Distributed Systems | Foundations of distributed systems | Question 1

Provide a definition for "distributed system". Name important design goals and
characteristic properties of distributed systems. What are the fallacies and pitfalls?

Book p. 2-3, 16:

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

Various definitions of distributed systems have been given in the literature,

none of them satisfactory, and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers that

appears to its users as a single coherent system.

This definition has several important aspects. The first one is that a distributed
system consists of components (i.e., computers) that are autonomous. A second
aspect is that users (be they people or programs) think they are dealing with a sin-
gle system. This means that one way or the other the autonomous components
need to collaborate. How to establish this collaboration lies at the heart of devel-
oping distributed systems. Note that no assumptions are made concerning the type
of computers. In principle, even within a single system, they could range from
high-performance mainframe computers to small nodes in sensor networks. Like-
wise, no assumptions are made on the way that computers are interconnected. We
will return to these aspects later in this chapter.

Instead of going further with definitions, it is perhaps more useful to concen-
trate on important characteristics of distributed systems. One important charac-
teristic is that differences between the various computers and the ways in which
they communicate are mostly hidden from users. The same holds for the internal
organization of the distributed system. Another important characteristic is that
users and applications can interact with a distributed system in a consistent and
uniform way, regardless of where and when interaction takes place.

In principle, distributed systems should also be relatively easy to expand or

scale. This characteristic is a direct consequence of having independent com-
puters, but at the same time, hiding how these computers actually take part in the
system as a whole. A distributed system will normally be continuously available,
although perhaps some parts may be temporarily out of order. Users and applica-
tions should not notice that parts are being replaced or fixed, or that new parts are
added to serve more users or applications ..

In order to support heterogeneous computers and networks while offering a
single-system view, distributed systems are often organized by means of a layer of
software-that is, logically placed between a higher-level layer consisting of users
and applications, and a layer underneath consisting of operating systems and basic
communication facilities, as shown in Fig. 1-1 Accordingly, such a distributed
system is sometimes called middleware.

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 1

Computer 1 Computer 2 Computer 3 Computer 4

Appl. A Application B Appl.C
| 1

Distributed systam layer (middleware)

| Local 08 1 | | Local 0S 2 Local 0S 3 | ’anaIGEi
¢I---.rﬂ - e S—
Nabtwork

Figure I-1. A distributed system organized as middleware. The middleware

layer extends over multiple machines, and offers each application the same in-
terface.

Fig. 1-1 shows four networked computers and three applications, of which ap-
plication B is distributed across computers 2 and 3. Each application is offered the
same interface. The distributed system provides the means for components of a
single distributed application to communicate with each other, but also to let dif-
ferent applications communicate. At the same time, it hides, as best and reason-
able as possible, the differences in hardware and operating systems from each ap-
plication.

1.2 GOALS

Just because it is possible to build distributed systems does not necessarily

mean that it is a good idea. After all, with current technology it is also possible to

put four floppy disk drives on a personal computer. It is just that doing so would

be pointless. In this section we discuss four important goals that should be met to
make building a distributed system worth the effort. A distributed system should
make resources easily accessible; it should reasonably hide the fact that resources
are distributed across a network; it should be open; and it should be scalable.

1.2.5 Pitfalls

It should be clear by now that developing distributed systems can be a formid-
able task. As we will see many times throughout this book, there are so many
issues to consider at the same time that it seems that only complexity can be the
result. Nevertheless, by following a number of design principles, distributed sys-
tems can be developed that strongly adhere to the goals we set out in this chapter.
Many principles follow the basic rules of decent software engineering and wiJI not
be repeated here.

However, distributed systems differ from traditional software because com-
ponents are dispersed across a network. Not taking this dispersion into account
during design time is what makes so many systems needlessly complex and re-

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 1

sults in mistakes that need to be patched later on. Peter Deutsch, then at Sun
Microsystems, formulated these mistakes as the following false assumptions that
everyone makes when developing a distributed application for the first time:

. The network is reliable.

. The network is secure.

. The network is homogeneous.

. The topology does not change.

. Latency is zero.

. Bandwidth is infinite.

. Transport cost is zero.

. There is one administrator.

Note how these assumptions relate to properties that are unique to distributed sys-
tems: reliability, security, heterogeneity, and topology of the network; latency and
bandwidth; transport costs; and finally administrative domains. When developing
nondistributed applications, many of these issues will most likely not show up.
Most of the principles we discuss in this book relate immediately to these
assumptions. In all cases, we will be discussing solutions to problems, that are
caused by the fact that one or more assumptions are false. For example, reliable
networks simply do not exist, leading to the impossibility of achieving failure
transparency. We devote an entire chapter to deal with the fact that networked
communication is inherently insecure. We have already argued that distributed
systems need to take heterogeneity into account. In a similar vein, when discuss-
ing replication for solving scalability problems, we are essentially tackling latency
and bandwidth problems. We will also touch upon management issues at various
points throughout this book, dealing with the false assumptions of zero-cost tran-
sportation and a single administrative domain.

ONOOUT A WN -

(c) by Klaus Krapfenbauer

Question 2 Book p. 4-7

Describe the role of transparency in distributed systems, the critical aspects, and
the different kinds of transparencies

An important goal of a distributed system is to hide the fact that its processes and
resources are physically distributed across multiple computers. A distributed system that
is able to present itself to users and applications as if it were only a single computer
system is said to be transparent.

Eransparancy Description
I Access Hide differences in data representation and how a resource is accessed
| Location Hide where a resource is located |
* Migration Hide that a resource may move to another location i
. Relocation Hide that a resource may be moved to ancther location while in use
| Replication Hide that a resource is replicated -
Enncurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Access transparency deals with hiding differences in data representation and the way
that resources can be accessed by users. At a basic level, we wish to hide differences in
machine architectures, but more important is that we reach agreement on how data is
to be represented by different machines and operating systems.

Location transparency refers to the fact that users cannot tell where a resource is
physically located in the system. Naming plays an important role in achieving location
transparency. In particular, location transparency can be achieved by assigning only
logical names to resources, that is, names in which the location of a resource is not
secretly encoded.

Distributed systems in which resources can be moved without affecting how those
resources can be accessed are said to provide migration transparency.

Even stronger is the situation in which resources can be relocated while they are being
accessed without the user or application noticing anything. In such cases, the system is
said to support relocation transparency. An example of relocation transparency is
when mobile users can continue to use their wireless laptops while moving from place
to place without ever being (temporarily) disconnected.

Replication transparency deals with hiding the fact that several copies of a resource
exist. To hide replication from users, it is necessary that all replicas have the same name.
Consequently, a system that supports replication transparency should generally support
location transparency as well, because it would otherwise be impossible to refer to
replicas at different locations.

However. there are also many examples of competitive sharing of resources. For
example, two independent users may each have stored their files on the same file server
or may be accessing the same tables in a shared database. In such cases, it is important
that each user does not notice that the other is making use of the same resource. This
phenomenon is called concurrency transparency.

Making a distributed system failure transparent means that a user does not notice
that a resource (he has possibly never heard of) fails to work properly, and that the
system subsequently' recovers from that failure.

