Y Informatics

Advanced Computer Architecture

C1 - Scalar Processor Pipelines and Branch Prediction

Daniel Mueller-Gritschneder

Sources

Digital Design and This book covers the basics of how to design a simple in-order scalar

Computer Architecture processor pipeline in detail in hardware.
RISC-V Edition

M(Sarah L Harris

David Harris

* Literature: , Digital Design and Computer Architecture: RISC-V Edition“, by Sarah L. Harris and David Harris
* https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-
820064-3
* https://pages.hmc.edu/harris/ddca/ddcarv.html (Includes resources for students!)
* They also provide slideshows — the basis for ours! You can investigate extended version at their website.
* Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/gknpf/UTW alma21139903990003336

Vi1-1 ACA 2

https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://pages.hmc.edu/harris/ddca/ddcarv.html
https://pages.hmc.edu/harris/ddca/ddcarv.html
https://catalogplus.tuwien.at/permalink/f/qknpf/UTW_alma21139903990003336

Sources

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
COMPUTER | issue, Superscalar, VLIW, Multi-threading, ...
ARCHITECTURE
o A Quawtiative Apprack ; Disclaimer: The book provides advanced concepts from real complex processor
‘ designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

Literature: ,Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735
* https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
* Available at TU’s library:
https://catalogplus.tuwien.at/permalink/f/8agg25/TN cdi askewsholts vlebooks 9780123838735

Vi1-1 ACA 3

https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

Content — Session 1

Short Recap: RISC-V Assembly

Five-Stage In-order Scalar Processor Pipeline
* Pipelined Execution & Stages
* Data Hazards & Forwarding Paths
e Control Hazards

Branch Prediction
 Static Predictors: Taken / Not taken /BTFNT
* Branch Target Buffer
* Dynamic Predictors: 1 bit / 2 bit

A look at a real RISC-V processor — CVA6 Optional, not relevant for exam

A look at a real RISC-V processor — ESP32- C3
Trap Handling

Vi1-1 ACA 4

C1-1 In-order Scalar Processor Pipeline

V1-1 ACA

Pipelined execution

* We break down instructions in sub-computations and place them into stages (s)

* We execute the instructions in a pipelined fashion (,,FlielSband“)

SLLI a2,al,2 SLL
LW 20,0 (a3)

SLLI a2,al,2
ADD t1,t0,t2

LW a0,0(a3)

Vi1-1 ACA 6

Recap: Five-Stage In-order Scalar Processor Pipeline (Harris & Harris)

Vi1-1

PCSrcE @ ZeroE
CLK CLK CLK
RegWriteD 67 RegWriteE %7 RegWriteM 67 RegWriteW
C%nt_';OI ResultSrcD+,o ResultSrcEj ResultSrcM1o ResultércW1 0
ni
MemWriteD MemWriteE 0 MemWriteM
JumpD JumpE
60 BranchD BranchE
I ALUControlDs, ALUControlEz
- functd " UsreD ALUSICE
funct7s ImmSrcDy.o ||
CLK CLK — CLK
CLK @ L |
19:15 WE3 RD1E SrcAE WE
-F por|ecE] o =0 U InstrD A1 RD1 'g
1 . j—lo — >:) ALUResultM A ro M [ReadDataw 'IE&J
Instruction 20| 5o RD2 RD2E [~ R = 10
Memory A3 o SrcBE Data
10 Memory
i -1 WriteDataE WriteDataM
WD3 Reg.lster ritgDatal riteDatal WD
File
PCD pce | '\+I
19:15 Rs1D Rs1E l)
24:20 Rs2D Rs2E
11:7 RdD RdE RdM _RdW
4 — ExtlmmD Extimmg
317 Extend
PCPlus4F - PCPlus4D| « PCPlus4E PCPlus4M
me) S e el PCPlus4W
PCTargetE
ResultW
wi w
3|8
© © 5
@ B | T S| e
Hazard Unit

ACA

Five-stage Pipeline - Data Signal Busses

e Data path scheme of the pipeline:
* We omit all control signals.
* We are only interested how instructions can ,,flow” through the pipeline (data signal busses)

v

cC

PC

__

Instruction
Memory

v

v

+4

v

\ 4

IF/ID

\ 4

. > \/ > \/ —
> » g M
DI . 3 [N
Register o M < >
— File — g Data X
> U —>
> >y Memory
~ —
| ID/EX g
> > EX/MS —»| MS/WB
" Extend g > N
R (o)
> —

v

\ 4

\ 4

Vi1-1

ACA

Five-stage Pipeline - Stages

* Stages:

Instuction Fetch

(IF)

Memory Stage
(MS)

- Instruction .
Memory Register
File

Extend

v

\ 4
v

Vi1-1 ACA 9

Five-stage Pipeline - Data Signal Busses

e Data path scheme of the pipeline:
* We omit all control signals.

