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• Literature: „Digital Design and Computer Architecture: RISC-V Edition“, by Sarah L. Harris and David Harris
• https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-

820064-3
• https://pages.hmc.edu/harris/ddca/ddcarv.html (Includes resources for students!)
• They also provide slideshows – the basis for ours! You can investigate extended version at their website.

• Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/qknpf/UTW_alma21139903990003336 

This book covers the basics of how to design a simple in-order scalar
processor pipeline in detail in hardware.
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Literature: „Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735

• https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
• Available at TU’s library: 

https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
issue, Superscalar, VLIW,  Multi-threading, …

Disclaimer: The book provides advanced concepts from real complex processor 
designs. We only study the concepts at a high level. For simplicity, the used 
pipeline models in this lecture are reduced strongly in complexity. 

But: We will have a look at some current RISC-V processor designs
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Content – Session 1  

• Short Recap: RISC-V Assembly

• Five-Stage In-order Scalar Processor Pipeline
• Pipelined Execution & Stages
• Data Hazards & Forwarding Paths
• Control Hazards

• Branch Prediction 
• Static Predictors: Taken / Not taken /BTFNT
• Branch Target Buffer
• Dynamic Predictors: 1 bit / 2 bit

• A look at a real RISC-V processor – CVA6

• A look at a real RISC-V processor – ESP32- C3

• Trap Handling

V1-1 ACA 4

Optional, not relevant for exam
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C1-1 In-order Scalar Processor Pipeline



Pipelined execution

• We break down instructions in sub-computations and place them into stages (s)

• We execute the instructions in a pipelined fashion („Fließband“)
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SLLI a2,a1,2 s1 s2 s3 s4 s5

ADD t1,t0,t2 s1 s2 s3 s4 s5

LW a0,0(a3) s1 s2 s3 s4 s5

SLLI a2,a1,2 SLL S2 s3

ADD t1,t0,t2 ADD s2

LW a0,0(a3) LW



Recap: Five-Stage In-order Scalar Processor Pipeline (Harris & Harris)
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Five-stage Pipeline - Data Signal Busses

• Data path scheme of the pipeline: 
• We omit all control signals.
• We are only interested how instructions can „flow“ through the pipeline (data signal busses) 
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• Stages:
Instruction Decode

(ID)
Writeback

(WB)
Memory Stage 

(MS)
Execute 

(EX)
Instuction Fetch

(IF)

Five-stage Pipeline - Stages
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Five-stage Pipeline - Data Signal Busses

• Data path scheme of the pipeline: 
• We omit all control signals.
• We are only interested how instructions can „flow“ through the pipeline (data signal busses) 
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Five-stage Pipeline – Sub-computations in the Stages

• Stages:
Instruction Decode

(ID)

Writeback
(WB)

Memory Stage
(MS)

Execute 
(EX)

Instuction Fetch
(IF)
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• Instructions do not require all subcomputations, e.g. ADD

Instruction Decode
(ID)

Writeback
(WB)

Memory Stage
(MS)

Execute 
(EX)

Instuction Fetch
(IF)

Five-stage Pipeline – Sub-computations in the Stages (Example ADD)
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Five-stage Pipeline – Example Program

• Example program 
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#int test1(int *x, int i) {return x[i]+i;} 

test1:

  SLLI a2,a1,2  # a2=i*4 

  ADD a2,a0,a2 # baseaddr+offset i*4

  LW a0,0(a2)  # a0 = x[i]   

  ADD a0,a0,a1 # a0= x[i] + i

  RET
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Five-stage Pipeline – Example Program – Cycle 1

Cycle 1
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PC

SLLI

PC+4

SLLI a2,a1,2 IF

ADD a2,a0,a2

LW a0,0(a2) 

ADD a0,a0,a1

RET

SLLI a2,a1,2
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Five-stage Pipeline – Example Program – Cycle 2

Cycle 1
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ADD

SLLI a2,a1,2 IF ID

ADD a2,a0,a2 IF

LW a0,0(a2) 

