
Institut für Informationssysteme
Abteilung für Verteilte Systeme

VU Advanced Internet Computing (184.269)

Assignment 2
Submission Deadline: Fri, 14.01.2011, 18:00 CET

General Remarks

• Group Size: This lab is a group lab. Group size is either 3 (preferred), or in special circumstances,
2 students. Please use the TISS forum to form groups of 3. Students are not encouraged to work
alone, and your assignment will not be graded differently if you do (that is, we are not going to
reduce the scale of the assignment if you decide to work alone, or in groups of 2).

• Plagiarism: Please do not copy lab solutions of other groups, or any full solution publicly available
on the Internet. If we find you cheating on your assignment you will get 0 points and cannot pass
the course. It is of course allowed to discuss problems and possible solutions with your colleagues
(within or outside of your lab group), but the overall assignment of your group has to be unique.
It is not allowed to submit the same (or a very similar) solution for two groups, even if the groups
worked together on it.

• Assignment Submission: Once you have completed your solution please upload it to the DSG
Teaching Tool1. Submit a ZIP-compressed file containing your NetBeans project(s) with the BPEL
process and the services from Assignment 1 (yes, you should resubmit your solution from Assignment
1, since you may have changed parts of it). Make sure that your code compiles and is runnable using
Java 6 and Apache CXF 2.2.10. For the BPEL part, use the most recent version of OpenESB2.

• Deadline Extensions: Deadline extensions are only given on special circumstances, and upon
individual agreement with the course administration. Obviously, starting too late does not entitle
you to a deadline extension. However, if you are unable to finish your assignment duly, try to
submit what you have before the deadline. Submitting an unfinished assignment is still a lot better
than submitting nothing at all. Keep in mind that there is always the possibility that something
goes wrong during submission, and plan accordingly – try to upload your submission earlier than
15 minutes before the deadline. If you have any problems with the DSG submission tool that you
cannot solve in time you should send a hash value (e.g., MD5) of your submission to the course
administration before the end of the submission deadline. Using this hash we can verify later on
that you did not change your submission after the deadline.

• Distribution of work within the group: Every student needs to participate in every assignment.
We will check that every student at least fully understands the solution of this assignment during
the lab interview, and reserve the right to give single students within a group fewer points if we feel
that he/she did not participate appropriately.

1https://stockholm.vitalab.tuwien.ac.at/dsg-teaching-web/student/studentLogin.htm
2https://open-esb.dev.java.net/

1

https://stockholm.vitalab.tuwien.ac.at/dsg-teaching-web/student/studentLogin.htm
https://open-esb.dev.java.net/


Introduction Congratulations! You passed the first assignment and are ready for the second
step - business process design. That means that after setting up a basic Web service infrastructure
with Apache CXF you are now ready to orchestrate these services to a business process using WS-
BPEL. As in the first assignment, we expect that you understand what is going on “under the
hood”, so make sure that you read the literature pointers and understand what’s going on.

Grading Assignments are graded similarly to the first assignment. The same rules apply. In
the following description we will again indicate how many points you can at most receive for each
task of the solution.

Prerequisites Before starting with the assignment, you should make yourself sure of the fol-
lowing:

• Before you begin designing processes, you should have a decent understanding of the basic
concepts of the Web service business process execution language (WS-BPEL for short)3. Re-
view the lecture slides and have a look at the literature pointers we provide in the Literature
section below if you are unsure.

• For this assignment you need NetBeans4, in particular the SOA plugins and the BPEL De-
signer5. Additionally, for deploying and executing BPEL processes, the GlassFish application
server and the GlassFish Enterprise Service Bus (ESB)6 are required.

Literature For the assignment, it is important to have a solid understanding of the WS-BPEL
principles. Please use the literature pointers below to inform yourself if you feel that you do not
understand some of the basic concepts:

• First and foremost, have a look at the lecture slides. Use the other material to detail the
topics presented during the lecture.

• Secondly, use the relevant standard (WS-BPEL) as reference material for any detailed ques-
tions that you have. Note that you do not need to read all details cover to cover, but you
might want to keep them close for reference.

• For some specific topics you should look at these internet resources: the following link
introduces the concepts of WS-BPEL based orchestration7. A good starting point for the
usage (and some useful examples) of the Netbeans BPEL Designer8.

Assignment Description (24 Points)

Basic Process (13 Points) Let us revisit the book ordering process which was our starting
point for the first lab. It is depicted again in Figure 1.

By now it should be evident that we have implemented all Web services necessary to implement
this process (the mapping between activities in the process and Web service operations should be
straight-forward).

Your first task is now to implement a basic version of this process. Have a look at the WSDL
interface that we have attached to the assignment. Your process has to implement this interface.
For the moment you are not allowed to change this interface at all (you will have to slightly modify
for a later part of this assignment).

