a group receives the same 

service requests within a given time interval. 

• Order:

Explicit service requests as well as implicit service requests, 

which are introduced by the passage of time, are processed 

by non-faulty processors of a group in the same order. 

39

Basic services for replicated fault-

tolerant systems
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Services for replicated fault-tolerant 

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services
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Logical Clocks
• all members in a group observe the same events in the same 

order

• this applies to process internal events and external events such 

as service requests and faults

• external events need to be reordered according to the internal 

precedence relation and individual processing speeds

41
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Logical Clocks

42

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system." Communications of the 

ACM 21, no. 7 (1978): 558-565.

We want to define a 

“happened before” relation 

between events in the 

distributed system (→) that 

defines a partial order of 

events and captures potential 

causality, but excludes

external clandestine channels.
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Logical Clocks

43

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system." Communications of the 

ACM 21, no. 7 (1978): 558-565.

Def.: The relation → on a set of 

events in a distributed system is the 

smallest relation satisfying the 

following three relations:

1. If a and b are events performed 

by the same process, and a is 

performed before b then a → b.

2. If a is the event of sending of a 

message by one process and b 

the receiving of the same 

message by another process, 

then a → b.

3. Transitivity: if a → b and b → c, 

then a → c.

Two distinctive events are said to 

be concurrent if neither a → b 

nor b → a.

Can you find examples px→ ry in the figure?
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Logical Clocks (cont.)

Logical Clocks implement a distributed algorithm over local variables (i.e., 

the logical clocks LC) that satisfies the following clock condition:

Clock Condition: a → b then LC(a) < LC(b)
(we cannot expect the converse condition to hold as well)

An algorithm implementing logical clocks (i.e. satisfying the Clock 

Condition):

1. Each process Pi increments LCi between two 

successive events.

2. If event a is the sending of a message m by process Pi, then the 

message m contains a timestamp Tm= LCi(a). Upon receiving a 

message m, process Pj sets LCj greater than or equal to its 

present value and greater than Tm. 
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Example

45

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system." Communications of the 

ACM 21, no. 7 (1978): 558-565.

1 1 1

2

3

2
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4
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6
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1. Each process P (and Q,R) 

increments its LC between two 

successive events

2. If event a is the sending of a 

message m by process P, then 

the message m contains a 

timestamp Tm= LCP(a). Upon 

receiving a message m, 

process Q sets LCQ greater 

than or equal to its present 

value and greater than Tm. 
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Logical Clocks (cont.)

• The algorithm defines no total order since independent 

processes may use the same timestamp for different events.

• A possible solution is to break ties by using a lexicographical 

process order. 

• Logical clocks have no gap-detection property.

• Gap-detection: 

Given a local process with local clock LC and given two 

events e and e’ with clock values LC(e) < LC(e’) (and only 

this information) and let’s further assume that we record all 

events and their timestamps on LC. Then, when looking at 

this list determine whether some other event e’’ is missing in 

this list such that LC(e) < LC(e’’) < LC(e’).
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Logical Clocks (cont.)

• The gap-detection property is necessary for stability and a 

bounded action delay, i.e., before an action is taken it has to 

be guaranteed that no earlier messages are delivered

• Stability and action delay are based on potential causality, 

two events e and e’ are potential causal related if e → e’.

• Vector clocks are an extension of logical clocks which have 

gap-detection property.
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Vector Clocks
• vector clocks are an extension of logical clocks which have 

gap-detection property

• An algorithm implementing vector clocks:

(1) Each process Pi increments VCi

between two successive events

(2) Upon receiving a message m, a 

process Pj sets all vector elements 

VCj to the maximum of VCj and 

Tm, where Tm is message m’s vec-

tor clock timestamp. Afterwards 

the element VCj[j] is incremented. 