ADD a0,a0,a1

RET

ADD a2,a0,a2

Cycle 2

SLLI a2,a1,2

11 a1

12

2

This is x11 

PC

PC+4



Instruction
Memory

PC
M
U
x

+4

IF/ID

Register 
File

DI

Extend

ID/EX

A
L

U

M
U
x

A
D

D

EX/MS

Data
Memory

MS/WB

M
U
X

Five-stage Pipeline – Example Program – Cycle 3

Cycle 1
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LW

SLLI a2,a1,2 IF ID EX

ADD a2,a0,a2 IF ID

LW a0,0(a2) IF

ADD a0,a0,a1

RET

LW a0,0(a2) 

Cycle 2

ADD a2,a0,a2

10

Cycle 3

SLLI a2,a1,2

12

12

a1

2
a1<<2

Data hazard: a2 not yet updated by SLLI -> Stall ADD because it
cannot leave ID stage

12

PC

PC+4
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Five-stage Pipeline – Example Program – Cycle 4

Cycle 1
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LW

SLLI a2,a1,2 IF ID EX MS

ADD a2,a0,a2 IF ID stall

LW a0,0(a2) IF stall

ADD a0,a0,a1

RET

LW a0,0(a2) 
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There is no instruction in the execute
stage -> Insert a so-called Bubble (NOP)
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PC+4

Stalls backpropagate in the pipeline to
following instructions
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Five-stage Pipeline – Example Program – Cycle 5

Cycle 1
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LW

SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID stall stall

LW a0,0(a2) IF stall stall

ADD a0,a0,a1

RET

LW a0,0(a2) 

Cycle 2

ADD a2,a0,a2

Cycle 3
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Five-stage Pipeline with Forwarding Path 

• Data hazards can be effectively mitigated using a forwarding path

• While named „forwarding path“ the signal buses go „back“ in the pipeline 
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Forwarding 
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SLLI a2,a1,2 IF ID

ADD a2,a0,a2 IF

LW a0,0(a2) 

ADD a0,a0,a1

RET

Five-stage Pipeline with Forwarding Path – Example Program – Cycle 2

Cycle 1
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ADD

ADD a2,a0,a2

Cycle 2
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SLLI a2,a1,2 IF ID EX

ADD a2,a0,a2 IF ID

LW a0,0(a2) IF

ADD a0,a0,a1

RET

Five-stage Pipeline with Forwarding Path – Example Program – Cycle 3

Cycle 1
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Five-stage Pipeline with Forwarding Path – Example Program – Cycle 4

Cycle 1
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Five-stage Pipeline with Forwarding Path – Example Program – Cycle 5

Cycle 1

V1-1 ACA 23

RET

SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS

LW a0,0(a2) IF ID EX

ADD a0,a0,a1 IF ID

RET IF

ADD a0,a0,a1

Cycle 2

LW a0,0(a2) 

10

Cycle 3

SLLI a2,a1,2

10

a1<<2

12

Cycle 4

0

10

ADD a2,a0,a2

a0+
a1<<2

a1

Cycle 5

RET

11

a0+
a1<<2

12

PC

PC+4



Instruction
Memory

PC
M
U
x

+4

IF/ID

Register 
File

DI

Extend

ID/EX

A
L

U

A
D

D

EX/MS

Data
Memory

MS/WB

M
U
XM

U
x

M
U
x

M
U
x

Five-stage Pipeline with Forwarding Path – Example Program – Cycle 6

Cycle 1
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RET

SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS

ADD a0,a0,a1 IF ID stall

RET IF stall
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Five-stage Pipeline with Forwarding Path and JR

• RET is a pseudo-instruction for jump register JR ra, which is a pseudo instruction for JALR x0,ra,0

• The Harris pipeline does not support to load a register value into PC

• We need another bus for implementing the JR instruction
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JRTA (JR Branch Target Address)
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Five-stage Pipeline with Forwarding Path – Example Program – Cycle 7

Cycle 1
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SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS WB

ADD a0,a0,a1 IF ID stall EX

RET IF stall ID

ADD a0,a0,a1
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Five-stage Pipeline with Forwarding Path and JR - Example Program – Cycle 8 

Cycle 1
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SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS WB