Scaling Performance Failure

Transparency Transparency Transparency
- .___.-"f
2
T A & il

Mobility Replication Concurrency

Transparency Transparency Transparency
A T

Access Location

Transparency Transparency

Some Transparencies are dependent on each other. E.g. for mobility transparency you
need access and location transparency

! anschlieRend

Exercise 03: Openness (Book p. 7-9)

Question: What is "Openness"?

Another important goal of distributed systems is openness. An open distributed system is a system
that offers services according to standard rules that describe the syntax and semantics of those
services. For example, in computer networks, standard rules govern the format, contents, and
meaning of messages sent and received. Such rules are formalized in protocols. In distributed
systems, services are generally specified through interfaces, which are often described in an Interface
Definition Language (IDL). Interface definitions written in an IDL nearly always capture only the

syntax of services. In other words, they specify precisely the names of the functions that are available
together with types of the parameters, return values, possible exceptions that can be raised, and so
on. The hard part is specifying precisely what those services do, that is, the semantics of interfaces. In
practice, such specifications are always given in an informal way by means of natural language.

If properly specified, an interface definition allows an arbitrary (willkiirlich, beliebig) process that
needs a certain interface to talk to another process that provides that interface. It also allows two
independent parties to build completely different implementations of those interfaces, leading to
two separate distributed systems that operate in exactly the same way. Proper specifications are
complete and neutral. Complete means that everything that is necessary to make an implementation
has indeed been specified. However, many interface definitions are not at all complete. So that it is
necessary for a developer to add implementation-specific details. Just as important is the fact that
specifications do not prescribe what an implementation should look like: they should be neutral.
Completeness and neutrality are important for interoperability (Zusammenarbeitsfahigkeit) and
portability (Beweglichkeit, Portierbarkeit) (Blair and Stefani, 1998). Interoperability characterizes the
extent by which two implementations of systems or components from different manufacturers can
co-exist and work together by merely relying on each other's services as specified by a common
standard. Portability characterizes to what extent (inwiefern) an application developed for a
distributed system A can be executed, without modification, on a different distributed system B that
implements the same interfaces as A. Another important goal for an open distributed system is that
it should be easy to configure the system out of different components (possibly from different
developers). Also, it should be easy to add new components or replace existing ones without
affecting those components that stay in place. In other words, an open distributed system should
also be extensible (erweiterbar). For example, in an extensible system, it should be relatively easy to
add parts that run on a different operating system, or even to replace an entire file system. As many
of us know from daily practice, attaining such flexibility is easier said than done.

To achieve flexibility in open distributed systems, it is crucial that the system is organized as a
collection of relatively small and easily replaceable or adaptable components. This implies that we
should provide definitions not only for the highest-level interfaces, that is, those seen by users and
applications, but also definitions for interfaces to internal parts of the system and describe how
those parts interact. This approach is relatively new. Many older and even contemporary
(gegenwirtig) systems are constructed using a monolithic (gigantisch) approach in which
components are only logically separated but implemented as one, huge program. This approach
makes it hard to replace or adapt a component without affecting the entire system. Monolithic

systems thus tend to be closed instead of open. The need for changing a distributed system is often
caused by a component that does not provide the optimal policy for a specific user or application.

As an example, consider caching in the World Wide Web. Browsers generally allow users to adapt
their caching policy by specifying the size of the cache, and whether a cached document should
always be checked for consistency, or perhaps only once per session. However, the user cannot
influence other caching parameters, such as how long a document may remain in the cache, or which
document should be removed when the cache fills up. Also, it is impossible to make caching
decisions based on the content of a document. For instance, a user may want to cache railroad
timetables, knowing that these hardly change, but never information on current traffic conditions on
the highways.

What we need is a separation between policy and mechanism. In the case of Web caching, for
example, a browser should ideally provide facilities for only storing documents, and at the same time
allow users to decide which documents are stored and for how long. In practice, this can be
implemented by offering a rich set of parameters that the user can set (dynamically). Even better is
that a user can implement his own policy in the form of a component that can be plugged into the
browser. Of course, that component must have an interface that the browser can understand so that
it can call procedures of that interface.

Version for Slides (Slide 1, p. 35-37)
Openness (p. 35): see marked sections above

- IDL: Interface Definition Language

o Problem: not syntax, but semantic (often informal)

o Complete 2 means that everything that is necessary to make an implementation has
indeed been specified.

= |nteroperability characterizes the extent by which two implementations of
systems or components from different manufacturers can co-exist and work
together by merely relying on each other's services as specified by a common
standard.

o Neutral

= Portability characterizes to what extent (inwiefern) an application developed
for a distributed system A can be executed, without modification, on a
different distributed system B that implements the same interfaces as A.
- Flexibility

o Composition (Aufbau) and Configuration: Another important goal for an open
distributed system is that it should be easy to configure the system out of different
components (possibly from different developers).

o Replacement: Also, it should be easy to add new components or replace existing
ones without affecting those components that stay in place.

o Extensible: In other words, an open distributed system should also be extensible
(erweiterbar). For example, in an extensible system, it should be relatively easy to
add parts that run on a different operating system, or even to replace an entire file
system. As many of us know from daily practice, attaining such flexibility is easier
said than done.

Separating Policy from Mechanism (p. 36)

- Granularity (Detailgenauigkeit): Many older and even contemporary (gegenwartig) systems
are constructed using a monolithic (gigantisch) approach in which components are only
logically separated but implemented as one, huge program. This approach makes it hard to
replace or adapt a component without affecting the entire system. Monolithic systems thus
tend to be closed instead of open.

- Component Interaction: The need for changing a distributed system is often caused by a
component that does not provide the optimal policy for a specific user or application (e.g.
WWW, chaching, Browser).

Achieving openness (p. 37)

- What we need is a separation between policy and mechanism.

- Even better is that a user can implement his own policy in the form of a component that can
be plugged into the browser. Of course, that component must have an interface that the
browser can understand so that it can call procedures of that interface.

Distributed Systems | Foundations of distributed systems | Question 4

Explain challenges and solution approaches for "Scalability".
Book p. 9-16:

1.2.4 Scalability

Worldwide connectivity through the Internet is rapidly becoming as common

as being able to send a postcard to anyone anywhere around the world. With this
in mind, scalability is one of the most important design goals for developers of
distributed systems.

Scalability of a system can be measured along at least three different dimen-
sions (Neuman, 1994). First, a system can be scalable with respect to its size,
meaning that we can easily add more users and resources to the system. Second, a
geographically scalable system is one in which the users and resources may lie far
apart. Third, a system can be administratively scalable,/~~aning that it can still be
easy to manage even if it spans many independent administrative organizations.
Unfortunately, a system that is scalable in one or more of these dimensions often
exhibits some loss of performance as the system scales up.