• Potential causality for vector clocks e → e’  VC(e) < VC(e’)

−VC < VC’  (VC ° VC’)  (i:1 Š i Š n: VC[i] Š VC’[i])

48

(1,0,0)

t

(2,1,0) (3,1,3) (4,1,3) (5,1,3) (6,1,3)

(0,1,0)

(1,2,4)

(4,3,4)

(0,0,1)(1,0,2)(1,0,3)(1,0,4)(1,0,5) (5,1,6)

P1

P2

P3



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

In an ensemble of clocks, the precision P is 

defined as the maximum distance between 

any two synchronized non-faulty clocks at 

any point in real time.

Perfect Clock Early ClockLate Clock

Round i Round i+1

Clocktime Node A

Round i Round i+1

Clocktime Node B

Event e1P

Real-Time Clocks
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Real-Time Clocks
• all processors have access to a central real-time clock or

• all processors have local real-time clocks which are 

approximately synchronized

• the synchronized clocks define a global time grid where 

individual clocks are off at most by one tick at any time 

instant t 

• the maximum deviation among clocks is called precision

• t-precedent events (events that are at least t real-time steps 

apart) can be causally related regardless of clandestine 

channels

50
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Comparing Real-Time and Logical Clocks

real-time clocks logical clocks

synchronous system model asynchronous system model

higher synchronization overhead little delays and synchronization

overhead if only system internal events 

are considered 

needs to achieve consensus on the external events need to be reordered 

systematic clock error of one tick in accordance to logical time

stability within one clock tick unbounded duration for stability, 

requires consistent cut or vector clock

potential causality for t-precedent potential causality only for closed 

external events systems

bounded action delay (total order) unbounded action delay (no total order)
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Services for replicated fault-tolerant 

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

52
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Communication Services 

The following arguments motivate the close interdependence of fault-

tolerant computer systems, communication and replica control:

• fault-tolerant systems are built on the assumption that individual 

components fail independently

• this assumptions requires the physical and electrical isolation of 

components at the hardware level

• these properties are best fulfilled by a distributed computer system 

where nodes are communicating through message passing but 

have no shared resources except for the communication media

• furthermore it has to be guaranteed that faulty nodes are not able to 

disturb the communication of correct nodes and that faulty nodes 

are not allowed to contaminate the system
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Network Architecture

Space Aerospace

Automotive

… and many more …

TTEthernet

AFDX

Time-Sensitive Networking
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Requirements for networks for dependable cyber-physical systems:

• Real-Time message deliver (often < 1ms)

• High Dependability (Safety, Reliability)

− Failure probability as low as 10-9 (sometimes even less)

− No single point of failure (sometimes even no dual)

• Mixed time- and safety-criticality

− Share a single network between different application 
types.

• High Performance 

− Aerospace is at 100Mbit/sec, will transit to 1Gbit/sec

− Automotive has a need for > 1Gbit/sec already (bc. AD)

• Security (rather new requirement)

55
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Services for replicated fault-tolerant 

systems
- Basic Services

- Clock Synchronization Services

- Communication Services

- Replica Control Services

56
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Central Replica Control

• Strictly central replica control principle:

• there is one distinguished processor within a group called 

leader or central processor

• the leader takes all nondeterministic decisions

• the remaining processors in the group, called followers, 

take over the leaders decisions

57
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Central Replica Control (cont.)

• Strictly central replica control requires a communication 

service assuring reliable broad- or multicast. 

• Reliable broadcast: A distinguished processor, called the 

transmitter, sends its local service request to all other 

processors in the group, fulfilling the following properties: 

• Consistency: All correct processors agree on the same 

value and all decisions are final.

• Non-triviality:  If the transmitter is non faulty, all correct 

processors agree on the input value sent by the 

transmitter. 

• Termination: Each correct processor decides on a value 

within a finite time interval .
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• Failures and Replication

• semi-active and passive replication

• the leading processor is required to be fail restrained 

• byzantine or performance failures of the leader cannot be 

detected by other processors in the group (“heartbeat” or 

“I am alive” messages)

• to tolerate t failures with crash or omission semantics 

t + 1 processors are necessary

59

Central Replica Control (cont.)
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Distributed Replica Control

• Strictly distributed replica control principle:

• there is no leader role, each processor in the group 

performs exactly the same way

• to guarantee replica determinism the group members 

have to carry out a consensus protocol on 

nondeterministic decisions

60
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Distributed Replica Control (cont.)