ADD a0,a0,a1 IF ID stall EX

RET IF stall ID

ADD a0,a0,a1

Cycle 2 Cycle 3 Cycle 4
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Five-stage Pipeline with Forwarding Path and JR - Example Program – Cycle 9

Cycle 1
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SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS WB

ADD a0,a0,a1 IF ID stall EX

RET IF stall ID

ADD a0,a0,a1

Cycle 2 Cycle 3 Cycle 4

PC=ra

Cycle 5

RET

Cycle 6

10
0

DMEM+a1

Cycle 7

MS WB

EX MS

Cycle 8

Instr 1

PC+4

Instr 1

Cycle 9

Bubble Bubble

0

PC+4

RET Pseudo instr for
JALR x0,ra,0
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Five-stage Pipeline with Forwarding Path and JR - Example Program – Cycle 10

Cycle 1
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SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS WB

ADD a0,a0,a1 IF ID stall EX

RET IF stall ID

Cycle 2 Cycle 3 Cycle 4

PC

Cycle 5

RET

Cycle 6 Cycle 7

MS WB

EX MS WB

Cycle 8

Instr 2

PC+4

Instr 1

Cycle 9

Bubble
Bubble

0

PC+4

Instr 2

Cycle 10

WB on x0 has
no effect, 
always x0=0

RET Pseudo instr for
JALR x0,ra,0
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C1-2 Data Hazards



Five-stage Pipeline with Forwarding Path and JR - Pipeline Execution Diagram

• With forwarding path: Possible data hazard after load with penalty of 1 clock cycle (cc)
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SLLI a2,a1,2

ADD a2,a0,a2

LW a0,0(a2) 

ADD a0,a0,a1

RET

ID A
L

UIF MS WB

ID A
L
UIF MS WB

ID A
L
UIF MS WB

ID A
L
UIF MS WBBubble

ID A
L
UIF MS WB

a0

Bubble

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

a2

a2

1CC penalty

RAW dep.

RAW dep.

RAW dep.

Read After Write (RAW) dependency or „true dependency“: 
One instructions reads operand that is written as result of previous instructions.
Data hazard prevents the next instruction in the instruction stream from executing during its designated clock cycle.

RAW data hazard
after load instruction



Compiler Instruction Scheduling to Avoid RAW Data Hazards after Load Instructions

• Compiler often can move instructions to avoid RAW data hazards after loads

• Program order must not change (See next session)

➢Rarely data hazard penalty observed in five-stage pipeline with forwarding paths

➢Example:
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1CC penalty

vec_add_for:

  LW t1,0(a0)    # t1 = a[i]

  LW t2,0(a1)    # t2 = b[i]

  

  ADD t1,t1,t2   # t1 = a[i] + b[i]

  SW t1,0(a2)    # c[i] = t1

  ADDI a0,a0,4   #base address + 4 

  ADDI a1,a1,4   #base address + 4 

  ADDI a2,a2,4   #base address + 4 

  ADDI t0,t0,1   # i++

  (…)

vec_add_for:

  LW t1,0(a0)    # t1 = a[i]

  LW t2,0(a1)    # t2 = b[i]

  ADDI t0,t0,1   # i++

  ADD t1,t1,t2   # t1 = a[i] + b[i]

  SW t1,0(a2)    # c[i] = t1

  ADDI a0,a0,4   #base address + 4 

  ADDI a1,a1,4   #base address + 4 

  ADDI a2,a2,4   #base address + 4 

    (…)

RAW
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C1-3 Control Hazards



Control Hazards

• Control hazards arise from instructions that change the PC

• When the flow of instruction addresses is not sequential
• Unconditional branches (jal, jalr)

• Conditional branches (beq, bne, ...) 

• Exceptions

• Possible approaches
• Stall (impacts CPI)

• Move decision point as early in the pipeline as possible (Extra HW)

• Predict and hope for the best!

