Viscoelastic behavior of soft connective tissues

We observe that

- the stress-strain relationship depends on the
strain rate

- tissues show the phenomenon of stress
relaxation; the load or stress is monitored as a
function of time while strain is kept constant

- tissues show the phenomenon of creep; the
strain or elongation is monitored as a function
of time while stress is kept constant

- the stress-strain relationship of the loading |
differs from that of the unloading mode;
hysteresis loop

- after preconditioning, i.e. the repetition of a
certain experimental scheme, the stress-strain

relationship achieves a stationary state.
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Figure 2.5.7 Schematic force-relaxation curve for ligament.

e.g., temperature and solution in which the test is carricd out. The faster a force is applied.
the less time there is for the viscous component to dissipate. A ligament will appear stron-
eer and slightly stiffer under rapid force than under slow force. Creep is the analogous
behaviour of a ligament under a fixed force- when the force 1s either held or reached repeti-
“tively in a cyclic fashion. Creep is the increase in length over ime under a constant force.
With creep, as with force relaxation, manifestation of the viscous component through
time-dependent force or strain changes eventually ceases (Fig. 2.5.8).
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Figure 2.5.8 Schematic creep curve for ligament.

During cyclic force, however, some of the viscous component can be recovered infeach
cycle (Fig. 2.5.9).. When the ligament 1s unlorced, the viscous component, while never
recovering completely (at least during in-vitro lests), can recover 1o over 90% of its origi-
nal state alter many hours m o relaxed condition. One can speculate about what is being
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ILLO\L:pd but this recovery probably involves some combination o. wvater influx, return-
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Figure 2.5.9 Schemnatic force-deformation graph showing three successive cycles of forcing and
unforcing, illustrating the viscoelastic creep effect of cycling upon a ligament.



To modell these biomechanical properties a

network of viscoelastic elements is formed

The components (elements) of this network are

The spring (Hooke element), characterized by a linear
relationship of stress and strain (or force and

elongation)
o = E*e

The dashpot (Newton element), characterized by a
linear relationship of stress and strain rate {or force

and rate of elongation)
o =1*de/dt

The dry friction element (Coulomb element),
characterizing ideal plasticity, i.e. strain remains zero
until a certain level of load is achieved, and then

strain is indeterminable



The mentioned viscoelastic elements are symbolized

as follows

The spring (Hooke element)
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There are two possible ways to combine the
Hooke and Newton element to a simple

viscoelastic model

In series strains are added (Maxwell model}

g1+€2 = € = ET*0 + (n*d/dt) o

or EN*de /dt = (E+n*d/dt)*o

In parallel stresses are added (Kelvin model or Voigt

model)
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o = E*e + n*de /dt



STRAIN

If stress is applied suddenly (Heaviside step)

o(t) =00 ™*0(t)

then strain versus time for the Maxwell model

0 1 2 3 4 5 6

TIME

- the first phase is the elastic reaction: instantaneous

reaction of strain due to suddenly applied load

- followed by the reaction of the dashpot: strain is a
linear function of time as the load is constant after the

Heaviside step



STRAIN

If stress is applied suddenly (Heaviside step)

o(t) =0 * 0(t)

then strain versus time for the Kelvin model

0 2 4 6 8 10 12

TIME

The strain is an exponential function with time

converging asymptotically to the final value.

The final value of strain corresponds to that of the
spring when the dashpot is thought to be removed.
The dashpot slows down the elongation of the Kelvin

model.



LOAD

In case of the application of strain at a constant rate
(as used often in experiments with bio tissues) we

observe the load (or stréSs) as a function of time.

e (t)=r*t r is for rate

load versus time for the Maxwell model

0 2 4 “ 8 10 12

TIME
The load achieves asymptotically a final value, which

corresponds to that when the spring would be

removed.



LOAD

In case of the application of strain at a constant rate

we observe the load (or stress) as a function of time.

e(t)=r*t r is for rate

load versus time for the Kelvin model
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There is an instantaneous reaction of the dashpot

which is added to the linearily increasing load of the

spring.



Now to models using three elements.

There are the following ways to form a

viscoelastic solid with 3 elements.
Version 1: spring element with Kelvin model in series

Strains are added
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Version 2: spring element with Maxwell model in

parallel

Stresses are added
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Now to models using three elements.

There are the following ways to form a

viscoelastic solid with 3 elements.
Version 1: spring element with Kelvin model in series

Strains are added
g1+€2 = Eo 0 + (E+n*d/dt) 1o = ¢
or

(Eo+E+n*d/dt)*o = Eo*(E+m*d/dt)*e

Version 2: spring element with Maxwell model in

parallel

Stresses are added
o1+ 02 = (E1+ (n*d/dt)1)1*e + Eo*e = ©
or

(E +n*d/dt)o = (Eo¢*E + (E+Eo)n *d/dt}e



Both versions of three parameter solids are
symetric with respect to the occurring derivatives of
stress and strain. If load is given as a function of time
one has to solve a differential equation of first order
for strain, and for strain as a function of time solve

equation for stress.

