
Visco elastic behavior of soft connective tissues 

We observe that 

the stress-strainrelationship depends on the 

strain rate 

tissues show the phenomenon of stress 

relaxation; the load or stress is monitored as a 

function of time while strain is kept constant 

tissues show the phenomenon of creep; the 

strain or elongation is monitored as a function 

of time while stress is kept constant 

the stress-strain relationship of the loading 

differs from that of the unloading mode; 

hysteresis loop 

after preconditioning, i.e. the repetition of a 

certain experimental scheme, the stress-strain 

relationship achieves a stationary state. 
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Force 

/ force applied 

Time 

Figure 2.5.7 Schematic force-relaxation curve for ligament. 

e.g .. temperature ancl solution in which the test is carried out. The foster a force is applied. 
the less time there is for the viscous component to dissipate. A ligament will ap~,car stron
ger and slightly stiffer under rapid force than under slow force. Creep is the analogous 
behaviour of a ligament under a fixed force.when the force is either held or reached repeti-

'tively in a cyclic fashion. Creep is the increase in length over lime under a const<1nt force. 
\Vith creep., as with force relaxation, manifestation of the viscous component through 
time-dependent force or strain changes eventually ceases (Fig. 2.5.8). 

Deformatio'r 

/ 

Time 

t t 
load applied load removed 

Figure 2.5.8 Schematic creep curve for ligament. 

Dllri11g cyclic force, however·, sorne or the viscous compo11enl can be recovered i11/cach 
cycle (Fig. 2 .. 'l.9). When the ligament is llnrorccd, the viscous component, while 11cvc1 
rccovcr-i11g co111pletcly (al least dtning i11-·1.·i1rri lcsl.s), can recover lo over 9(Jffr, or its origi 
11al slate ;1ftcr rn;rny hours i11 a 1c·l;1\L~d C<l1Hliti()11. One c·;111 .spcc11lalc ;tilOlll wh;1l is hc·i11~ 
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recovered. but this recovery probably involves some combination o, .1ater innux, returu
ing coilagen crimp, elastin tensile force,~nd increasing collagcnous disorganizi:i-1 urn:ler 
unforced conditions. 

Force 

fjgurc 2.5.9 

1 2 3 

Deformation 

Schematic force-deformation graph showing three successive cycles of forcing and 
unforcing, illustrating the viscoelastic creep effect of cycling upon a ligament. 



To modell these biomechanical properties a 

network of viscoelastic elements is formed 

The components (elements) of this network are 

The spring {Hooke element), characterized by a linear 

relationship of stress and strain (or force and 

elongation) 

a= E*e 

The dashpot (Newton element), characterized by a 

linear relationship of stress and strain rate (or force 

and rate of elongation) 

a= ri*de/dt 

The dry friction element (Coulomb element), 

characterizing ideal plasticity, i.e. strain remains zero 

until a certain level of load is achieved, and then 

strain is indeterminable 



The mentioned viscoelastic elements are symbolized 

as follows 

The spring (Hooke element) 

F 
(a) 

(b) 

""-------~ x 

The dashpot (Newton element) 

x (b) 

The dry friction element (Coulomb element) 

F 
lb) 

-----~x 



There are two possible ways to combine the 

Hooke and Newton element to a simple 

viscoelastic model 

In series strains are added (Maxwell model) 

(a) ' 

-+F 

o--+X 

e1+e2 = e = E-1*0 + C11*d/dt)-1*cr 

or Efl *de /dt = (E+fl *d/dt)*O 

In parallel stresses are added (Kelvin model or Voigt 

model) 

( a) 

a= E*e + 11*de/dt 



If stress is applied suddenly (Heaviside step) 

o(t) =oo*0(t) 

then strain versus time for the Maxwell model 

0 1 2 3 4 5 6 

TIME 

- the first phase is the elastic reaction: instantaneous 

reaction of strain due to suddenly applied load 

- followed by the reaction of the dash pot: strain is a 

linear function of time as the load is constant after the 

Heaviside step 



If stress is applied suddenly (Heaviside step) 

a(t) = ao * 8(t) 

then strain versus time for the Kelvin model 

0 2 4 6 8 10 12 

TIME 

The strain is an exponential function with time 

converging asymptotically to the final value. 

The final value of strain corresponds to that of the 

spring when the dash pot is thought to be removed. 

The dash pot slows down the elongation of the Kelvin 

model. 



In case of the application of strain at a constant rate 

(as used often in experiments with bio tissues) we 

observe the load (or stress) as a function of time. 

E(t)=r*t r is for rate 

load versus time for the Maxwell model 

0 2 4 8 10 12 

TIME 

The load achieves asymptotically a final value, which 

corresponds to that when the spring would be 

removed. 