• Any (partially) distributed replica control strategy requires a 

communication service assuring consensus. 

• Consensus: Each processor starts a protocol with its local 

input value, which is sent to all other processors in the group, 

fulfilling the following properties: 

• Consistency:  All correct processors agree on the same 

value and all decisions are final.

• Non-triviality: The agreed-upon input value must have 

been some processors input (or is a function of the 

individual input values). 

• Termination: Each correct processor decides on a value 

within a finite time interval.
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Failures and Replication

• active replication

• no restricted failure semantics of processors

• to tolerate t crash or omission failures t + 1 processors are necessary

• to tolerate t performance failures 2t + 1 processors are necessary

• e.g., if a faulty message is too early 2t would be insufficient to 

identify the correct timing

• to tolerate t byzantine failures 3t + 1 processors are necessary

• for crash or omission failures it is sufficient to take 1 processor result

62

Distributed Replica Control (cont.)
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Replica Control Strategies
Active replication:

• all processors in the group are carrying out the same service 

requests in parallel

• strictly distributed approach, nondeterministic decisions need to 

be resolved by means of an agreement protocol

• the communication media is the only shared resource

• Advantages:

• unrestricted failure semantics

• no single point of failure

• Disadvantages:

• requires the highest degree of replica control

• high communication effort for consensus protocols

• problems with dynamic scheduling decisions and timeouts
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Replica Control Strategies (cont.)

Semi-active replication:

• intermediate approach between distributed and centralized

• the leader takes all nondeterministic decisions

• the followers are executing in parallel until a potential 

nondeterministic decision point is reached

• Advantages:

• no need to carry out a consensus protocol

• lower complexity of the communication protocol (compared to 

active  replication)

• Disadvantages:

• restricted failure semantics, the leader’s decisions are single 

points of failures

• problems with dynamic scheduling decisions and timeouts
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Replica Control Strategies (cont.)

Passive replication:

• only one processor in the group – called primary – is active

• the other processors in the group are in standby

• checkpointing to store last correct service state and pending 

service requests

• Advantages:

• requires the least processing resources

• standby processors can perform additional tasks

• highest reliability of all strategies (if assumption coverage = 1)

• Disadvantages:

• restricted failure semantics (crash or fail-stop)

• long resynchronization delay
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Replica Control Strategies (cont.)

Lock-step execution:

• processors are executing synchronized

• the outputs of processors are compared after each single 

operation

• typically implemented at the hardware level with identical 

processors

• Advantages:

• arbitrary software can be used without modifications for fault-

tolerance  (important for commercial systems) 

• Disadvantages:

• common clock is single point of failure

• transient faults can affect all processors at the same point in the  

computation

• high clock speed limits number and distance of processors

• restricted failure semantics
66
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Dependable Systems

Part 7: System Aspects of dependable computers 

(cont.)
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Contents

• Consensus

• Interactive Consistency Algorithms

• Broadcast Properties and Algorithms

• Checkpointing

• Stable Storage

• Diagnosis

• Fault-Tolerant Software
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Consensus

3
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Consensus

• Each processor starts a protocol with its local input value, 

which is sent to all other processors in the group, fulfilling the 

following properties: 

• Consistency: All correct processors agree on the same 

value and all decisions are final.

• Non-triviality: The agreed-upon input value must have 

been some processors input (or is a function of the 

individual input values). 

• Termination: Each correct processor decides on a value 

within a finite time interval.

4
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Consensus (cont.)