• Delay decision (requires compiler support)

• Control hazards occur less frequently than data hazards, 
but there is nothing as effective against control hazards as forwarding is for data hazards
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Control Hazards – Conditional Branches

• Branch determines flow of control
• Fetching next instruction depends on branch outcome (Branch taken/Not taken)

• Next PC is either PC+4 (branch not taken) or PC+imm<<1 (branch taken)

Branch taken/not taken
decision computed in ALU

Branch not taken PC 
computed in IF

Branch target address (BTA) for
taken computed in EXEV1-1 ACA 35



Handling Control Hazards: Stall on Branch

• Conservative Approach: Wait until branch outcome determined before fetching next 
instruction

• Reducing Branch Delay: 

• E.g. Move Branch Decision to ID Stage: Extra hardware so that we can test registers, 

calculate the branch address, and update the PC during the second stage of the pipeline

Conservative approach: Stall immediately after fetching a branch, wait 
until outcome of branch is known and fetch branch address.
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Handling Control Hazards: Conservative Approach (Branch not Taken)

• Control hazard (branch not taken): stall pipeline until decision known

• Branch penalty: 2 clock cycles
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40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56
:

L1: 

LW a1,4(a4)

ID A
L

UIF MS WB

ID A
L
UIF MS WB

ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

Branch not taken

ID A
L
UIF MS WB

ID A
L
UIF MS WB

Bubble
M
U
x

Pc=pc+4

Bubble



Handling Control Hazards: Conservative Approach (Branch Taken)

• Control hazard (branch taken): stall pipeline until decision and branch target known

• Branch penalty: 2 clock cycles
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40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56 L1: 

LW a1,4(a4)

ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

Branch 
taken

ID A
L
UIF MS WB

A
D

D

pc=pc+8<<1=40 + 16 =56 

M
U
x

Bubble Bubble



Reducing Branch Delay  - Move Branch Decision to ID Stage 

• A lot of branches rely on simple tests (e.g., 
equality)

• Add hardware to determine outcome of branch in 
the ID stage
→ Reduce cost of the taken branch

• Subcomputation: Compute Branch Target Address in ID 
• Move target address adder from EX to ID

• PC and immediate are already in IF/ID pipeline register

• Subcomputation: Comparison
• Additional register comparator (done before in EX via the 

ALU)

• Additional Forwarding and Hazard Handling

IF/ID

Register 
File

(RF)

DI

Extend (E)

ID/EX

A
D

D
C

M
P

PC

Branch Target Address (BTA)

Branch Taken
/Not Taken

ID
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Reducing Branch Delay  - Move Branch Decision to ID Stage – Branch Taken

• Target address adder in ID, Extra comparator to get branch decision in ID

• Branch penalty: Only one clock cycle

V1-1 ACA

40

40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56 L1: 

LW a1,4(a4)

R
F A

L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

Branch 
taken

ID A
L
UIF MS WB

PC=PC+8<<1=40 + 16 =56 
C

M
P

A
D

D

M
U
x

E

Bubble
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C1-4 Static Branch Prediction



Motivation: Branch Prediction

• Longer pipelines can’t readily determine branch outcome early
• Branch penalty becomes unacceptable

• Predict outcome of branch
• Only stall if prediction is wrong

• Simple Static Branch Prediction Schemes
➢Always not Taken: Always predict branches not taken – Also called fall through (PC=PC+4)

➢Always taken: Always predict branches taken
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Always Not Taken – Correct Prediction

• Prediction correct (Branch not taken)

• Branch penalty: 0 clock cycles
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40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56 L1:

LW a1,4(a4)

ID A
L

UIF MS WB

ID A
L
UIF MS WB

ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

ID A
L
UIF MS WB

ID A
L
UIF MS WB

M
U
x

predict pc=pc+4



Branch taken

IDIF

IF

Always not Taken – Incorrect Prediction (1/2)

• Prediction incorrect (Branch not taken) – Flush instructions from pipeline

• Branch penalty: 2 clock cycles
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40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56 L1:

LW a1,4(a4)

ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

A
D

D

M
U
x

predict branch not taken
pc=pc+4



Branch taken

RFIF

IF

Always not Taken – Incorrect Prediction (2/2)

• Prediction incorrect (Branch not taken) – Flush instructions from pipeline

• Branch penalty: 2 clock cycles

V1-1 ACA 45

40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56 L1:

LW a1,4(a4)

ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

ID A
L
UIF MS WB

A
D

D

M
U
x

Flush

Flush

pc=pc+8<<1=40 + 16 =56 

Bubble Bubble Bubble

Bubble Bubble BubbleBubble



Branch taken

Always Taken – Correct Prediction

• Prediction (Branch taken) –> Branch target address is computed in EX stage
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56 BEQ a1,a2,L2

40 L2:

AND a2,a0,a2

44 OR a0,a2,t1 

ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7

A
D

Dpredict branch taken

No branch target
address in CC1

Branch target address



Branch Target Buffer (BTB)

• Stores the Branch Target Address (BTA) for a certain branch (e.g. identified by its own 
Branch Instruction Address (BTI))

• Content Addressable Memory (Costly for entries) 
• Update policy (similar to caches)

• Entries entered in pairs (BIA, BTA)

• entry not available for first branch execution

• Lookup via PC
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Branch Target Buffer (BTB)

Branch Instruction Address (BIA) Branch Target Address (BTA)

Lookup
PC

Update

BIA

BTA

Speculative taken
BTA

Valid BTB Entry (1), 
No Valid BTB Entry (0) 

Branch in EX 



Five-stage Pipeline with Branch Target Buffer

• Only for branches and PC-relative Jumps J, JAL (not JALR, JR, RET)
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BTB

56 BEQ a1,a2,L2

40 L2:

AND a2,a0,a2

44 OR a0,a2,t1 

Branch taken

IDIF

IF

Always Taken – Correct Prediction (BTB has entry)

• Prediction (Branch taken) - BTA via Branch Target Buffer (BTB)

• Branch penalty: 0 clock cycles
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ID A
L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7

A
D

D
M
U
x

predict branch taken

BIA BTA

56 40

… …

First execution of branch we cannot do a branch taken prediction.
Entry was written to BTB on earlier execution of branch with (56,40)

Lookup PC=56

Branch Target = 40
BTB



BTFNT: Enhancing Static Branch Prediction

Typical Statistics 60% to 70% of branches are taken

Example: 

• 60% are backward branches (negative offset) 
• Loops: Usual more than one iteration (branch will be taken more than once) – taken ~90%
• Typical behavior: T T T T…T NT  
• About 90% of backward branches are taken

• 40% are forward branches (positive offset)  
• If-(Else) Constructs: Branches go forward (jump over code)
• About ~20% of forward branches are taken

• Always not taken: (0,6 . 0,9) + (0,4 . 0,2) = 62% mispredictions 

• Always taken: (0,6 . 0,1) + (0,4 . 0,8) = 38% mispredictions

• Enhanced Static Branch Prediction: Backward Taken, Forward Not Taken (BTFNT)
• Predict forward branches not taken:  ~10% mispredictions 
• Predict backward branches taken: ~20% mispredictions
• Overall: (0,6 . 0,1) + (0,4 . 0,2) = 14% mispredictions
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Effect of Misprediction Rate and Branch Penalty on CPI 

Program with: 
• Relative number of branch instructions (branch rate b) 
• The branch cycle penalty p for mispredictions
• The branch misprediction rate m

• CPI: Cycles per Instructions (data hazards rare so base CPI=1) 

Five stage pipeline: b=15%, p=2
Always not taken: m=62% -> CPI = 1,186
Always taken:        m=38% -> CPI = 1,114

BTFNT:                    m= 14% -> CPI = 1,042

In longer pipelines, branch penalty is more significant

CPI= 𝟏 + 𝒃 ∙ 𝒑 ∙ 𝒎

Longer pipeline: b=15%, p=5
Always not taken: m=62% -> CPI = 1,465
Always taken:        m=38% -> CPI = 1,285
 
BTFNT:                    m= 14% -> CPI = 1,105
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C1-5 Dynamic Branch Prediction



Dynamic Branch Prediction

• In longer pipelines, branch penalty is more significant

• Branch prediction buffer (aka branch history table (BHT)) for dynamic prediction
• Stores last outcome (taken/not taken)

• To execute a branch
➢ Check table, expect the same outcome

➢ Start fetching from fall-through (not taken) or target (taken)