* We are only interested how instructions can ,,flow” through the pipeline (data signal busses)

Instruction memory

Instr. field for Register File
Data memory data memory content
Address = PC content for the address PC: reg address of content for e at the address
IMEMIPC] operands operands
— ~ | Instruction X‘ » DI l' . i =2
PC > > Register =
M
emory R File — > < Data
> - Memory
- —
| [,

ID/EX

v

\ 4

MS/WB

Instr field for
result reg.

Extend

Store
\alue

Next PC+4 (no

Branch target
address (BTA) —

Write result Extended
back to RF Immediate

jump or
branching)

v

Vi1-1 ACA 10

Five-stage Pipeline — Sub-computations in the Stages

* Stages:

Instuction Fetch

(IF)

Sub- Fetch Instruction

computation [EAGARES

— Instruction
Memory

DI

\ 4

Register
File

A 4

Extend

v Vv

Execute
(EX)

ALU:
Compute Result
Compute Address
Comparison (Branch Memory Stage
Taken/Not Taken) (MS)
Compute JR Branch Targe

Address Comp. Read Data Memory

ADD: Write Data memory
Compute Branch Target

Address

N

N/

ID/EX

v

v

\ 4
v

3 4

xcz

Vi1-1

ACA

11

Five-stage Pipeline — Sub-computations in the Stages (Example ADD)

* |Instructions do not require all subcomputations, e.g. ADD

Instuction Fetch

(IF)

Execute Memory Stage
(EX) (MS)

Sub- Fetch Instruction
Computation BN\%aJe

For ADD

Compute Result

\ 4

Instruction

Memory Register

File

»l Extend

v

\ 4

v

Vi1-1 ACA 12

Five-stage Pipeline — Example Program

 Example program

#int testl(int *x, int i) {return x[i]+i;}
testl:

SLLI a2,al,2 # a2=i*4

ADD a2,a0,a2 # baseaddr+offset i*4

LW a0,0(a2) # a0 = x[i]

ADD a0,a0,al # a0= x[i] + 1

RET
(M i R > ! -
gt pC - Instruction > » DI Register -
Memory - > M <
X —»1 File U
> > x
IF/ID | ID/EX g
> >
> +4
" Extend > > N
R (o)
> > — <

EX/MS

v

v

Data
Memory

v

\ 4

MS/WB

4

xcZ

Vi1-1 ACA

13

Five-stage Pipeline — Example Program — Cycle 1

Cycle 1
SLLI a2,al,2 “
ADD a2,a0,a2
LW a0,0(a2)

ADD a0,al0,al

RET
SLLI a2,al,2
m ‘ N4 AV
> » M
> M bC | Instruction » DI Regist 3 - —
U g g egister - >
Memory R : . > M < Data X
X > File U —
> >y Memory
~ —
m_ IF/ID | ID/EX -
> > EX/MS —| MS/WB
> +4
" Extend g > N
R (o)
> > — <

Vi1-1

ACA

Five-stage Pipeline — Example Program — Cycle 2

Cyclel Cycle?2

SLLI a2,al,?2 “
ADD a2,a0,a2 “

LW a0,0(a2)

ADD a0,a0,al This is x11
RET /
ADD a2,a0,a2 SLLI a2,al,2
ADD R R S N (A N
> M o | Instruction R » DI Regist 3 L sy
U "1 Memory g egister ol M < >
» X
X — Flle — U Data —
> >y Memory
~ —
m_ IF/ID | EX -
> » EX/MS —| MS/WB
> +4 |
" Extend > * N
_)
> > — <

Vi1-1 ACA 15

Five-stage Pipeline — Example Program — Cycle 3

Cycle1l Cycle2 Cycle3

siit a2,a1,2 [N X
ADD a2,a0,a2 “
LW a0,0(a2) “

ADD a0,a0,al Data hazard: a2 not yet updated by SLLI -> Stall ADD because it
RET cannot leave ID stage
LW a0,0 (a2) ADD a2,a0,a2 SLLI a2,al,?2
: = T =
> M . | Instruction R » DI . — —> U [
U "1 Memory - neter ' X
X —| File Data N
> \ Memory
—
m_ IF/ID | — ID/EX
—| MS/WB
> +4
" Extend g > N
R a
> > — <

v
v
\ 4
\ 4

——

Vi1-1 ACA 16

Five-stage Pipeline — Example Program — Cycle 4

Cyclel Cycle2 Cycle3 Cycle4

SLLI a2,al,?2 “

ADD a2,a0,a2 “ stall | Stalls backpropagate in the pipeline to
LW a0,0 (a2) “ stall . following instructions