Scalability Problems

When a system needs to scale, very different types of problems need to be

solved. Let us first consider scaling with respect to size. If more users or resources
need to be supported, we are often confronted with the limitations of centralized
services, data, and algorithms (see Fig. 1-3). For example, many services are cen-
tralized in the sense that they are implemented by means of only a single server
running on a specific machine in the distributed system. The problem with this
scheme is obvious: the server can become a bottleneck as the number of users and
applications grows. Even if we have virtually unlimited processing and storage ca-
pacity, communication with that server will eventually prohibit further growth.
Unfortunately. using only a single server is sometimes unavoidable. Imagine

that we have a service for managing highly confidential information such as medi-
cal records, bank accounts. and so on. In such cases, it may be best to implement
that service by means of a single server in a highly secured separate room, and
protected from other parts of the distributed system through special network com-
ponents. Copying the server to several locations to enhance performance maybe
out of the question as it would make the service less secure.

Concept Example |
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralize.d algorithms | Doing routing based on complete information |

Figure 1-3. Examples of scalability limitations.
Just as bad as centralized services are centralized data. How should we keep

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 4

track of the telephone numbers and addresses of 50 million people? Suppose that
each data record could be fit into 50 characters. A single 2.5-gigabyte disk parti-
tion would provide enough storage. But here again, having a single database
would undoubtedly saturate all the communication lines into and out of it. Like-
wise, imagine how the Internet would work if its Domain Name System (DNS)
was still implemented as a single table. DNS maintains information on millions of
computers worldwide and forms an essential service for locating Web servers. If
each request to resolve a URL had to be forwarded to that one and only DNS
server, it is dear that no one would be using the Web (which, by the way, would
solve the problem).

Finally, centralized algorithms are also a bad idea. In a large distributed sys-

tem, an enormous number of messages have tobe routed over many lines. From a
theoretical point of view, the optimal way to do this is collect complete informa-
tion about the load on all machines and lines, and then run an algorithm to com-
pute all the optimal routes. This information can then be spread around the system
to improve the routing.

. The trouble is that collecting and transporting all the input and output infor-
mation would again be a bad idea because these messages would overload part of
the network. In fact, any algorithm that operates by collecting information from
all the sites, sends it to a single machine for processing, and then distributes the
results should generally be avoided. Only decentralized algorithms should be
used. These algorithms generally have the following characteristics, which distin-
zuish them from centralized algorithms:

1. No machine has complete information about the system state.
2. Machines make decisions based only on local information,

3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps less obvi-
ous but also important. Any algorithm that starts out with: "At precisely 12:00:00
all machines shall note the size of their output queue" will fail because it is
impossible to get all the clocks exactly synchronized. Algorithms should take into
account the lack of exact clock synchronization. The larger the system, the larger
the uncertainty. On a single LAN, with considerable effort it may be possible to
get all clocks synchronized down to a few microseconds, but doing this nationally
or internationally is tricky.

Geographical scalability has its own problems. One of the main reasons why

it is currently hard to scale existing distributed systems that were designed for
local-area networks is that they are based on synchronous communication. In

this form of communication, a party requesting service, generally referred to as a
client, blocks until a reply is sent back. This approach generally works fine in
LANs where communication between two machines is generally at worst a few
hundred microseconds. However, in a wide-area system, we need to take into ac-

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 4

count that interprocess communication may be hundreds of milliseconds, three
orders of magnitude slower. Building interactive applications using synchronous
communication in wide-area systems requires a great deal of care (and not a little
patience).

Another problem that hinders geographical scalability is that communication

in wide-area networks is inherently unreliable, and virtually always point-to-point.
In contrast, local-area networks generally provide highly reliable communication
facilities based on broadcasting, making it much easier to develop distributed sys-
tems. For example, consider the problem of locating a service. In a local-area sys-
tem, a process can simply broadcast a message to eve\)' machine, asking if it is
running the service it needs. Only those machines that Have that service respond,
each providing its network address in the reply message. Such a location scheme
is unthinkable in a wide-area system: just imagine what would happen if we tried
to locate a service this way in the Internet. Instead, special location services need
to be designed, which may need to scale worldwide and be capable of servicing a
billion users. We return to such services in Chap. 5.

Geographical scalability is strongly related to the problems of centralized
solutions that hinder size scalability. If we have a system with many centralized
components, it is clear that geographical scalability will be limited due to the per-
formance and reliability problems resulting from wide-area communication. In ad-
dition, centralized components now lead to a waste of network resources. Imagine
that a single mail server is used for an entire country. This would mean that send-
ing an e-mail to your neighbor would first have to go to the central mail server,
which may be hundreds of miles away. Clearly, this is not the way to go.

Finally, a difficult, and in many cases open question is how to scale a distrib-

uted system across multiple, independent administrative domains. A major prob-
lem that needs to be solved is that of conflicting policies with respect to resource
usage (and payment), management, and security.

For example, many components of a distributed system that reside within a

single domain can often be trusted by users that operate within that same domain.
In such cases, system administration may have tested and certified applications,
and may have taken special measures to ensure that such components cannot be
tampered with. In essence, the users trust their system administrators. However,
this trust does not expand naturally across domain boundaries.

If a distributed system expands into another domain, two types of security
measures need to be taken. First of all, the distributed system has to protect itself
against malicious attacks from the new domain. For example, users from the new
domain may have only read access to the file system in its original domain. Like-
wise, facilities such as expensive image setters or high-performance computers
may not be made available to foreign users. Second, the new domain has to pro-
tect itself against malicious attacks from the distributed system. A typical example
is that of downloading programs such as applets in Web browsers. Basically, the
new domain does not know behavior what to expect from such foreign code, and
may therefore decide to severely limit the access rights for such code. The prob-

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 4

lem, as we shall see in Chap. 9, is how to enforce those limitations.

Scaling Techniques

Having discussed some of the scalability problems brings us to the question of
how those problems can generally be solved. In most cases, scalability problems
in distributed systems appear as performance problems caused by limited capacity
of servers and network. There are now basically only three techniques for scaling:
hiding communication latencies, distribution, and replication [see also Neuman
(1994) 1.

Hiding communication latencies is important to achieve geographical scala-
bility. The basic idea is simple: try to avoid waiting for responses to remote (and
potentially distant) service requests as much as possible. For example, when a ser-
vice has been requested at a remote machine, an alternative to waiting for a reply
from the server is to do other useful work at the requester's side. Essentially, what
this means is constructing the requesting application in such a way that it uses
only asynchronous communication. When a reply comes in, the application is
interrupted and a special handler is called to complete the previously-issued re-
quest. Asynchronous communication can often be used in batch-processing sys-
tems and parallel applications, in which more or less independent tasks can be
scheduled for execution while another task is waiting for communication to com-
plete. Alternatively, a new thread of control can be started to perforrn the request.
Although it blocks waiting for the reply, other threads in the process can continue.
However, there are many applications that cannot make effective use of asyn-
chronous communication. For example, in interactive applications when a user
sends a request he will generally have nothing better to do than to wait for the
answer. In such cases, a much better solution is to reduce the overall communica-
tion, for example, by moving part of the computation that is normally done at the
server to the client process requesting the service. A typical case where this ap-
proach works is accessing databases using forms. Filling in forms can be done by
sending a separate message for each field, and waiting for an acknowledgment
from the server, as shown in Fig. 1-4(a). For example, the server may check for
syntactic errors before accepting an entry. A much better solution is to ship the
code for filling in the form, and possibly checking the entries, to the client, and
have the client return a completed form, as shown in Fig. 1-4(b). This approach
of shipping code is now widely supported by the Web in the form of Java applets
and Javascript.