➢ In case of misprediction, flush pipeline and flip prediction
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Dynamic Branch Prediction: 1-Bit Predictor 

• Single-Bit / 1-Bit / Last-Time Predictor
• Indicates which direction the branch went last time it executed

• PNT: Predict NT (Bit=0): Fetch the instruction from (PC+4) 

• PT: Predict T (Bit=1): Get target address from the BTB

Taken

Not Taken

TakenNot Taken
Predict

Not Taken

(0)

Predict

Taken

(1)
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Global Predictor 

• One single Branch History Entry for all branches to save last decision

• Branch reaches IF stage
• Indexed Lookup with PC in BTB 

• No valid BTB entry 
–> predict NT (PNT)
-> Supply PC=PC+4

• Valid BTB entry 
-> Global Predictor result based on BHT: PT/PNT
-> Supply PC=BTA/PC+4

• Branch reaches EX stage
• Indexed Lookup with PC in BTB 

-> No BTB entry -> Update BTB (create entry)
-> Eventually only in case that branch is taken

• Update Global Branch History Entry
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Global Branch
History Entry

Branch Target Buffer (BTB)

BIA BTA

BIA1 BTA1

… …

Lookup Update
PC

BIA

BTA

Branch in EX PT/PNT



Local Predictor 

• Branch History Table (BHT): One entry for each BTB entry

• Branch in IF stage
• Indexed Lookup with PC in BTB 

• No valid BTB entry 
–> predict NT
-> Supply PC=PC+4

• Valid BTB entry 
-> Local BHT Predictor result T/NT
-> Supply PC=BTA/PC+4

• Branch in EX stage
• Indexed Lookup with BIA in BTB 

• No BTB entry -> Update BTB (create entry), initialize BHB with T/NT

• BTB entry: Update Local BHT with T/NT
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Branch Target Buffer (BTB)

BIA BTA BHT

BIA1 BTA1 PT/PNT

… …

Lookup Update
PC

BIA

BTA

Branch in EX 

Branch T/NT



Example Nested Loop Program - Static Branch Prediction

• Example Nested Loop Program:
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for (x = 1024; x > 0; x--)
for (y = 4; y > 0; y--)

    do_something(x,y);

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop

Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

Static Branch Prediction: 
➢ Always not taken: ~80% Mispredictions
➢ Always taken: ~20% Mispredictions
➢ BTFNT (same as always taken): ~20% Mispredictions



Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

N=No, Y=Yes
Misprediction rate:

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y

BTB entry L11 Y

Global BHT PNT

Prediction NT

Direction -

Correct? -

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop



Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

N=No, Y=Yes
Misprediction rate:

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y Y Y Y Y Y

BTB entry L11 Y Y Y Y Y Y

Global BHT PNT PNT PT PT PT PNT

Prediction NT NT T T T NT

Direction - T T T NT T

Correct? - N Y Y N N

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop



Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

N=No, Y=Yes
Misprediction rate: ~40% (2 out of five)

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y Y Y Y Y Y Y Y Y Y Y … …

BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y … …

Global BHT PNT PNT PT PT PT PNT PT PT PT PT PNT … …

Prediction NT NT T T T NT T T T T NT … …

Direction - T T T NT T T T T NT T … …

Correct? - N Y Y N N Y Y Y N N … …

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop
Repeats



Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

Misprediction rate:

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y

BTB entry L11 Y

BHT L9 PNT

BHT L11 PNT

Prediction PNT

Direction -

Correct? -

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop



Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

Misprediction rate: ~40% (2 out of five)

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y Y Y Y Y Y

BTB entry L11 Y Y Y Y Y Y

BHT L9 PNT PNT PT PT PT PNT

BHT L11 PNT PNT PNT PNT PNT PNT

Prediction PNT NT T T T NT

Direction - T T T NT T

Correct? - N Y Y N N

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop



Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

Misprediction rate: ~40% (2 out of five)