• The consensus problem under the assumption of byzantine 

failures was first defined in 1980 in the context of the SIFT 

project which was aimed at building a computer system with 

ultra-high dependability. Other names are

• byzantine agreement or byzantine general problem

• interactive consistency

5
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Impossibility of deterministic 

consensus in asynch. systems

• asynchronous systems cannot achieve consensus by a 

deterministic algorithm in the presence of even one crash 

failure of a processor 

• it is impossible to differentiate between a late response and a 

processor crash

• by using coin flips, probabilistic consensus protocols can 

achieve consensus in a constant expected number of rounds

• failure detectors which suspect late processors to be crashed 

can also be used to achieve consensus in asynchronous 

systems

6
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Byzantine Failure Behaviour

n  3t + 1 processors are necessary to tolerate t failures
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▪Situation:

What is the color of the house?

Green

No Failure 

Don’t Know

Fail-Silence Failure

Green

Fail-Consistent Failure

Red Green

Green
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Situation:

What is the color of the house?

Static Situation – one Truth

Situation:

What is the color of the ball ?

Dynamic Situation – >one Truth

9
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HOT COLD

N2

HOT
HOT N3

COLD
COLD

N1

Faulty
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N2: HOT

N3: COLD

==========

à COLD

N1: HOT

N2: HOT

N3: COLD

==========

à HOT

A distributed system that measures 

the temperature of a vessel shall raise 

an alarm when the temperature 

exceeds a certain threshold. 

The system shall tolerate the arbitrary 

failure of one node.

How many nodes are required?

How many messages are required?

HOT

COLD

Time
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In general, three nodes are 

insufficient to tolerate the arbitrary 

failure of a single node.

The two correct nodes are not always 

able to agree on a value. 

A decent body of scientific literature 

exists that address this problem of 

dependable systems, in particular 

dependable communication.
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g
eA distributed system in which all 

nodes are equipped with local clocks, 

all clocks shall become and remain 

synchronized.

The system shall tolerate the arbitrary 

failure of one node.

How many nodes are required?

How many messages are required?

In general, three nodes are 

insufficient to tolerate the arbitrary 

failure of a single node.

The two correct nodes are not always 

able to bring their clocks into close 

agreement. 

A decent body of scientific literature 

exists that address this problem of 

fault-tolerant clock synchronization.
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Interactive Consistency Algorithms

12
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Assumptions about the message 

passing system

A1: Every message that is sent by a processor is delivered 

correctly by the message passing system to the 

receiver.

A2: The receiver of a message knows which node has sent 

a message.

A3: The absence of messages can be detected.

13
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Recursive Algorithm for n •>=3t + 1

ICA(t):

1. The transmitter sends its value to all the other n – 1 processors.

2. Let vi be the value that processor i receives from the transmitter, or else be the 

default value if it receives no value. Node i acts as the transmitter in algorithm 

ICA(t – 1) to send the value to each other of the other n – 2 receivers.

3. For each processor i, let vj be the value received from processor j (j !=i) 

in step 2. Processor i uses the value Majority(v1, … , vn – 1). 

ICA(0):

1. The transmitter sends its value to all the other n – 1 processors.

2. Each processor uses the value it receives from the transmitter, or uses the 

default value, if it receives no value.

14
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Example (n=4, t=1)

Case 1, one of the receivers is faulty:

• all correct processors decide x

Case 2, the transmitter is faulty:

• depending on the majority 

function all processors decide 

either x, y or z
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Interactive consistency with signed 

messages
• if a processor sends x to some processor it appends its signature, 

denoted x : i

• when some processor receives this message and passes it further 

then x : i : j

• the algorithm for n ≥ t + 1

• Vi is the set of all received messages which is initially Vi = 0

• The function Choice(Vi) selects a default value if Vi = 0, it selects v if Vi = {v} 

in other cases it could select a median or some other value. 

16
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Interactive consistency with signed 

messages (cont.)

SM(t):

1. The transmitter signs its value and sends it to all other nodes

2. i: 

(A) If processor i receives a message of the form v : 0 from the 

transmitter then (i) it sets Vi = {v}, and (ii) it sends the message 

v : 0 : i to every other processor. 

(B) If processor i receives a message of the form v : 0: j1 : j2 : … : jk
and v is not in Vi, then (i) it adds v to Vi, and  (ii) if k < t it sends the 

message : 0 : j1 : j2 : … : jk : i to every other node 

processor than j1, j2, … , jk. 