In case of the application of strain at a constant rate 

we observe the load (or stress) as a function of time. 

E (t)=r*t r is for rate 

load versus time for the Kelvin model 

0 1 2 4 5 6 

There is an instantaneous reaction of the dash pot 

which is added to the linearily increasing load of the 

spnng. 



Now to models using three elements. 

There are the following ways to form a 

viscoelastic solid with 3 elements. 

Version 1: spring element with Kelvin model in series 

Strains are added 

E 1---.;...~- E 2 ---s;. 

E 

Eo 

Version 2: spring element with Maxwell model in 

parallel 

Stresses are added 

01 Eo 

E ]-(_!l __ --
Oz 



Now to models using three elements. 

There are the following ways to form a 

viscoelastic solid with 3 elements. 

Version 1: spring element with Kelvin model in series 

Strains are added 

E1 +Ez = Eo-1*0 + (E+rt *d/dt)-1*0 = E 

or 

(Eo+E+rt *d/dt)*o = Eo*(E+rt *d/dt)*e 

Version 2: spring element with Maxwell model in 

parallel 

Stresses are added 

a1 + a2 = (E-1 + (11*d/dt)-1)-1*E + Eo*E = a 

or 

(E + ri*d/dt)o = (Eo*E + (E+Eo)fl*d/dt)s 



Both versions of three parameter solids are 

symetric with respect to the occurring derivatives of 

stress and strain. If load is given as a function of time 

one has to solve a differential equation of first order 

for strain, and for strain as a function of time solve 

equation for stress. 

The equations may be written in terms of the time 

constants for stress relaxation and creep. 

Version 1 of three parameter solid 

'trelaxation = 'YJ /(Eo+E) = 'tr 

'tcreep = 'YJ /E = 'tc 

then to the equation 

(Eo+E)*(1 + 'tr *d/dt)cr = Eo*E*(1 + 'tc *d/dt)E 

Version 2 of three parameter solid 

't relaxation = 'YJ /E :::: 't r 

'tcreep:::: (Eo+E)'YJ/(Eo*E) ='tc 

then to the equation 

(1 + 'tr *d/dt)cr :::: Eo*(1 + 'tc *d/dt)e 
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In case of an experiment carried out at constant strain 

rate we have 

A Ramp with constant strain rate r, t time 

dE/dt =rand E=r*t 
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0 2 4 6 8 10 12 

TIME. 
The stress response is composed of a linear and an 

exponential function of time 

30 

25 

20 

15 

10 

5 

·r····-············--···--······-·-·····--···········--·····--~--------------·--·- VIS C 0 ELASTIC 

+--················--··· ................................ -··········--··--···=··- RESPONSE 
I 
I 

ELASTIC 

..... RESPONSE 
I 

~~-~----·;, ..... ~ .... ;. ;_~T,,~:···:·: ·:·: ··,:,::··, =--~·,,:~--;·::':: ... ~ .. : .. : .. ~-=----~~\·•: STRAIN 
0 '\ 

0 2 6 8 10 

TIME 



For stress relaxation tests we have a ramp phase 

(strain rate constant) followed by the relaxation tests 

(strain constant) 

The ramp phase as before 

6 :.::.: RELAXATION PHASE·--
5 RAMP ,____ -··-··--· 

:z: 4 +·-""""-"""'-"" ·iF-1""""""""'""'"""""""'""""-"-'""""""' ____ ,_, __ ,_"""'"" 
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en 
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TIME 
During the relaxation phase the contribution of the 

dashpot diminish (the viscous contribution to stress 

decays to result in the final elastic contribution) 
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Viscoelastic model for the nonlinear stress-strain 

behavior of bio-tissues 

use nonlinear Hooke and Newton elements 

use successively engaged spring elments -> 

figure 

(a ) 

F 

( b) 

<,--·-~--··-·--·····---~ 
---~x 

Ll 

Fig_. 6. A system for nonlincar spring (Hooke-elernenl) 
acl1011. (a) Two Hooke elemcnls arranged in parallel; lilc 
upper one comes into action afte1· a deformation of 6; 

(b) Forcc-defornwtion diagram of the system. 

""' 



A dashpot (Newton element) is added 
Ll 1\tM-- !·-_ ~ 

( a ) 

1\JVM-V\A/v-~F-~ 

I 
···••. 

o--~x 

lli!i 

Fig_ 10.(a) and (b). Illustrate the two possibilities for 
:ombining the nonlinear Hooke-element action (cf. Fig. 6) 

with the Newton element in the rnodel. 