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y Y Y Y Y Y Y Y Y Y Y … …

BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y … …

BHT L9 PNT PNT PT PT PT PNT PNT PT PT PT PNT … …

BHT L11 PNT PNT PNT PNT PNT PNT PT PT PT PT PT … …

Prediction PNT NT T T T NT NT T T T T … …

Direction - T T T NT T T T T NT T … …

Correct? - N Y Y N N N Y Y N Y … …

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop
Repeats



Improving the 1-Bit Predictor 

• Problem: A 1-bit predictor changes its prediction from T→NT or NT→T too quickly 
• Even though the branch may be mostly taken or mostly not taken

• Solution Idea: Add hysteresis to the predictor so that prediction does not change on a 
single different outcome
• Use two bits to track the history of predictions for a branch instead of a single bit 

• Can have 2 states for T or NT instead of 1 state for each
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• Prediction does not change on a single misprediction

• 2-Bit entry in BHT => Four States [2 for NT, 2 for T]
• PSNT: Strongly Not Taken (00), PWNT: Weakly Not Taken (01)

• PWT: Weakly Taken (10),  PST: Strongly Taken (11)

• 2-Bit Counter
• Increment by 1 if branch taken, otherwise decrement by 1

• Saturate the counter value at 0 and 3

• A prediction must be wrong twice (consecutively) before the prediction bit is changed

TakenNot Taken

Not Taken

Taken Taken Taken

Not Taken Not Taken

Predict

Strongly Not 

Taken (00)

Predict

Strongly 

Taken (11)

Predict

Weakly Not 

Taken (01)

Predict

Weakly 

Taken (10)

2-Bit Predictor
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Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

N=No, Y=Yes
Misprediction rate:

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y

BTB entry L11 Y

Global BHT PWNT

Prediction NT

Direction -

Correct? -

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop



Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

• Example Nested Loop Program:

V1-1 ACA 67

Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

N=No, Y=Yes
Misprediction rate:

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y Y Y Y Y

BTB entry L11 Y Y Y Y Y

Global BHT PWNT PWNT PWT PST PST

Prediction NT NT T T T

Direction - T T T NT

Correct? - N Y Y N

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloop



Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

• Example Nested Loop Program:
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Inner Loop (L09 Branch Pattern): (T-T-T-NT)  
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T….

N=No, Y=Yes
Misprediction rate: ~20% (1 out of five)

Branch Start L09 L09 L09 L09 L11 L09 L09 L09 L09 L11 L09 L09

BTB entry L09 Y Y Y Y Y Y Y Y Y Y Y … …

BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y … …

Global BHT PWNT PWNT PWT PST PST PWT PST PST PST PST PWT … …

Prediction NT NT T T T T T T T T T … …

Direction - T T T NT T T T T NT T … …

Correct? - N Y Y N Y Y Y Y N Y … …

01:  li s0, 1024

02: xloop: 

03:   li s1, 4

04: yloop: 

05:  mv a0, s0

06:  mv a1, s1

07:  jal ra, do_something

08:  addi s1, s1, -1

09:  bnez s1, yloop

10:  addi s0, s0, -1

11:  bnez s0, xloopRepeats



2-bit Predictor: Limits

• Still penalty on regular patterns: 
• Recap: Inner loop iterations: T-T-T-NT
• Branches often show such regular patterns

• Can we incorporate this regularity? -> Use a history

• Two-level-history adaptive branch predictors (many variants *) 
• Learn the history and loop pattern T-T-T-NT 
• They usually can have higher accuracy
• This is still 90ties technology *

• Modern branch predictors for complex processors
• Based on neural networks 
• Learn patterns, history and interrelation between branches
• Can achieve very small misprediction rates
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*Tse-Yu Yeh and Y. N. Patt, "A Comparison Of Dynamic Branch Predictors That Use 
Two Levels Of Branch History," Proceedings of the 20th Annual International 
Symposium on Computer Architecture, San Diego, CA, USA, 1993 



A Look at a Real Processor – CVA6

“CVA6 is a RISC-V compatible application processor core that can be configured as a 32- or 64-bit core: 
CV32A6 and CV64A6”.

