Homework 1 for the course Advanced Mathematical Logic

Deadline: May 17, 2021

May 3, 2021

- 1. Let \mathcal{L} be any finite language and let \mathcal{M} be a finite \mathcal{L} -structure. Show that there is an \mathcal{L} -sentence φ such that $\mathcal{N} \models \varphi$ if and only if $\mathcal{N} \cong \mathcal{M}$.
- 2. Show that if T is an unsatisfiable \mathcal{L} -theory then every \mathcal{L} -sentence φ is a logical consequence of T.
- 3. Suppose that a theory T has arbitrarily large finite models. Show that T has an infinite model.

For the next exercise we will need several natural definitions. Let \mathcal{A} be an \mathcal{L} -structure, for some language \mathcal{L} . Define the language $\mathcal{L}_A = L \cup \{c_a : a \in A\}$, where A is the domain of \mathcal{A} . In other words, we augment \mathcal{L} by constant symbols for each element of \mathcal{A} . We interpret each c_a naturally as a in \mathcal{A} .

Define the *complete* (or *elementary*) diagram of \mathcal{A} to be the set of all first-order \mathcal{L}_A sentences true in \mathcal{A} , also written as $D^c(\mathcal{A}) = \text{Th}(\mathcal{A}, a)_{a \in A} = \text{Th}_A(\mathcal{A})$.

Define the atomic diagram D(A) of A to be the set of all atomic \mathcal{L}_A -sentences true in A and negations of atomic \mathcal{L}_A -sentences false in A.

If \mathcal{M}, \mathcal{N} are \mathcal{L} -structures, then an \mathcal{L} -embedding $j : \mathcal{M} \to \mathcal{N}$ is an elementary embedding if

$$\mathcal{M} \models \phi(a_1, \dots, a_n) \iff \mathcal{N} \models \phi(j(a_1), \dots, j(a_n))$$

for all \mathcal{L} -formulas $\phi(v_1, \ldots, v_n)$ and all $a_1, \ldots, a_n \in M$.

If \mathcal{M} is a substructure of \mathcal{N} , we say that it is an elementary substructure and write $\mathcal{M} \prec \mathcal{N}$, if the inclusion map is elementary. We also call \mathcal{N} an elementary extension of \mathcal{M} .

4. Let \mathcal{M}, \mathcal{N} be structures. Prove that:

- a) If $\mathcal{N} \models D(\mathcal{M})$ then \mathcal{M} is a substructure of \mathcal{N} .
- b) If $\mathcal{N} \models D^c(\mathcal{M})$ then \mathcal{M} is an elementary substructure of \mathcal{N} .
- 5. Let $\mathcal{L} = \{E\}$ where E is a binary relation symbol. Let T be the \mathcal{L} -theory of an equivalence relation with infinitely many infinite classes and no finite classes.
 - a) Write axioms for T.
 - b) How many models of T are there of cardinality \aleph_0 ? \aleph_1 ?
 - c) Is T complete?
- 6. Let $\mathcal{L} = \{E\}$ where E is a binary relation symbol. Which of the following theories (each satisfying the axioms stating that E is an equivalence relation) have quantifier elimination? Explain your answer.
 - a) E has infinitely many equivalence classes all of size 2 and no other equivalence classes.
 - b) E has infinitely many equivalence classes classes all of which are infinite and no other classes.
 - c) E has infinitely many equivalence classes of size 2, infinitely many classes of size 3, and every class has size 2 or 3.
 - d) E has exactly one equivalence class of size n for each $n < \omega$.