

VU Discrete Mathematics

Exercises for 21st October 2025

7) Let $M = (E, S)$ be a matroid and $M_0 = (E_0, S_0)$ where $E_0 \subseteq E$ and $S_0 = \{X \cap E_0 \mid X \in S\}$. Prove that M_0 is a matroid.

8) Prove that an independence system (E, S) is a matroid if and only if for every $A \subseteq E$, all maximal independent subsets of A have the same cardinality.

9) Let $G = (V, E)$ be the graph with

$$V = \{a, b, c, d, e, v, w, x, y, z\}$$

and

$$E = \{ab, bc, cd, de, ea, av, bw, cx, dy, ez, vx, vy, wy, wz, xz\}.$$

Prove that it does not have a subgraph which is a subdivision of K_5 , but there is a subgraph being a subdivision of $K_{3,3}$.

10) Let G be a connected planar graph. Suppose that every vertex has the same degree d and that the boundary of every face is a cycle of length ℓ .

- a) Prove that $2\alpha_1(G) = \ell \cdot \alpha_2(G)$.
- b) Find an equation relating $\alpha_0(G)$, $\alpha_1(G)$ and d and prove it.
- c) Use Euler's polyhedron formula and what you proved so far to show that $\ell \geq 6$ implies $d = \alpha_2(G) = 2$.

11) Use a suitable graph model to reformulate the following exercise as a graph theoretical problem and solve it:

Given a subset $A \subseteq \mathbb{R}^2$ which has area a and two decompositions of A into m pairwise disjoint subsets A_1, A_2, \dots, A_m and B_1, B_2, \dots, B_m such that all the A_i 's and all the B_i 's have the same area a/m . Prove that there exists a permutation π of $\{1, 2, \dots, m\}$ such that for all $i = 1, \dots, m$ we have $A_i \cap B_{\pi(i)} \neq \emptyset$.

12) Follow the hint below to construct a schedule for the matches in a league of $2n$ teams which meets the following constraints:

- (a) In each round each team plays exactly one match.
- (b) In the end each team must have played against each of the other teams exactly once.

Hint: Consider the graph K_{2n} on the vertex set $\{1, 2, \dots, 2n\}$ and show that each of the sets $M_i = \{1i\} \cup \{xy \mid x + y \equiv 2i \pmod{2n-1} \text{ and } x \neq y, x \neq 1, y \neq 1\}$ is a perfect matching (for $i = 2, \dots, 2n$).