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 4

Client Server
[FIRST NAME[MARRTEN] EJE—F.
LAST NAME [van STEEN] @_E_.. —
E-MAIL [STEENGCS.VUNL | e
[E]l=»
@) | M=» >
A r
Check form Process form
(a)
Client Server
FIRST NAME [MARTEN] MAAR
LAST NAME [VAN STEEN] TEe
E-MAIL [STEEN@BCSVUNL | » ;?'E"ES'HTEE:“SAHJH.
=] P>
,"
Check form Process form
(b)

Figure 1-4. The difference between letting (a) a server or (b) a client check

forms as they are being filled.

Another important scaling technique is distribution. Distribution involves

taking a component, splitting it into smaller parts, and subsequently spreading
those parts across the system. An excellent example of distribution is the Internet
Domain Name System (DNS). The DNS name space is hierarchically organized
into a tree of domains, which are divided into nonoverlapping zones, as shown in
Fig. 1-5. The names in each zone are handled by a single name server. Without
going into too many details, one can think of each path name,being the name of a
host in the Internet, and thus associated with a network address of that host. Basi-
cally, resolving a name means returning the network address of the associated
host. Consider, for example, the name nl. vu.cs.flits. To resolve this name, it is
first passed to the server of zone 21 (see Fig. 1-5) which returns the address of the
server for zone 22, to which the rest of name, vu.cs.flits, can be handed. The
server for 22 will return the address of the server for zone 23, which is capable of
handling the last part of the name and will return the address of the associated
host.

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 4

|< Generic "I }. Countries >

@ @ @ @ @ D GO CB &) T .-

flits fluit

Figure 1-5. An example of dividing the DNS name space into zones.

This example illustrates how the naming service, as provided by DNS, is dis-
tributed across several machines, thus avoiding that a single server has to deal
with all requests for name resolution.

As another example, consider the World Wide Web. To most users, the Web
appears to be an enormous document-based information system in which each
document has its own unique name in the form of a URL. Conceptually, it may
even appear as if there is only a single server. However, the Web is physically
distributed across a large number of servers, each handling a number of Web doc-
uments. The name of the server handling a document is encoded into that docu-
ment's URL. It is only because of this distribution of documents that the Web has
been capable of scaling to its current size.

Considering that scalability problems often appear in the form of performance
degradation, it is generally a good idea to actually replicate components across a
distributed system. Replication not only increases availability, but also helps to
balance the load between components leading to better performance. Also, in geo-
I'T1lphically widely-dispersed systems, having a copy nearby can hide much of the
~omrnunication latency problems mentioned before.

Caching is a special form of replication, although the distinction between the

two is often hard to make or even artificial. As in the case of replication, caching
results in making a copy of a resource, generally in the proximity of the client ac-
cessing that resource. However, in contrast to replication, caching is a decision
made by the client of a resource, and not by the owner of a resource. Also, cach-
ing happens on demand whereas replication is often planned in advance.

There is one serious drawback to caching and replication that may adversely
affect scalability. Because we now have multiple copies of a resource, modifying
one copy makes that copy different from the others. Consequently, caching and
replication leads to consistency problems.

(c) by Klaus Krapfenbauer

Distributed Systems | Foundations of distributed systems | Question 4

To what extent inconsistencies can be tolerated depends highly on the usage

of a resource. For example, many Web users fmd it acceptable that their browser
returns a cached document of which the validity has not been checked for the last
few minutes. However, there are also many cases in which strong consistency
guarantees need to be met, such as in the case of electronic stock exchanges and
auctions. The problem with strong consistency is that an update must be immedi-
ately propagated to all other copies. Moreover, if two updates happen concur-
rently, it is often also required that each copy is updated in the same order. Situa-
tions such as these generally require some global synchronization mechanism.
Unfortunately, such mechanisms are extremely hard or even impossible to imple-
ment in a scalable way, as she insists that photons and electrical signals obey a
speed limit of 187 miles/msec (the speed of light). Consequently, scaling by repli-
cation may introduce other, inherently nonscalable solutions. We return to replica-
tion and consistency in Chap. 7.

When considering these scaling techniques, one could argue that size scalabil-

ity is the least problematic from a technical point of view. In many cases, simply
increasing the capacity of a machine will the save the day (at least temporarily
and perhaps at significant costs). Geographical scalability is a much tougher prob-
lem as Mother Nature is getting in our way. Nevertheless, practice shows that
combining distribution, replication, and caching techniques with different forms
of consistency will often prove sufficient in many cases. Finally, administrative
scalability seems to be the most difficult one, rartly also because we need to solve
nontechnical problems (e.g., politics of organizations and human collaboration).
Nevertheless, progress has been made in this area, by simply ignoring administra-
tive domains. The introduction and now widespread use of peer-to-peer technol-
ogy demonstrates what can be achieved if end users simply take over control
(Aberer and Hauswirth, 2005; Lua et al., 2005; and Oram, 2001). However, let it
be clear that peer-to-peer technology can at best be only a partial solution to solv-
ing administrative scalability. Eventually, it will have to be dealt with.

(c) by Klaus Krapfenbauer

Question 5 Book p. 41-42

What is "vertical distribution" and what is an N-tier system? Discuss the
variations of client/server systems. Is a Java applet hence a thick or a thin
client?

Multitiered client-server architectures are a direct consequence of dividing applications
into a user-interface, processing components, and a data level. The different tiers'
correspond directly with the logical organization of applications. In many business
environments, distributed processing is equivalent to organizing a client-server
application as a multitiered architecture. We refer to this type of distribution as vertical
distribution. The characteristic feature of vertical distribution is that it is achieved by
placing logically different components on different machines. The term is related to the
concept of vertical fragmentation as used in distributed relational databases, where it
means that tables are split column-wise, and subsequently distributed across multiple
machines (Oszu and Valduriez, 1999). Again, from a system management perspective,
having a vertical distribution can help: functions are logically and physically split across
multiple machines, where each machine is tailored to a specific group of functions.
However, vertical distribution is only one way of organizing client-server applications. In
modem architectures, it is often the distribution of the clients and the servers that
counts,

Multitier Architectures, suggests a number of possibilities for physically distributing a
client-server application across several machines. The simplest organization is to have
only two types of machines:

1. A client machine containing only the programs implementing (part of) the user-
interface level

2. A server machine containing the rest, that is the programs implementing the
processing and data level

User interface Wait for result

(presentation)
Request
operation
i~ Wait for data
Application . N ——— e e e pme— — — e o
server
Request data Return data
Database __________________ ___N U e
server >

Presentation tier

! Ebene

This is the topmost level of the application. The presentation tier displays information
related to such services as browsing merchandise, purchasing, and shopping cart
contents. It communicates with other tiers by outputting results to the browser/client
tier and all other tiers in the network.

Application tier (business logic, logic tier, data access tier, or middle tier)

The logic tier is pulled out from the presentation tier and, as its own layer, it controls an
application’s functionality by performing detailed processing.