The equations may be written in terms of the time

constants for stress relaxation and creep.
Version 1 ofthree parameter solid

Trelaxation = 1) /(Eo+E) = T»

Tereep = 1) /E = T

then to the equation

(Eo+E)*(1 + T+ *d/dt)o = Eo*E*(1 + T *d/dt)e
Version 2 of three parameter solid

Tretaxation = 1} /E =Ty

Tereep = (Eo+E)N /(Eo*E) =T

then to the equation

(1 +x:*d/dt)o = Eo*(1 +t.*d/dt)e



STRAIN

In case of an experiment carried out at constant strain

rate we have
A Ramp with constant strain rate r, t time

de /dt =r and e=r*t

12

TIME
The stress response is composed of a linear and an

exponential function of time
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STRAIN

For stress relaxation tests we have a ramp phase
(strain rate constant) followed by the relaxation tests

(strain constant)

The ramp phase as before
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During the relaxation phase the contribution of the

dashpot diminish (the viscous contribution to stress

decays to result in the final elastic contribution)
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Viscoelastic model for the nonlinear stress-strain

behavior of bio-tissues

- use nonlinear Hooke and Newton elements

- use successively engaged spring elments ->

figure

; > X

Fig. 6. A system {or nonlinear spring (Hooke-element)
action. (2) Two Hooke elements arranged in paratlel; the
upper one comes mto action after a deformation of A,
(b) Force-deférmation diagram of the system,
st



A dashpot (Newton element) is added

o X

W

Fig. 10.(a) and (b). lustrate the two possibilities for
sombining the nonlinear Hooke-element action (cf. Fig. 6)
with the Newton element in the model.

A dry friction element {Coulomb) is added




To the complete model which can describe the
nonlinear stress-strain relationship and the

preconditioning behavior

FFig. 14. The complete modél for'the mechanical behavior
of ligamentous tissue. The part on the left accounts for the
building-up process.
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Fig. 13, I‘.,oad—deformalio; diagrams (cf. Fig. 1) for three
consecutjve cyc]@s of loading and univading of the same

Specimen. i



Improved description of the relaxation behavior

of bio-tissues

Instead of a single relaxation time constant employ a

spectrum of amplitudes and time constants t

That means instead of a viscous stress decay of the

form

exp(-t/t)

the relaxation phase is described with a discrete

spectrum, Le.
2 a* exp(-t/Ti)

or the relaxation phase is described with a continuous

spectrum of time constants, i.e.

fd'c a(t)*exp(-t/t)



It is known from literature that the continuous
spectrum should be preferred. The following terms

are found

a(t)=ao/ t fortwithin the interval (1, t2)

that means that one has to determine 3 parameters

a0, T1, T2 with a least mean square fit

or the lognorm distribution, i.e. the logarithms of

the relaxation time constant are normal distributed

and the amplitudes are also following a 1/t law.

For a comparison with dynamic tests it is shown that
the imaginary part of the Young's modulus
(describing the phase shift between excitation and
answer of the material} is nearly constant within 2-3

orders of magnitude of frequency
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Stiffness is derived from the real part of the complex

Young's modulus

Damping results from phase shift as mentioned

before



If a three parameter solid is used the phase shift
would show a pronounced peak at a certain

frequency in the dynarriic test

The equation for the three parameter solid may be
expressed by the time constants for stress relaxation

and creep as followes

O + TRelaxation * A0 /dt = Eo*™(€ + Tcreep *de /dt)

The following figure shows a summary of different
viscoelastic models: hysteresis loop versus frequency

(strain rate)



Comparison of Maxwell, Kelvin model and three

parameter solid
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FFigure 7.6:5 A summary of the px“‘incipal features of viscoelastic models. Three stan-
dard viscoelastic models, namely, the Maxwell, Volgt and Kelvin models are shown
in the top row, and a mathematical model of the viscoelasticity of biological soft tissues
is shown in the third row. Figures in the second row show the relationships between
the hysteresis (M) and the logarithm of frequency (In f) of the three models immediately
above. The figure in the bottom row shows the general hystersis-log frequency relation-
ship of most living soft tissues, corresponding to the model shown in the third row.
FFor the soft tissue model the springs are nonlinear, and each Kelvin unit contributgs
a small bell-shaped curve, the sum of which is flat over a wide range of frequencies.



Further models to describe the nonlinear stress

strain behavior of bio tissues

A normal distribution of reference lengths for the
collagen fibers is assumed. The collagen fibers are for
simplicity seen as elastic elements. This would result

in

- anincreasing number of fibers engaged when
strain increases
- anonlinearily increasing stress as the tissue is

strained
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An improvement of the model is to assume the

collagen fibers themselves are viscoelastic.