3. i: when processor i receives no more messages, it considers the final value 

as Choice(Vi).

• The function Choice(Vi) selects a default value if Vi = 0, it selects v if Vi = {v} 

in other cases it could select a median or some other value. 

17
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Example (n=3, t=2)

• we again consider the case of the faulty transmitter: 

• because of the signed messages it becomes clear that the 

transmitter is faulty

18
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Complexity of consensus

• ICA(t) and SM(t) require t + 1 rounds of message exchange 

• t + 1 rounds are optimal in the worst case, the lower bound for early 

stopping algorithms is min(f + 2, t + 1) 

• for ICA(t) the number of messages is exponential in t, since 

(n – 1)(n – 2) … (n – t – 1) are required O(nt), similarly the message 

complexity for SM(t) is exponential

• the lower bound is O(nt), for authentification detectable byzantine 

failures, performance or omission failures the lower bound 

is O(n + t2) 

• practical experience has shown that the complexity and resource 

requirements of consensus under a byzantine failure assumption 

are often prohibitive (up to 80% overhead for SIFT project)
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Broadcast Algorithms

20
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Terminology and Concepts

21
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Reliable broadcast

• A distinguished processor, called the transmitter, sends its local 

service request to all other processors in the group, fulfilling the 

following properties: 

− Consistency: All correct processors agree on the same value 

and all decisions are final.

− Non-triviality: If the transmitter is non faulty, all correct 

processors agree on the input value sent by the transmitter. 

− Termination: Each correct processor decides on a value within 

a finite time interval.

• Reliable broadcast is a building block for the solution of a broad class 

of problems in fault-tolerant computer systems

• Often there are additional requirements to reliable broadcast 

protocols (cf. next slides)

22
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FIFO Broadcast

• FIFO Broadcast = Reliable Broadcast + FIFO order

• FIFO Order: If a process broadcasts m before the same 

process broadcasts m’, then no correct process delivers m’

unless it has previously delivered m.

23
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Causal Broadcast
• Causal Broadcast = Reliable Broadcast + Causal order

• (Potential) Causal Order: If the broadcast of m causally (à)

precedes the broadcast m’, then no correct process delivers 

m’ unless it has previously delivered m. 
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Atomic Broadcast

• Atomic Broadcast = Reliable Broadcast + Total order

• Total Order: If correct processes P1 and P2 deliver m and m’, 

then P1 delivers m before m’ if and only if P2 delivers m

before m’. 
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Extensions of Atomic Broadcast
FIFO Atomic Broadcast = Reliable Broadcast + FIFO Order + Total Order

Causal Atomic Broadcast = Reliable Broadcast + Causal Order+ Total Order

Relationships among broadcast protocols:

26

Atomic

Broadcast

FIFO Atomic

Broadcast

Causal Atomic

Broadcast

Reliable

Broadcast

FIFO

Broadcast

Causal

Broadcast

FIFO Order

Causal Order

FIFO Order

Causal Order

Total Order

Total Order

Total Order

only synchronous 

systems



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Reliable broadcast protocol

• Diffusion algorithm: To R-broadcast m, a process p sends 

m to itself. When a process receives m for the first time it 

relays m to all its neighbors, and then R-delivers it.

broadcast(R, m):

send(m) to p

deliver(R, m):

upon receive(m) do

if p has not previously executed deliver(R, m)

then

send(m) to all neighbors

deliver(R, m)

• in synchronous systems the diffusion algorithm may be used 

as well, but it additionally guarantees real-time timeliness
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Atomic Broadcast Protocols
• Transformation: any {Reliable, FIFO, Causal} Broadcast 

algorithm that satisfies real-time timeliness can be 

transformed to {Atomic, FIFO Atomic, Causal Atomic} 

Broadcast. 