Data tier

This tier consists of database servers. Here information is stored and retrieved. This tier
keeps data neutral and independent from application servers or business logic. Giving
data on its own tier also improves scalability and performance.

Thin Clients

A thin client is designed to be especially small so that the bulk of the data processing
occurs on the server. Although the term thin client often refers to software, it is
increasingly used for the computers, such as network computers and Net PCs, that are
designed to serve as the clients for client/server architectures

Thick Clients

In contrast, a thick client (also called a fat client) is one that will perform the bulk of the
processing in client/server applications. With thick clients, there is no need for
continuous server communications as it is mainly communicating archival storage
information to the server.

Exercise 06: Horizontal Distribution (Book p. 43-44)

Question: What is horizontal distribution? Explain the design-space of horizontal distribution. Is
there a relation to vertical distribution?

Multitiered client-server architectures are a direct consequence of dividing applications into a user
interface, processing components, and a data level. The different tiers correspond (entsprechen,
Ubereinstimmen) directly with the logical organization of applications. In many business
environments, distributed processing is equivalent to organizing a client-server application as a
multitiered architecture. We refer to this type of distribution as vertical distribution. The
characteristic feature of vertical distribution is that it is achieved by placing logically different
components on different machines. The term is related to the concept of vertical fragmentation as
used in distributed relational databases, where it means that tables are split column-wise, and
subsequently distributed across multiple machines (Oszu and Valduriez, 1999). Again, from a system
management perspective, having a vertical distribution can help: functions are logically and
physically split across multiple machines, where each machine is tailored to a specific group of
functions. However, vertical distribution is only one way of organizing client-server applications. In
modem architectures, it is often the distribution of the clients and the servers that counts, which we
refer to as horizontal distribution. In this type of distribution, a client or server may be physically split
up into logically equivalent parts, but each part is operating on its own share of the complete data
set, thus balancing the load. In this section we will take a look at a class of modern system
architectures that support horizontal distribution, known as peer-to-peer systems. From a high-level
perspective, the processes that constitute (darstellen, errichten) a peer-to-peer system are all equal.
This means that the functions that need to be carried out are represented by every process that
constitutes the distributed system. As a consequence, much of the interaction between processes is
symmetric: each process will act as a client and a server at the same time (which is also referred to as
acting as a servent).

Given this symmetric behaviour, peer-to-peer architectures evolve around the question how to
organize the processes in an overlay network, that is, a network in which the nodes are formed by
the processes and the links represent the possible communication channels (which are usually
realized as TCP connections). In general, a process cannot communicate directly with an arbitrary
(willktirlich, beliebig) other process, but is required to send messages through the available
communication channels.

Two types of overlay networks exist: those that are structured and those that are not. These two
types are surveyed extensively in Lua et al. (2005) along with numerous examples. Aberer et al.
(2005) provide a reference architecture that allows for a more formal comparison of the different
types of peer-to-peer systems. A survey taken from the perspective of content distribution is
provided by Androutsellis- Theotokis and Spinellis (2004).

Structured Peer-to-Peer Architectures

In a structured peer-to-peer architecture, the overlay network is constructed using a deterministic
procedure. By far the most-used procedure is to organize the processes through a distributed hash
table (DHT). In a DHT -based system, data items are assigned a random key from a large identifier
space, such as a 128-bit or 160-bit identifier. Likewise, nodes in the system are also assigned a
random number from the same identifier space. The crux of every DHT-based system is then to
implement an efficient and deterministic scheme that uniquely maps the key of a data item to the

identifier of a node based on some distance metric (Balakrishnan. 2003). Most importantly, when
looking up a data item, the network address of the node responsible for that data item is returned.
Effectively, this is accomplished by routing a request for a data item to the responsible node. For
example, in the Chord system (Stoica et al., 2003) the nodes are logically organized in a ring such that
a data item with key k is mapped to the node with the smallest identifier id ~ k. This node is referred
to as the successor of key k and denoted as succ(k), as shown in Fig. 2-7. To actually look up the data
item, an application running on an arbitrary node would then call the function LOOKUP(k) which
would subsequently return the network address of succ(k). At that point, the application can contact
the node to obtain a copy of the data item.

Actual node
{0

_, O

1147 (181415} (.1} {2

P &

{13; 3
(8,9,10,11,12} 2,34}
. Associated
{-'1 1 data keys
15 [5.6,7} fi

Figure 2-7. The mapping of data items onto nodes in Chord.

Version for Slides (Slide 1, p. 71-73)
Horizontal Distribution (p. 71):

- In modem architectures, it is often the distribution of the clients and the servers that counts,
which we refer to as horizontal distribution. In this type of distribution, a client or server may
be physically split up into logically equivalent parts, but each part is operating on its own
share of the complete data set, thus balancing the load.

Horizontal Distribution (2) (p. 72): See description above
Distributed Architectures: P2P = See description of the CHORD

Explain the design-space of horizontal distribution
- See Slide 1, p. 72

Is there a relation to vertical distribution?

The different tiers correspond (entsprechen, libereinstimmen) directly with the logical organization
of applications. In many business environments, distributed processing is equivalent to organizing a
client-server application as a multitiered architecture. We refer to this type of distribution as vertical
distribution. The characteristic feature of vertical distribution is that it is achieved by placing logically
different components on different machines. > Completely different approach the horizontal
distribution!

Verteilte Systeme VO

Communication (1) - Middleware and RPC

Book: 2.1 (rep'd), 2.3,2.4,4.1,4.2
Questions:
1. Explain the ISO-OSI model of layered protocols (in principle) and relate it to
TCP/IP. Why are transport layer protocols typically not sufficient for distributed
systems?

Horizontal
Communicatio

<

Application - - - - - -APplication P.@'FQQ‘C'-?:_P‘.:‘.. i ,|_ —

) _]__ Presentation protocol ’!—L .)
Presentation [Rl A mA SRR A e 6 Encoding/Encryption

e * . :
service interface | gession | < Session protocol | & Connections
(SAP) —1 _ -
__ Transport la Transport protocol 4 Messages
[:

f=1

>
>
i T lq...... Network protocol . >| | 3 Routing
- MNetwork | J 2
- >
>

7 Semantics

Vertical Data link protocol

Communicatio

2 Packets (frames)

Data link
I Physical protocol

Physical ’ | % B
Network
— Data link layer header
MNetwork layer header
Transport layer header
Session layer header
£ l* Presentation layer header
Application layer header
v v
Message «_ Datalink
— L layer trailer

-
v

Bits that actually appear on the network

To establish a connection between two hosts some ground rules have to be laid down, saying
that both involved participants need to agree about the protocol they are using in order to
understand the bits and bytes that are being sent over the network. Agreements are needed
on many different levens of communication (phyiscal -> how many volts for 0 or 1, detect
errors, which is the last bit, data types, ...). In order to make communication easier the
International Standards Organization (ISO) developed a reference model called Open Systems
Interconnection Reference Model (OSI). This model allows communication between two open
systems with rules called protocols (sum of protocols: protocol stack). Distinction is made

between connection oriented and connectionless protocols.
The OSI model splits the aspects of communication in manageable pieces and provides
interfaces to the layer above each other.

e lower-level protocols: three lowest layers for basic functions.
o physical layer for transmitting 0 and 1, bitrate, volts, ..
o data link layer: used to detecd and correct errors, grouping bits into frames
(special patterns, checksum — accept, retransmit, sequencenumber)
o network layer: routing the message through the network (within the WAN),
shortest not always the best
e transport protocol: error recovery -> restore packets, break into peaces, assign
sequence number, restore packet order after receiving them
o tcp: transmission control protocol (connection-oriented)
o udp: IP with minor additions (connectionless)
e higher-level protocols
o session layer: tracks which party is currently talking, syncronization
o presentation layer: meaning of the bits, formts, ...
o application layer: ftp, http, ...