3http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
4http://www.netbeans.org/
5http://www.netbeans.org/features/soa/index.html
6https://open-esb.dev.java.net/
7http://www.oracle.com/technology/pub/articles/matjaz_bpel1.html
8http://www.netbeans.org/kb/trails/soa.html

2

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.netbeans.org/
http://www.netbeans.org/features/soa/index.html
https://open-esb.dev.java.net/
http://www.oracle.com/technology/pub/articles/matjaz_bpel1.html
http://www.netbeans.org/kb/trails/soa.html


Get Customer Check Availability
in Warehouse

Select Supplier[unavailable] Order From 
Supplier

Order From 
Warehouse

[available]

Update Customer 
Account

Notify Customer
(Send Bill)

Notify Customer
[error occured]

Ship Items

receive order
request

Wait for Items 
Delivered

foreach Item

Figure 1: Book Ordering Process

New instances of the process are created when a new order is received (operation start process
in the WSDL). Afterwards, you retrieve the customer from the customer service, and iterate over
each ordered item. For each item you check if it can be ordered from the warehouse. If this is
possible you order from the warehouse, if not you order from a supplier. In the first version you
can assume that all items are always ordered from supplier 2 (the second supplier service), that is,
you do not need to use your registry service for now. The next step of the process is the parallel
execution of the activities “Ship Items”, “Update Customer Account” and “Notify Customer”.
Shipping and notifying the customer are straight-forward. For “Update Customer Account” your
process should calculate the total value of the order and increase the customer account by this
value (see the update account operation). Finally, your process should block until the items
are delivered to the customer, but you may ignore this step for now and just return your result
directly. You do not need to handle the custom SOAP faults thrown by our Web services in this
basic version of the process.

Fault Handling (2 Points) As a first extension of the basic process, you should implement
fault handlers that deal with all the SOAP faults that can be thrown by the Web services we
have implemented in Assignment 1. Use the notify customer operation to notify the client of
any problems. The message sent to the customer has to be fault-specific, that is, don’t just send
something generic like “Fault received”, but something that actually indicates what the problem
is.

Dynamic Service Endpoints (3 Points) Now it’s time to put our simple registry service
to good use. Add a “Select Supplier” activity to your process, which queries your registry service.
Then invoke the supplier service that has been returned by the registry (not always supplier 2,
as we have assumed so far). Note that this step should be implemented using exactly two Invoke
activities: the first one queries the registry, the second is an Invoke activity whose partner link
is set dynamically. It is not ok to just implement Invoke activities for both suppliers and select
them via branching.

Some ideas of how to do that can be found here9. Note that your solution should be flexible
in the sense that it should also work if a different URI endpoint would be returned (but you
can assume that the service returned has the same abstract WSDL interface as your two supplier

9http://wiki.open-esb.java.net/Wiki.jsp?page=UsingDynamicPartnerLinks

3

http://wiki.open-esb.java.net/Wiki.jsp?page=UsingDynamicPartnerLinks


services). If your invocations to one of the supplier services fail you should verify that both services
have the same name and port type, and that all namespaces etc... are identical.

Asynchronous Process (5 points) Finally, you should implement the “Wait for Items
Delivered” activity. Basically, this activity does not map directly to a Web service invocation.
Instead you need to find a way of blocking your process until you get a callback from the customer
that the items have been delivered. This should be implemented using the WS-BPEL support for
asynchronous notifications.

Since we want to keep things simple we don’t actually implement a customer for this assign-
ment. Instead, you can simulate this notification from the customer by extending your shipping
service a little. Implement some functionality in the service that, whenever the ship operation is
invoked, waits for some time (say, 10 seconds, but the timeout needs to be long enough that we
can see that the process is indeed blocked!) and then calls the callback operation of the process
to indicate that the items have arrived.

Tip 1: take a look at the asynchronous BPEL sample of NetBeans, it uses most constructs
necessary for this subtask. You will need correlation sets and non-initial receives to implement
this part of the solution. Please keep in mind that we actually expect you to use asynchronous
notifications. It is not ok to implement, e.g., a polling method which is periodically invoked from
the process. The result needs to be asynchronous and use a callback for you to receive all points.

Tip 2: it may be necessary to extend the WSDL interface of the process slightly for this
task. You are allowed to add variable properties (vprop:property) and property aliases (vprop-
:propertyAlias) to the WSDL, as well as add imports of other WSDL files, but please don’t
change the operation parameters etc.

Submission Package and Test Cases (1 point) The outcome of this assignment is a
deployable and executable WS-BPEL NetBeans project. Make sure that your project can be built
and deployed using NetBeans (i.e., using the “Clean and Build”, and “Deploy” functions). Ad-
ditionally, we need a way to actually invoke the deployed process. You should therefore create
some test cases using the “New Test Case” functionality of NetBeans, and execute the process
by running the test case. Make sure that your backend services are actually invoked during your
process runs (remember, they should produce some debug output when invoked!). Please make
sure that the BPEL process integrates only services from localhost! Otherwise we cannot deploy
and test the process.

4