−broadcast(A*, m):

broadcast(R*, m)

−deliver(A*, m):

upon deliver(R*, m) do

schedule deliver(A*, m) at time TS(m) + 

• TS(m) is the timestamp of message m

• the maximum delay for message transmission is 

• if two messages have the same timestamp then ties can be 

broken arbitrarily, e.g. by increasing sender id's
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FIFO and Causal Broadcast

• FIFO Transformation: Reliable broadcast can be 

transformed to FIFO broadcast by using sequence numbers.

• Causal Transformation: All messages that are delivered 

between the last broadcast and this send operation are 

“piggy-packed” when sending a message. 

−broadcast(C, m):

broadcast(F, rcntDlvrs || m)

rcntDlvrs:= ⊥

−deliver(C, –):

upon deliver(F, m1, m2, … ml) do

for i:= 1 .. l do

if p has not previously executed deliver(C, mi)

then

deliver(C, mi)

rcntDlvrs:= rcntDlvrs || mi

• rcntDlvrs is the sequence of messages that p C-delivered 

since its previous C-broadcast
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Checkpointing
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Backward or rollback recovery
• systematic fault-tolerance is often based on backward recovery to recover a 

consistent state

• in distributed systems a state is said to be consistent if it could exist in an 

execution of the system

• Recovery line: A set of recovery points form a consistent state–called 

recovery line–if they satisfies the following conditions:

(1) the set contains exactly one recovery point for each process

(2) No orphan messages: There is no receive event for a message m

before process Pi’s recovery point which has not been sent before 

process Pj’s recovery point. 

(3) No lost messages: There is no sending event for a message m before 

process Pi’s recovery point which has not been received before 

process Pj’s recovery point.
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The domino effect

• the consistency requirement for recovery lines can cause a 

flurry of rollbacks to recovery points in the past

• to avoid the domino effect:

• coordination among individual processors for checkpoint 

establishment

• restricted communication between processors
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A distributed checkpointing and rollback algorithm

• this protocol allows lost messages

• there are two kinds of checkpoints:

– permanent: they cannot be undone

– tentative: they can be undone or changed to permanent

• the checkpointing algorithm works in two phases:

(1) An initiator process Pi takes a tentative checkpoint and requests all 

processes to take tentative checkpoints. Receiving processes can  

decide whether to take a tentative checkpoint or not and send their 

decision to the initiator. There is no other communication until phase 2 

is over. 

(2) If the initiator process Pi learns that all tentative checkpoints have been 

taken then it reverts its checkpoint to permanent and requests others 

do the same.

• this protocol ensures that no orphan messages are in the recorded state

(processes are not allowed to send messages between phase 1 and 2)
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A distributed checkpointing and rollback algorithm (cont.)

• it is not always necessary to record the state of a processor during 

checkpointing:

• the set {c12, c21, c32} is also a consistent set, hence it is not necessary for P2

to take checkpoint c22, but the set {c12, c21, c31} would be inconsistent

• each process assigns monotonically increasing numbers to the messages it 

sends:

last_recdi(j) last message number that i received from j after i took a 

checkpoint

first_senti(j) first message number that i sent to j after i took a checkpoint

• if Pi requests Pj to take a tentative checkpoint it adds last_recdi(j) to the 

message 

• Pj takes a checkpoint only if last_recdi(j) ≥ first_sendj(i)
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• furthermore if Pi has not received a message from Pj since its 

last checkpoint then there is no need for Pj to establish a new 

checkpoint if Pi establishes one

• to make use of this Pi maintains a set ckpt_cohorti which 

contains the processes from which received messages since 

its last checkpoint 

upon receipt from i “take tentative checkpoint” || last_recdi(j) do

if willing_to_ckptj and (last_recdi(j) ≥ first_sendj(i) ) then

take tentative checkpoint

for all r in ckpt_cohorti do 

send to r “take tentative checkpoint” || last_recdj(r) 

for all r in ckpt_cohorti await(willing_to_ckpt)

if any r in ckpt_cohorti and (willing_to_ckptr = “no”) then

willing_to_ckptj:= “no”

send to r willing_to_ckptj
upon receipt from i m:= “make checkpoint permanent” or 

m:=“undo tentative checkpoint”

execute command in m

for all r in ckpt_cohorti send to r m
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Synchronous checkpointing
• based on synchronized clocks check points are established with a fixed 

period p by all processes, where  is the clock synchronization precision and 

 temporal uncertainty of message transmission

• if a message is sent during [T –  – , T] it will be received before T +  + 

• to achieve a consistent state two possibilities exists:

− prohibit message sending during interval  after checkpoint 

establishment

− establish checkpoint earlier, at kp –  –  and log messages during the 

critical instant
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Stable Storage
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Stable Storage
• stable storage is an important building block for many operations in 

fault-tolerant systems (fail-stop systems, dependable transaction 

processing, …)

• there are two operations which should work correctly despite of 

faults (as covered by the fault hypothesis):
−procedure writeStableStorage(address, data)

−procedure readStableStorage(address) returns (status, data)

• many failures can be handled by coding (CRC’s) but other types 

cannot be handled by this technique:

−Transient failures: The disk behaves unpredictably for a short 

period of time.

−Bad sector: A page becomes corrupted, and the data stored 

cannot be read. 

−Controller failure: The disk controller fails. 

−Disk failure: The entire disk becomes unreadable.
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Disk shadowing
• a set of identical disk images is maintained on separate disks

• in case of two disks this technique is called disk mirroring

• for performance and availability reasons the disks should be 

“dual-ported” (e.g. Tandem system) 
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Redundant Array of Inexpensive Disks (RAID)
• data is spread over multiple disks by “bit-interleave” (individual bits 

of a data word are stored on different disks) 

• in the following example single bit failures can be tolerated since a 

parity bit is stored on a check disk and disks are assumed to detect 

single bit failures 

• RAID’s provide high reliability and I/O throughput (parallel 

read/write)

G .. data disks    C .. check disks

40

    
MTTFRAID =

MTTF

G +C

MTTF (G +C − 1)

MTTR

Data Disks

a0 a1 a2 a3a0 a1 a2 a3 a0 a1 a2 a3b0 b1 b2 b3 a0 a1 a2 a3c0 c1 c2 c3 a0 a1 a2 a3d0 d1 d2 d3 a0 a1 a2 a3C0 C1 C2 C3

Check Disks



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

Diagnosis

41
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Fault diagnosis in distributed systems

• Problem: Each non-faulty component has to detect the failure of other components in a 

finite time.

• while it is the goal to identify all failed components there are theoretical upper bounds 

on the number of failed components that can be identified 

• PMC model:

– a system S is composed out of n components C = {c1, c2, … , cn}

– components are either correct or faulty as a whole, they are the lowest level of 

abstraction that is considered

– each component is powerful enough to test other components

– tests involve application of stimuli and the observation of responses, tests are 

assumed to be complete and correct

– correct components always report the status of the tested components correctly 

– faulty components can return incorrect results of the tests conducted by them 

(byzantine failure assumption)
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Syndromes

• each component belonging to C is assigned a particular 

subset of C to test (no component tests itself)

• the complete set of test assignments is called connection 

assignments, it is represented by a graph G = (C, E)

– each node in C represents a component

– each edge represents a test such that (ci, cj) iff ci tests cj. 

– each edge is assigned an outcome aij, 

aij = 0 if ci is correct and cj is correct

aij = 1 if ci is correct and cj is faulty

aij = x if ci is faulty (x is in {0|1})

• the set of all test outcomes is call the syndrome of S
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An example system
• the system consists of five components, it is assumed that c1

is faulty

• the syndrome for this system is a 5 bit vector (a12, a23, a34, 

a45, a51) = (x, 0, 0, 0, 1) (x is in {0|1})

• t-diagnosable: A system is t fault diagnoseable if, given a 

syndrome, all faulty units in S can be identified, provided that 

the number of faulty units does not exceed t. 