2. What is "Middleware"? What are the requirements and services of middleware.
Explain the relation between middleware and architectural styles.
Middleware forms a layer between application and distributed platforms. It ist used to provide a
certain degree of distribution transparency.

3. How can we enhance the flexibility of middleware and improve the middleware/
application interaction? Explain the concepts of interceptors, adaptivity, and self-
management.

Generally middleware should be easy configurable, adaptable and customizable. As a result
systems with with stricter separation between policies and mechanisms are being developed.
Interceptors: Breaks the usual flow of control and allow other code to be executed. They are

supported in many objectbased distributed systems and work as follows:
e client offers a local interface
e call is transformed into a generic object invocation
e generic objet invocation is transformed into a message that is sent

Client application
Intercepted call

\ — B.do_something(value) l

—

l ™\ Application stub

Request-level interceptor - :
| By '

rinvoke(B, &do_something, value)
—~

Nenintercepted call

£ ‘| Object middieware
. | L ~
Message-level interceplor

P

) |
| | L

N, "y r send([B, "do_something", value]) -
Local OS [‘
l. To object B

Adaptive Software: Needing to adapt the middleware comes from the fact that the environment
continsly changes because of mobilty, QoS, failing hardware. But instead of giving the
responsible for reacting on changes to the appilcation the middleware takes care to mangage
those strong influences of the environment and construct so called adaptive software.

e Seperation of concerns: traditional way of modularizing systems: seperat
implementation from others (=extra functionalities) such as reliablitly, performance,
security, ... ??? not easy (e.g. security) addressed by aspect-oriented software
development

e computional reflection: ability of a program to insect itsef and if necessary adapt the
behavour. bulit into java to modify during runtime

e component-based design: supports adaption through composition, system may either
be configured statically at design time or dynamically during runtime. — late binding

Self-Management: Self-Management is important in large distributed systems because
mangaging them from a single point is not achievable. Therefore high-level feedback-control
systems (also called: autonomic computing, self-star systems) that allow automatic adaption to
changes are used. They are self-managing, self-healing, self-configuring, self-optimizing, ... —
self-managing

-->feedback control model???7?

4. Explain the principles of the Remote Procedure Call (RPC). What are "stubs"?

On an normal computer each method call starts a procedure affecting the local memory. All
parameters are pushed in reversed order onto the OS’s stack. Aft ter the computation is done
the return value is put into a register and the control is transfered back to the caller and all data
is removed from the stack. Generally there are three different types of method calls:
e call-by-value: The actual value is copied on the stack and does not affect the original
value
e call-by-reference: a pointer the the variable is used
e or call-by-copy/paste: same as call-by-reference but if a parameter is used multiple times
in a parameterlist the behaviour is different.
RPC now tries to make a remote call to look like a local one — transparent. Therefore and
equivalent system call to the original one is used — the local method acts like an interface.
Even though the call looks the usual way, by pushing the parameters onto the stack, something
different is done. To achive this behavour a differnt version (client stub) of the method(s) is put

into the library. But unlike the original one this one does not ask the operation system for data
but instead packs the parameters into a message and sends it to the server. The server than
unpacks the data and computes the result. As long as the server is working the client method is
blocking itself until the computing is done. At the server the so called server stub is called, wich
is the server-side equivalent to the client stub. There the transmitted data is transformed into a
local procedure. The server then performs it's work and returns the result in the same way back

to the user.
Wait for result

< Ay
Call remote | Return
procedure | from call

Client

Call local procedure Time >
and return results

5. How can parameters be passed in a procedure call in principle? How can they be
passed in RPC and what are the limitations? What is "parameter marshalling"?

Packing parameters into a message is called parameter marshaling.

passing value parameters

Cleent machine Server machine
Client process Server process
1. Cleent call to Il i B Stub ke
mplemantation ub makes
rocedure
P af add local call to "add™
e Server siub ek
i = 1 d T = 17
L N Chent stub il Rcy
proc: “add™ proc. “add”
_ b vali) | 2 Stub builds a vl | 5. Stub wnpacks
mk wali]h R—— “if valljl TSRS
- i
) pre<: “add”) 1 4, Server O3
Client 05 ot valll) | Server 05 hands ml::-sage

nl. vall]) | e sarver aiub

3 Message s sent
across the network

As an simple example we want the remote call the method add(i,j) which should return the
arithmetic sum. The client now puts the parameters and the name or number of the procedure
into the message and transmits it to the server. The server now examines the message to

see wich precedure needs to be called and makes the appropriate call. When the execution

is finished the result is sent back by the server in a message to the client. Then the client stub
unpacks it and returns the result back to the user.

This works fine as long as both servers are identical and support the same data types (boolean,
integer, char, ...). But in large server landscapes often different types occur and simple passing
is not possible any more. One example is the representation of integers (bytes read from right to
left on Intel Pentium [little endian] and the other way around on Sun SPARC [big endian]).

— invertion problem p131

passing reference parameters

Itis very hard, if not even impossible to pass pointers or references. The problem is, that the
pointer is only valid in the local address space (e.g. pointer 1000 on the client does not point to
the same data as on the server) and cannot simply be passed to the server. One solution is to
forbid pointers and reference parameters in general but this is highly undesirable. Another
solution is to transfer the e.g. char array behind the pointer into the message and to the server.
After finishing computing the data (and the data behind the pointer) is sent back to the client

— copy/restore. Optimization is achieved by checking if the buffer is used as output (-> don’t
send it to the server in the first place) or as input (-> dont’ transfer it back to the client). Another
method is to create special code to simulate the pointers.

: ot Fstot o)

6. How can one write client and servcer for RPC and what is the meaning of IDL in
this context? Why do we need an IDL? What is "binding" in this context?
p137 - 140
The components of the DCE RPC (Distributed Computing Environment) wich constists of
languages, libraries, daemons and utilities make it possible to write a server and client.
In the client-server system the Interface Definition is the glue that holds everything together, as
specified in the Interface Definition Language IDL. Crucial is, that every IDL file is a globally
unique identifier for the specified interface. So the client sends the identifier to the server. This
prevents the client from binding onto the wrong server or an old version of the interface on the
right server.
e uuidgen - generate a prototype IDL file containing an unique identifier which will never
be used again. (location and time of creation is included to make the id unique)
e edit the IDL file: fill in the names and parameters for the RPCs
e call the IDL compiler: following files will be created
o 1) a header file (for c) / interface for java, — will be included in both server and
clientcode
o 2)client stub, (unpacking the reply and returning values)
o 3) server stub (contains procedures called by the runtime
e \Write actual code and link it with runtime library
Server and client stub are responsible for collection and packing paramters into messages and
calling the runtime system to send it.