As summary for the description of the
biomechanical behavior of soft connective tissues

we have

- elastic behavior modelled with successively
engaged spring elements (distribution of
reference lengths of collagen fibers)

- viscous contribution given by a set of 3
parameter solids with different time constants
for relaxation and creep

- for flat tissues there will be added a
distribution of angles of the collagen fibers to

the axis of load application




Desccription of the stress relaxation with

hereditary integrals

A strain controlled loading history is assumed

-

kst 't 't TIME
The function strain versus time is devided into

several steps. The stress taken at time instant t will
depend on all the time instants t'< t via the relaxation

function G(t):

5 ()= G(t)+ Ae1G(t-At)+ Ac2G(E-Ati-Atz)+
AesG(t- Ats- Atz- Atz)+.. |



In the limit At;->0 the hereditary integral results

o ()= fdt' G(t-t) * de /dt (t') + o (t=0)

The initial value of stress o{t=0) should be a state of
equilibrium, i.e. a pure elastic value after the

relaxation of previous steps of loading is completed.

Some simple cases for the relaxation function
G(t) = E + nexp(-t/t)

Without viscous component->Hooke element
o(t) = fdt’ E de /dt(t") = E*e (t)

and without elastic component at constant strain rate

de /dt=r=const
o(t) = fdt' nexp[(t'-t) /x] de /dt(t) =
nre*[1-exp(-t/7]

In the limit of large t the reponse of a Newton element

results, i.e. s=nrv=const at const strain rate.



Some examples of stress relaxation tests with

different bio materials

Stress relaxation tests carried out at successively

increased strain levels

Specimens of aorta, skin, and tendon were tested

FORCE (gm)

FORCE (gm)

A
b Fe
10 200 30 40 50
STRAIN (%) 3
B
Fo

TIME {min)

FIGURE I (A) Typical loading program used to determine elastic and viscous compeomenis. Specimen was
stramned at 5% increments and the force was allowed to relax at constant strain. (B) Typical timie course of

. { — .
relaxation at a set strain. Elastic Fr

action was defined as Fe/Fo.
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bservations was ten for most points plotted.



The value of stress at the begining of the relaxation
phase represents a sum of the elastic and viscous
component of stress; this component will diminish
and the elastic component will remain after
relaxation is completed. The final values of stress
plotted versus strain will give nearly the elastic stress
strain graph. This corresponds to an experiment with

the limit strain rate -> zero.
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The determination of stress relaxation time‘ constants
and the viscous (or vice versa the elastic) fraction
may help to characterize the biomechanical status of
tissue samples. One dont need to determine the cross
sectional area of samples for computing stresses.
Wether time constants need to be normalized nor a
quotient of forces. This quotient will, of course, be the

same for the corresponding quotient of stresses.

Elastic fraction =

Fe!astic/ Friscoelastic = O elastic/ O viscoelastic

The viscous fraction is then 100% minus the elastic

fraction.

Results of a study of Dupuytren’s disease (apparently
normal tissue and contracture bands) compared to
normal segments of palmar aponeurosis (from

patients with carpal tunnel syndrome)



MECHANICAL PROPERTIES OF PALMAR APONEUROSIS AGND DUYPUTREN'S 511

(a) A patient with marked Dupuytren’s contracture of the ring finger. Another contracture band merges into the skin causing s ‘funnel-like’
retraction. The index and middle fingers are not contracted. (b) The palmar aponeuresis of this hand is exposed by a Y-shaped incision.
One can easily distinguish the normal looking, {ransparent fibre bundles to the index {inger (ANPA), the thickened, opaque {ibre bundles
to the middle inger (THFB), the contracture bands (CB} to the ring finger and the contracture band to the skin over the little finger ray (CB
to the skin).




Normal tendons from the palmaris longus muscle (n =
14) and normal' palmar aponeuroses (n = 23) were
obtained during surgery of carpal tunnel syndrome (18
patients, 2 male and 16 f@male age range: 41-78
years). Apparently normal palmar aponeuroses (n = 9)
and contracture bands (n = 20) were obtained at
surgery of 16 male patients (age rangg: 42-70 years)
with Dupuytren’s disease. Generally, specimens of the

appérently normal areas were excised from the 2nd or
¢ S : : L

Figure 1. Palmar aponeurosis.1, including 2, a specimen
- of an apparently normal tissue from the 2nd finger, and
" 3,asample of a contracture band from the 4th finger.



The average time constant for stress relaxation
with specimens of palmar aponeurosis was

significantly higher for the contracture bands

ANPA g
CB




This was also observed for the viscous fraction, i.e.
the viscous stress component related to both the

elastic and viscous component of stress (initial value

at the begining of the relaxation phase)
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As to a study of non enzymatic glycation with rat tail
tendons (incubated in glucose in presence or absence

of an inhibitor we found for the viscous fraction
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The viscous fraction of samples from old animals is
not affected by glucose and also there is nothing to

inhibit. But there is a marked decrease of the viscous

i

fraction by glucose for the young animals, this

decrease is inhibited.