• a system S with n components is t-diagnoseable if n ≥ 2t + 1 

and each component tests at least t others, no two units test 

each other
44
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Central diagnosis algorithms

• A simple algorithm is to take an arbitrary component and 

suspect it to be either correct or faulty. Based on this guess, 

and the test results of other components are labeled, if a 

contradiction occurs, the algorithm backtracks. Complexity 

O(n3)

• the best known algorithm has a complexity of O(n2.5)
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The adaptive DSD algorithm

• an adaptive distributed system-level diagnose algorithm that 

is round based

• it stabilizes within n rounds and has no bound on t, provided 

the communication is reliable

• each component  i holds an array TESTED_UPi

• TESTED_UPi[k] = j: component i has received information 

from a correct component saying that k has tested j to be 

fault free
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The adaptive DSD algorithm (cont.)

• each component executes the following algorithm 

periodically
t:= i

repeat

t:= (t + 1) mod n

request t to forward TESTED_UPt to i

until (i test t as “fault free”)

TESTED_UPi[i]:= t

for j:= 1 to n – 1

if i ≤ t

TESTED_UPi[j]:= TESTED_UPt[j]

• the algorithm stops if the first fault free component is found

• this component is marked as fault free in TESTED_UPi[i]

• the information of TESTED_UPt is copied to TESTED_UPi

which forwards the diagnostic information in reverse order 

through the system
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The adaptive DSD algorithm (cont.)

• if a component wants to diagnose the system state it 

executes the following algorithm:
for j:= 1 to n STATEi[j]:= “faulty”

t:= i

repeat

STATEi[t]:= “fault-free”

t:= TESTED_UPi[t]

until t = i

• the diagnosis algorithm constructs a cycle that contains all 

correct components

• if the length of the cycle is l then after l rounds all vectors 

TESTED_UP will be updated

• since the cycle is constructed by ascending component 

indices, the repeat loop in the algorithm collects all correct 

components and updates STATE accordingly
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Fault-Tolerant Software
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Fault tolerant software

• to tolerate software faults the system must be capable to 

tolerate design faults

• in contrast, for hardware it is typically assumed that the 

design is correct and that components fail

• software requires design diversity

• But: especially for software, perfection is much easier and 

better understood than fault-tolerance
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Exception handling
• to detect erroneous states of software modules the exception mechanism 

can be used (software and hardware mechanisms for detection of 

exceptional states) 

• a procedure (method) has to satisfy a pre condition before delivering its 

intended service which has to satisfy post conditions afterwards

• the state domain for a procedure can be subdivided:

• an exception mechanism is a set of language constructs which allows to 

express how the standard continuation of module is replaced when an 

exception is raised

• exception handlers allow the designer to specify recovery actions 

(forward or backward recovery)
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N-Version Programming
• n non-identical replicated software modules are applied

• instead of an acceptance test a voter takes a m out of n or majority 

decision

• majority voting can tolerate (n – 1)/2 failures of modules

• modeling of n-version programming is equivalent to active 

redundant systems with voting

• driver program to invoke different modules (different processes for 

module execution), wait for results and voting

• require more resources than recovery blocks but less temporal 

uncertainty (response time of slowest module)

52

P1

P2

P3

V



Course: Dependable Computer Systems 2020, © Stefan Poledna, All rights reserved

N-Version Programming (cont.)

• n-version programming is approach to systematic fault-tolerance:

– there is no application specific acceptance test necessary

– exact voting on every bit is systematic

• But: problem of replica nondeterminism:

– the real-world abstraction limitation is no problem

(all modules get exactly the same inputs from driver program)

– consistent comparison problem: diverse implementations, different 

compilers, differences in floating point arithmetic, multiple correct

solutions (n roots of nth order equation), … 

• Problems:

– there is no systematic solution for the consistent comparison problem

– either very detailed specification with many agreement points (limits 

diversity)

– or approximate voting to consider nondeterminism (application-specific) 
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N self-checking programming

• n versions are executed in parallel (similar to  N-version 

programming)

• each module is self-checking, an acceptance test is used 

(similar to recovery blocks)

• mixture of application specific and systematic fault-tolerance

• requires no backward recovery and no voting
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