Y
Interface
deﬁn'rt_inn file |
¥
IDL compiler |
. A vy ~)
Client code Client stub Header Server stub Server code
_— . v v ; - |
#include | | #include
| J | 4 L4
C compiler | C compiler C compiler C compiler
Y _ Y | J Y
Client Client stub Server stub Server
object file object file object file object file
Y A T Tk ¥
. Runtime Runtime .
Llnlker -1— fibrary library — Lll'llker
L4 Y
Client Server
binary binary

The IDL file is needed to ensure that both client and server have the same methods and

. Uuidgen |

parameters available in order to connect to each other.

Binding

To allow a client to call a server, it is necessary that the server be registered and prepared
to accept incoming calls. Registration of a server is needed to make it possible for the client to
locate the server and bind to it and it is done in two steps:

e locate the server's machine

e locate the server (=correct process) on the machine — end point, port

Directory machine

Directory
server |y))
3. Look up server J 2. Register service
Client machine Server machine
5. Do RPC Server 1. Register endpoint
Client T
T] —t
4. Ask for endpoint pce tmdy
daemon “~. Endpoint
table

1. register endpoint: (server, endpoint) pairs on the DCE daemon.
2. register service on the directory server — networkaddress, name
3. look up server

4. ask for endppint
5. perform RPC

7. What kinds of asynchronous RPCs exist? Explain different types of
communication in general (persistent/transient and synchronous/asynchronous).

p134 - 137 (asyn rpc)

p124-125 (per/trans, sync/async)

There are certain situations where it is not needed for the client to wait for the answer of an
RPC call. If the client does not expect an answer (--> no result to return) blocking the client
while executing is unneeded (e.g. transferring money, adding entries into a db, ...).

To support such situations asynchronous RPCs can be supported, so that the client can

continue working immediately. After executing a method call a reply is sent immediately to the
client to acknowledge to the client that the server is going to process the RPC.

Normal RPC call / asyn rpc call

Client Wait for result Client Wait for acceptance
v _Ay._ 7 ,4'5
/ . \ /
Call remote |/ Return Call remote | /' Return
procedure / from call procedure \\ / from call
[/
;: /
Request | Reply Request l”f Accept request
Server Call local procedure Time —» Server Call local procedure Time —»

and return results

@) (b)
bla bla bla text.

Deferred synchronous RPC

Wait for Interrupt client
acceptance
Client _‘———-p———_ ‘
7 Ay 7}
Call remote | / Return 8 /\
\ from call eturn / \
procedure Vool results | \ Acknowledge
\ [Accept / \
Request y/ request \
Server --------------- ' } -----------
Call local procedure Time >
Call client with
one-way RPC

Combining two asynchronous RPC calls is also reffered to as a deferred synchronous RPC.
The client is not prepared to wait for an answer. During the call is processed at the server

the client can do other things and will expect the answer sometime in the future. When the
answer is ready the server interrupts the client and sends it back. A special case is the so
called oneway RPC in wich the client does not wait for an acknowledge from the server and
immediately continous executing his own processes.

persistent vs. transient

In persistent storage the message is stored by the middleware as long as it takes it to deliver it
to the receiver. Therefore the sender does not need to continue execution after submitting the
message. — message stored as long as needed (e.g. mail server)

In contrast, with transient communication a message is only stored as long as the sending and
receiving applications are executing. Meaning if the connection is interrupted the transmission
will stop. All transport-level communication rely on transient communication. — if delivering not
possible message is dropped (e.g. router)

synchronous vs asynchronous

async: sender continous after sending the message, message is stored upon sumission on the
middleware.

sync: sender is blocked until request is done. 1) sender blocked until middleware notifies that it
will take over the transmission. 2) request has been delivered to the intended receipient 3) fully
processed request — wait for response

Communication (2) - RMI and Messaging

Book: 4.3, 10.1.1, 10.3, 10.4
Questions:

1. Explain the principles of distributed objects and the Remote Object (bzw. Method)
Invocation RMI. What are the differences between "Compile-time" and "Run-time"
objects. Explain the difference between persistent and transient objects.

Objects encapsulate data (state and methos). Likewise, methods should be only available
through interfaces. The separation btw. interfaces and objects, that are implementing them,
makes it possible to put an implementing object on one server and the corresponding interface
on another. — then we call it “distributed objects” - the objects reside around the network!
When a client binds to such an distributed object it loads the proxy, the implementation of the
object’s interface, (analogous to a client stub in RPC) into its address space.

Client machine Server machine

Object
Client Server K
4 State
Same
Client interche D D D< Method
imvokas | as object
a method ‘/ Selelor 1\&1
. [Interface
Prox nvokes Skeleton
y same method
at ohject
Client OS Server 0S

"

Network \

Marshalled invocation
Is passed across network

Then the client has access to the object over the proxy (client) and the sceleton (server residing
interface - can be seen as a server stup). So the only thing that a proxy does is marshalling

and unmarshalling messages to the server’s sceleton, which than accesses the real object and
sends the result back. So actually its not a distributed object but rather an distributed interface
though which a client gets access to the object by sending and receiving messages.

compiled time objects are objects we know from Compiler Languages such as Java or C+
and therefore are instances of a class. In Java an object can be fully defined by its class and
interface which makes it easy to use with distributed systems. The Drawback is that you depend
on the use language. So in order to get language independent someone has to construct
distributed objects explicitly during runtime, then it is called a runtime object, wehereas
applications can be constructed out of multiple languages.

But how to let such an implementation appear to be an object whose methods can be invoked
by a remote machine? — common approach are so called object adapters, that act as a
wrapper around the implementation. Adapters give the appearance of an object, which allows
an interface to be converted into something that a client expects. Those objects are exclusively
defined in terms of their interface and are then registered with the adapter, that makes the
interface available for (remote) invocations.

persistent vs. transient

Persistent objects does exist regardless of their hosting servers. That can be archived with an
secondary storage where the server transfers the object before it deletes the object from its
address space or shuts down. Another server can then take it and use or host it.

In the contrary an transient object only lives as long as its hosting server.

2. How does binding work with RMI? Relate this to different types of object
references. Compare CORBA and Jave with respect to their way of implementing
object references.

Two ways of binding:
e implicit: simple mechanism to directly invoke methods by reference to an object, then

the client is transparently bound to the object at the moment the reference is resolved to
the object.

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ...; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

e explicit: the client first calls a special function to bind to the object before it can actually
invoke its methods. For instance to bind the object to a local object

Distr_object* obj_ref; //Declare a systemwide object reference

Local_object* obj_ptr; //Declare a pointer to local objects

obj_ref = ...; //Initialize the reference to a distributed object

obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); /Invoke a method on the local proxy

Implementation of Object References:
Before you can bind an object to a client the object reference has to contain an certain amount
of information.

simple object reference: network adress (where object resides) + end point (server that
manages the object) + indiction of which object (by object adapter).