--- CVA& User Manual 

https://docs.openhwgroup.org/projects/cva6-user-manual/01_cva6_user/Introduction.html

Developed initially as part of PULP project (ETH Zürich), now maintained by the OpenHW Group

Optional, not relevant for exam



CVA6 Branch Predictor

“Branch Predict: If the BHT and BTB predict a branch on a 
certain PC, PC Gen sets the next PC to the predicted 
address and also informs the IF stage that it performed a 
prediction on the PC. (…)”

„All branch prediction data structures reside in a single 
register-file like data structure. It is indexed with the 
appropriate number of bits from the PC and contains 
information about the predicted target address as well as 
the outcome of a configurable-width saturation counter 
(two by default). The prediction result is used in the 
subsequent stage to jump (or not).”
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-- CVA6 Design Document (deprecated) – Branch Prediction (05.04.2024)
https://docs.openhwgroup.org/projects/cva6-user-manual/03_cva6_design/pcgen_stage.html

BHTBTABIA



A Look at a Real Processor – ESP32-C3

ESP32-C3 Technical Reference Manual 

https://www.espressif.com/sites/default/files/documentation/esp32-
c3_technical_reference_manual_en.pdf#riscvcpu

Optional, not relevant for exam



Scalar in-order processors with five or less pipeline stages are used in 
low-cost micro-controller-type devices.

„ESP-RISC-V CPU is a 32-bit core based upon RISC-V ISA comprising base
integer (I), multiplication/division (M) and compressed (C) standard
extensions. The core has 4-stage, in-order, scalar pipeline optimized for
area, power and performance. (…)“ 

-- ESP32-C3 Technical Reference Manual 
https://www.espressif.com/sites/default/files/documentation/esp32-
c3_technical_reference_manual_en.pdf#riscvcpu

Low Power Mikro-Controller – ESP32-C3
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Trap Handling

It‘s a 
trap!

Optional, not relevant for exam



Terminology

• Terminology is used often different for different architectures (x86,ARM, RISCV,…).

• For RISC-V:

• “We use the term exception to refer to an unusual condition occurring at run time 
associated with an instruction in the current RISC-V hart.”

• “We use the term interrupt to refer to an external asynchronous event that may cause a 
RISC-V hart to experience an unexpected transfer of control.”

• “We use the term trap to refer to the transfer of control to a trap handler caused by 
either an exception or an interrupt.”

—- Volume 1, Unprivileged Specification version 20191213: 
https://riscv.org/technical/specifications/
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Trap Handling

• For a function call the compiler assures that the function call standard of the ABI 
is kept

• An exception and interrupt can happen during execution of a function ceither due 
to an instruction (e.g. memory access error) or due to an external event (device 
raises an interrupt)

• For a trap, we are in the middle of execution of a function and must save the 
context of the current execution before calling a trap handler to handle the 
exception or interrupt  

• RISC-V has certain so-called Control Status Registers (CSRs) to identify the cause 
of a trap
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Trap Handling Basics

• Trap is detected.

• Change mode

• Jump to trap handler

• Trap handler saves context

• Trap handler identifies cause (exception/interrupt)

• Corresponding exception/interrupt handler is called
• Some handlers do not return if they can not recover from an exception

• Trap handler restores context

• Change mode

• Jump back to program execution
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Causes for Traps

• —- Volume 2, Privileged Specification version 20211203: 
https://riscv.org/technical/specifications/

Word trap is mentioned 301 times

• Different architectures treat exceptions differently e.g. 
division by zero is not raising an exception in RISC-V
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https://riscv.org/technical/specifications/


Precise vs. Imprecise traps

• Precise traps: 
• Associated with a certain instruction (e.g. illegal instruction exception)

• Easier to debug

• Imprecise trap: 
• Not associated with an instruction

• Hard to debug

• OR: Pipelined execution makes it hard to associate the exception with an instruction
(This is an issue with certain pipelines, which we see in next lecture)
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Summary



Where we are

• Five-Stage Scalar In-order Processor Pipeline
• Forwarding to mitigate data hazards

• Branch prediction to mitigate control hazards

• Upcoming Lecture: Multi-cycle Functional Units (DIV/MUL) and Out-of-Order (OoO)

V1-1 ACA 81

WBIF EXID

• In-order pipeline
• Five Stages
• Scalar pipeline: CPI >= 1

MS



Thank you for your attention!
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