A dry friction element (Coulomb) is added 



To the complete model which can describe the 

nonlinear stress-strain relationship and the 

preconditioning behavior 

Fig. 14. The complete model forthe mechanical behavior 
of ligarnentous tissue. The part on the left accounts for the 

building-up process. 
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l 23 

~ \ 

·=CO:~~~?-·~--·--;---·-·~----~-~---·~+, )( 

Fig. 13. Loacl-dcformatio11 diagrams (cf. Fig. 14) for three 
conscculive cycles of Joaidi1!g and unloading of lhe sa1T1t; 

:;p.cc1men. 



Improved description of the relaxation behavior 

of bio-tissues 

Instead of a single relaxation time constant employ a 

spectrum of amplitudes and time constants i: 

That means instead of a viscous stress decay of the 

form 

exp(-t/-c) 

the relaxation phase is described with a discrete 

spectrum, i.e. 

or the relaxation phase is described with a continuous 

spectrum of time constants, i.e. 

J d-r a(-r)*exp(-t/-r) 



It is known from literature that the continuous 

spectrum should be preferred. The following terms 

are found 

a ('t) = ao I 't for L within the interval ( 1:1, 1:2) 

that means that one has to determine 3 parameters 

ao, T1, i:2 with a least mean square fit 

or the lognorm distribution, i.e. the logarithms of 

the relaxation time constant are normal distributed 

and the amplitudes are also following a 1/i: law. 

For a comparison with dynamic tests it is shown that 

the imaginary part of the Young's modulus 

(describing the phase shift between excitation and 

answer of the material) is nearly constant within 2-3 

orders of magnitude of frequency 
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relaxation spectrum S(r) = c/r for r 1 ::::; r::::; r 2 and zero elsewhere. r, = 10-- 2

, r~ = 102 

From Neubert (1963). 

Stiffness is derived from the real part of the complex 

Young's modulus 

Damping results from phase shift as mentioned 

before 



If a three parameter solid is used the phase shift 

would show a pronounced peak at a certain 

frequency in the dynamic test 

The equation for the three parameter solid may be 

expressed by the time constants for stress relaxation 

and creep as followes 

a+ 'tRelaxation * da /dt = Eo*(E + 'tcreep *de /dt) 

The following figure shows a summary of different 

viscoelastic models: hysteresis loop versus frequency 

(strain rate) 



Comparison of Maxwell, Kelvin model and three 

parameter solid 

H 

Jog f 
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! 
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/ 

Figure 7.6: 5 A summary of the p1:incipal features of viscoclastic models. Three stan
dard viscoelastic models, namely, ihe Maxwell, Voigt and Kelvin models arc shown 
in the top row, and a mathematical model of the viscoelasticity of biological soft tissues 
is shown in the third row. ,Figures in the second row show ti1e relationships between 
the hysteresis (II) and the logarithm of frequency (Jn f) of the three models immediately 
a bovc. 'T'he figure in the bot tom row shows the general hystersis-log frequency relation
ship of most living soft tissues, corresponding to the model shown in the third rov.c. 
For the soft tissue model the springs are nonlinear, and each Kelvin unit contribut/s 
a small bell-shaped curve, the sum of which is flat over a wide range of frequencies. 



Further models to describe the nonlinear stress 

strain behavior of bio tissues 

A normal distribution of reference lengths for the 

collagen fibers is assumed. The collagen fibers are for 

simplicity seen as elastic elements. This would result 

Ill 

an increasing number of fibers engaged when 

strain increases 

a nonlinearily increasing stress as the tissue is 

strained 

f I;= /(r) /(r) l 
dF(r) = G(O) d - i_ 

li 
I,= lo 

N -(µ-1)2;2s2 dl 
x fo s e , i· 

An improvement of the model is to assume the 

collagen fibers themselves are viscoelastic. 



As summary for the description of the 

biomechanical behavior of soft connective tissues 

we have 

A 

elastic behavior modelled with successively 

engaged spring elements (distribution of 

reference lengths of collagen fibers) 

viscous contribution given by a set of 3 

parameter solids with different time constants 

for relaxation and creep 

for flat tissues there will be added a 

distribution of angles of the collagen fibers to 

the axis of load application 

a 
B c A 

B 

c 



Desccription of the stress relaxation with 

hereditary integrals 

A strain controlled loading history is assumed 

1 Ll~ 1 

Lrtl I ti~ 1 t TIME 
The function strain versus time is devided into 

several steps. The stress taken at time instant t will 

depend on all the time instants t' < t via the relaxation 

function G(t): 

a(t)= G(t)+ AE1G(t-At1)+ AE2G(t-At1-Atz)+ 

AE3G(t- At1- Atz- At3)+ .. 



In the limit ~ti->0 the hereditary integral results 

a(t)=Jdt'G(t-t') * dE/dt (t') + a(t=O) 

The initial value of stress a(t=O) should be a state of 

equilibrium, i.e. a pure elastic value after the 

relaxation of previous steps of loading is completed. 