After Server crash it could happen that there will be a new endpoint assignment, whereas all
references become invalid.

Solution: network address + server ID (DCE - local deamon per machine that listen to all
known end points and keep track of them in a table and encodes the servers id into the obijct -
server has always to register with its deamon)

Problem: server cannot move to another machine without making the references invalid again.
Solution: Location Server + unique server ID we simply out task the deamon to a location
server that now contains the end point table, that keeps track of the machine where an object’s
server is currently running.

Problem: If we drop the assumption that the server and client do not communicate with the
same protocols we have to include some more information into the reference

Solution: Binding protocol, flow control, error handling, parameter marshaling (format, data)
One step further: include Implementation handle, that refers to a complete implementation of a
proxy that the client can dynamically load when binding to the object.

like on http://myproxy.zip - that allows a object developer to implement object specific proxies

In Java

3. What is "static" and "dynamic" invocation of remote methods? Provide an
example.

static invocation:
The most general way of providiong RMI is to specify an object’s interface in an interface

definition langugae, similar to RPC’s. Alternatively, you can use an object based language
such as Java, that handles the stub generation automatically and uses predefined interface
definitions. Those ways are called static invocation. In case of Java if the interface changes,
recompilation is required! So if we want to have a more flexible way of invoking methods
without recompilation we need to compose a method invocation at runtime, also known as
dynamic invocation. The crucial difference between static and dynamic is, that with dynamic
invocation the applications pics the method that it's going to invoke on an object, whereas in
Java sprecifically, or with static invocation in general, you only have one defined method that
you are going to invoke on one specified object.

examples:
static invocation

object.append(int); //for appending an int value to an object:

dynamic invocation:
invoke(object, id(append), int) //do the same dynamically

or a more generic approach:
invoke(object, method, inParams, outParams);

The Advantage of dynamic invocation can be expressed by taking a batch service queue as
an example. The Service Queue can then be implemented by a queue of invocation requests,
ordered by their time. The main loop could then just wait for the next invocation scheduled,
remove the request from the queue, and call invoke as given above in the example.

or an object explorer where the invoked methods vary from object to object, then it is evidently
an advantage to dynamically invoke methods on the variety of objects!

4. How can parameters be passed in RMI? What properties of object orientation
make the difference here and what is the advantage over RPC?

The advantage over RPC is that with RMI passing parameters in method invocations is less
restricted.

http://myproxy.zip
http://myproxy.zip
http://myproxy.zip
http://myproxy.zip
http://myproxy.zip

if we only had distributed objects, we could consistently pass them by value during method
invocation. But if we have small objects, suchs as integers or booleans, each invocation by
a client that is physically not on the same server as the object, generates a request between

different address spaces or between different machines. Therefore local and distributed objects
are treated differently.

For instance if you pass an distributed object, you pass it by reference.

In case you pass an local object it will be passed as a whole, therefore by value.

Local
reference L1

Client code with
RMI to server at C
(proxy)

Machine A

Local object
01

Remote
reference R1

Machine B

02

Remote object

New local f‘
reference Copy of O1 /
Remote \f ,f’/ \\
invocation with \E Copv of R1 to 02
L1and R1as Y TR
parameters
T Server code

(method implementation)

Whether we are dealing with a reference to a local or a remote object can be highly transparent,
such as in Java. In java the only distinction between a local and a remote object is the data type
that makes it visible, on the other hand both are treated likely the same way.

One side effect with invoking a method with a reference is that we maybe copying an object.
Because of that it is basically necessary not to hide such a distinction, even though you are
violating aspects of a distributed system, such as transparency, at the same time. Nonetheless,
with two kinds of passing parameters writing distributed applications is harder.

5. Explain the categories of message-oriented communication and show CORBA
messaging as an example (two variants).

categories:
[J
[J

what is synchronous behaviour
messaging systems (message oriented transient communication)

e message -queuing

An RPC is of a synchronous nature, by which a client is blocked until its request has been
processed - and that needs to be replaced by something, which is “messaging” or message
oriented communication.

Berkley sockets
Standardizing the interface of the transport layer, sockets where born. A socket is a

communication end point to/from which an client can write and read data over an underlying
network. It can be seen as an abstraction layer above the operating systems’s functions to
provide an end to end communication. Therefore you will find the following primitives which also
descripe what a socket can do:
e socket (creates a new communication end point)
bind (attach a local address to a socket)
listen (announce wolligness to accept connection)
accept (block caller until a connection request arrives)
connect (actively attempt to establish a connection)
send (send some data over the connection)
receive (receive some data over the connection)
clos (release the connection)

Messaging Passing Interface (MPI)

Because Sockets were at the wrong abstraction layer and used the tcp/ip protocol for network
communication it was not suitable for high-speed interconnection networks, such as you will find
with server clusters, missing a variety of buffer and synchronisation functionalities. That led to a
new standard called Message-Passing-Interface or in short MPI.

Made for parallel applications and tailored to transient communication, whereas serious failures
such as process crashes are fatal - do not require recovery.

MPI uses communication primitives to support transient communication. MPI runtime systems
handles sending and receiving and puts the message into the local buffer where it waits for the
receive primitive. different primitives allow different kinds of synchronisation

Message-Queuing

Applications communicate by inserting messages in specific queues, forwarded over
communication servers and are delivered to the destination.

It gives a sender the guarantee that a message will be inserted into the receivers queue but
nothing more, not whether or not the receiver reads the message or when the message arrives.

CORBA

The concept of CORBA ist that it mimics an call back/polling by implementing two interfaces
instead of one into the client. Subsequently the client is responsible to transform the original
synchronous invocation into an asynchronous and that does have the advantage that the client
can go on after sending the request instead of being blocked and waiting for a response of the
server. The in the original method specified return gets passed as an input parameter to the
callback operation

Client application

1. Call by the ﬂ
application

Client Callback | 4. Call by the RTS

proxy | inteﬁjcy
i + 3. Response from server

Client

ATS ot

S i
/

2. Request to server

The alternative is a polling model, where the client is offered operations to poll its local RTS for
incoming results. Client is still responsible for transformation of the request.

Client application
1. Call by the ﬂ 4. Call by the
application | + application
Client | Polling
proxy interface
i A 3. Response from server
Client | |\\
RTS e

T NI

2. Request to server

The difference between polling and callback models is that the method replypoll_add wil have
to be implemented by the clients local runtime system (RTS). The implementation can be
automatically implemented. For both the implementation of the object as it appears at the server
side does not have to be changed.

what is synchronous behaviour
There are two ways of doing so:

callback and polling

6. What is "Message-oriented Middleware MoM"? ExIpain model and architecture
of "Message-Queueing" systems. Explain the primitives Put, Get, Poll und Notify.

Discuss possible applications, advantages and disadvatages. Explain the idea of a
message broker and its importance for EAI.

	0
	01 - Distributed Systems
	Provide a definition for "distributed system". Name important design goals and characteristic properties of distributed systems. What are the fallacies and pitfalls?

	02 - Transparency
	03 - Openness
	04 - Scalability
	Explain challenges and solution approaches for "Scalability".

	05 - Vertical distribution
	06 - Horizontal Distribution

	1 and 2

