
192.036 VU Introduction to Quantum Computing SS 2024
Programming Exercise 1 Uwe Egly

1 General remarks

In all programming exercises, we use IBM’s Qiskit system and the Python programming
language to construct the quantum circuits, to simulate the quantum machine and to
retrieve the results. Example programs are presented in the lecture’s tuwel course.

2 General description

The goal is to construct a gate performing integer division. This div gate performs,
for all n > 0 and all m ≥ 0, the division of a non-negative n + m qubit integer a and
a positive n qubit integer b and returns the n + m qubit quotient q and the n qubit
remainder r such that a = qb + r with 0 ≤ r < b. We annotate each register with its
length given as a superscript. The div gate consists of 3n + m qubits d3n+m−1 · · · d0.
The inputs are an+m = dn+m−1 · · · d1d0, cn = d2n+m−1 · · · dn+m+1dn+m = 0 · · · 0 and
bn = d3n+m−1 · · · d2n+m+1d2n+m. The div gate performs the action

|bn⟩ |cn⟩
∣∣an+m

〉 div7−−→ |bn⟩
∣∣qn+m

〉
|rn⟩ .

In order to implement the div gate, we provide the implementation of a subtraction
(subo) gate with negation qubit and a controlled addition (cadd) gate.

A subo gate subo_g can be constructed by
subo_g = subo_gate(qAStart, qASize, qBStart, qBSize, neg).

A cadd gate cadd_g can be constructed by
cadd_g = cadd_gate(qAStart, qASize, qBStart, qBSize, ctrl).

For register X, the argument qXStart indicates its start position, qXSize its size and
neg/ctrl indicates the position of the negation qubit and control qubit, respectively.
Each call returns a gate which can be appended to a given circuit.

We recommend to use the most significant qubit named o for negation/control. The
inputs for the gates are then a = dn−1 · · · d1d0, b = d2n−1 · · · dn+1dn, and o = d2n. The
value o changes in the subo gate from 0 to 1 if a− b < 0. The actions of these gates are
as follows.

|0⟩ |b⟩ |a⟩ subo7−−−→ |o⟩ |b⟩ |a− b⟩

|0⟩ |b⟩ |a⟩ cadd7−−−→ |0⟩ |b⟩ |a⟩ |1⟩ |b⟩ |a⟩ cadd7−−−→ |1⟩ |b⟩ |a+ b⟩

1

3 Your tasks

We guide you step by step through the implementation process.

1. Construct a gate iter which will be used later on. This gate first subtracts with
negation qubit the n qubit non-negative integer b from the n qubit non-negative
integer a using the subtraction gate subo. In case the negation qubit o is 1, the
difference is negative and we add b back. This is performed by a controlled addition
with gate cadd, using the negation qubit o from the subo gate as the control qubit
of the cadd gate. Finally the negation/control qubit is negated.

The inputs of the iter gate are a = dn−1 · · · d1d0, b = d2n−1 · · · dn+1dn, and
negation/control qubit o = d2n = 0. It performs the action

(a− b) ≥ 0

|0⟩ |b⟩ |a⟩ iter7−−−→ |1⟩ |b⟩ |a− b⟩

(a− b) < 0

|0⟩ |b⟩ |a⟩ iter7−−−→ |0⟩ |b⟩ |a⟩

Implement the gate for later use. Draw the gate for n = 3, test your implementation
for all possibilities over n = 2 qubits and document the test cases.

2. Construct the div gate using the iter gate.

=

The example circuit for n = 3 and
m = 2 is given on the left. Let
an+m = d4d3d2d1d0 = 11101 and
let bn = d10d9d8 = 111. Figure out
the input and output of each iter
gate and document the findings in a
table. What is q and r for this ex-
ample? Test your implementation
for various n and m and document
the test cases.

3. Suppose we want to invert an n qubit number b. How can we do this using the
div gate? How does m influence the precision of the inversion process? Invert
b4 = 1011 and discuss the result.

2