Some simple cases for the relaxation function 

G(t) = E + ri exp(-t/t) 

Without viscous component-> Hooke element 

a(t) =f dt' E de/dt(t') = E*e(t) 

and without elastic component at constant strain rate 

de/ dt=r=const 

a(t) =Jdt'riexp[(t'-t)/i:] de/dt(t') = 

ri r,;*[1-exp(-t/i:] 

In the limit of large t the reponse of a Newton element 

results, i.e. s='Ylrt=const at const strain rate. 



Some examples of stress relaxation tests with 

different bio materials 

Stress relaxation tests carried out at successively 

increased strain levels 

Specimens of aorta, skin, and tendon were tested 

w 
u 
cc 
0 
lL 

E 
Ol 
~ 

w 
u 
a: 
0 
LL 

A 

B 

10 20 30 40 50 

STRAIN (%) 

------------- F 
E 

10 20 

TIME (min) 

FIGURE I (A) Typical loading program used to determine elastic and viscous eo1mup1mwmllis. S1wecimen was 
strained at 5% increments and the force was allowed to relax at constant strain. (lj) 'Fy1Jil~©atl1 ttiirnue course of 
relaxation at a set strain. Elastic Fraction was defined as Fe/Fo. 
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The value of stress at the begining of the relaxation 

phase represents a sum of the elastic and viscous 

component of stress; this component will diminish 

and the elastic component will remain after 

relaxation is completed. The final values of stress 

plotted versus strain will give nearly the elastic stress 

strain graph. This corresponds to an experiment with 

the limit strain rate -> zero. 
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The determination of stress relaxation time constants 

and the viscous (or vice versa the elastic) fraction 

may help to characterize the biomechanical status of 

tissue samples. One dont need to determine the cross 

sectional area of samples for computing stresses. 

Wether time constants need to be normalized nor a 

quotient of forces. This quotient will, of course, be the 

same for the corresponding quotient of stresses. 

Elastic fraction = 

F elastic/F viscoelastic = a elastic/ a viscoelastic 

The viscous fraction is then 100°/o minus the elastic 

fraction. 

Results of a study of Dupuytren' s disease (apparently 

normal tissue and contracture bands) compared to 

normal segments of palmar a po neurosis (from 

patients with carpal tunnel syndrome) 



MECHANICAL PROPERTIES OF PALMAR APONEUROSIS AQND DUYPUTREN'S 511 

Fig 1 (a) A patient with 1narkcd Dupuytren's contracturc of the ring finger. Another contracture band 1nerges into the skin causing a 'funnel-like' 
retraction. The index and 1niddle fingers arc not contracted. (b) The pahnar aponcurosis of this hand is exposed by a Y-shaped incision. 
One can easily distinguish the nonnal looking, transparent fibre bundles to the index finger (ANPA), the thickened, opaque fibre bundles 
to the iniddlc finger (TJ-lFB), the contracturc bands (CB) to the ring finger and the contracturc band to the skin over the little finger ray (CB 
to the skin). 



Normal tendons from the palmaris longus muscle (n = 
14) and normall palmar aponeuroses (n = 23) were 
obtained during surgery of carpal tunnel syndrome (18 
patients, 2 male and 16 f~ma1e; age range: 41-78 
years). Apparently .normal palmar aponeuroses (n = 9) 
and contracture b'ands (n ' 20) were obtained at 
surgery of 16 male patients (age rang~: 4t-70 years) 

.l ' ' ' ' i 

with. Dµpuytren's disease. Generally, specimens of the 
I 

apf18t>ently normal areas were excised frol)h the 2nd or 
. . . I 

- -

Figure 1. Palmar aponeurosis 1, including 2, a specimen 
of an apparently normal tissue from the 2nd finger, and 

' · 3, a sample of a contracture band from the 4th finger. 



The average time constant for stress relaxation 

with specimens of palmar a po neurosis was 

significantly higher for the contracture bands 
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This was also observed for the viscous fraction, i.e. 

the viscous stress component related to both the 

elastic and viscous component of stress (initial value 

at the begining of the relaxation phase) 
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As to a study of non enzymatic glycation with rat tail 

tendons (incubated in glucose in presence or absence 

of an inhibitor we found for the viscous fraction 
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0 I ,~~~~~, 1'·•·····~.:=~~I "•~:J CONTROL 
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i 

61 d 

The viscous fraction of samples from old animals is 

not affected by gJucose and also there is nothing to 

inhibit. But there is a marked decrease of the viscous 

fraction by glucose for the young animals, this 
\ 

decrease is inhibited. 