ADD a0,a0,al

There is no instruction in the execute

ADD and LW stall
RET stage -> Insert a so-called Bubble (NOP)
LW a0,0(a2) ADD a2,a0,a2 Bubble SLLI a2,al,2
- I : : - [V S ,
> M | Instruction -~ » DI - . 3 - —y
U P | Memory g Jister ol M < > X
X —| File [U Data N
> -\ Memory
R —
m_ IF/ID | ID/EX -
> EX/MS —| MS/WB
> +4 e
T Extend |— =
: Y=

Vi1-1 ACA 17

Five-stage Pipeline — Example Program — Cycle 5

Cyclel Cycle2 Cycle3 Cycle4 Cycle5

ADD a2,a0,a2 “ stall stall
LW a0,0(a2) “ stall stall

ADD a0,a0,al
ADD can complete ID stage -> stop stalling

RET
LW a0,0(a2) ADD a2,a0,a2 Bubble Bubble SLLI a2,al,2
IE l .
X . \NGV4 4 \
| M | Instruction R » DI _ 3 ., (M
U PC "1 Memory - jister ol M < >
i g Data X
X U —>
>, Memory
- f—
m_ IF/ID ID/EX -
> EX/MS —| MS/WB
> +4
_='I:Exte11d——>— > N
R (|
> > — <

Vi1-1 ACA 18

Five-stage Pipeline with Forwarding Path

* Data hazards can be effectively mitigated using a forwarding path
 While named ,,forwarding path” the signal buses go ,,back” in the pipeline

Forwarding path from WB stage

Forwarding
\/ Nl llt from MA stage
u .
> > > X \/ i’ \/ — M
> M | Instruction _ » DI g) l —
u HE "| Memory > Register vh < U
X - Ffie > M Data X
> o R
> X Memory
> X —
IF/ID N ID/EX "
> > EX/MS —»| MS/WB
> +4
™ Extend > * QO
.)
> > —] <

Vi1-1 ACA 19

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 2

Cyclel Cycle?2

SLLI a2,al,?2 “
ADD a2,a0,a2 “

LW a0,0(a2)

ADD a0,a0,al

RET |
ADD a2,a0,a2 SLLI a2,al,2
U »
. > »| X \/ " \/ | e— M
»| M | Instruction _ » DI .) —
U PC " Memory > Register vh Z:I N ' g)lj
X —| File [S U M Data N
> « U Memory
> X —
m— IF/ID r_.' ID/EX "
—_— > EX/MS —| MS/WB
> +4 i
= Extend > » O
. (|
> > — <

V1-1 ACA 20

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 3

Cyclel Cycle2 Cycle3

SLLI a2,al,?2 “

ADD a2,a0,a2

We proceed as we
know we can get a2

via the forwarding

LW a0,0(a2)

ADD a0,a0,al path
RET |
LW a0,0(a2) ADD a2,a0,a2 SLLI a2,al,2
_I.l'}iV A
» \/
> M
> M bC | Instruction -~ » DI - . Ul
U "1 ™M g er
y emory - Ffe\q Data X
> Memory)
> P L
m— IF/ID - ID/EX »
—) EX/MS —| MS/WB
> +4
" Extend > * 0O
. ()
> > e <

Vi-1 ACA 21

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 4

Cyclel Cycle2 Cycle3 Cycle4

ADD a2,a0,a2 “ “ We forward a2 via the
LW a0,0 (a2) “ forwarding path
ADD a0,al,a0 “

RET
ADD a0,al0,al LW a0,0(a2) SLLI a2,al,2
ﬁ . > ; —
| i > . M
— | Instruction -~ » DI . e >]
PG "| Memory > Register U
— File [~ Data X
—
> Memory
> MS/WB
> +4 r"
S oToend >

v
v
\ 4
\ 4

——

V1-1 ACA 22

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 5

Cyclel Cycle2 Cycle3 Cycle4 Cycle5
ADD a2,a0,a2
LW a0,0(a2)
ADD a0,a0,al

RET
RET LW a0,0 (a2) ADD a2,a0,a2 SLLI a2,al,2
M
> M pC | Instruction ‘ » DI —p — U
u » M >
y emory Data .
Memory)
_pc I o orex

MS/WB

v

e
EX/MS —m

+4

v

A\ 4

Extend >

v
\ 4

v
v
\ 4
\ 4

——

Vi1-1 ACA 23

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 6

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6
ADD a2,a0,a2
LW a0,0(a2)
ADD a0,a0,al

RET
RET ADD a0,a0,al Bubble LW a0,0(a2) ADD a2,a0,a2
w M
U
> \/ —
—) > > x »
»| M Instruction » DI) —
> IR - > _ 2 U
U PC " Vemory > Sister »h < _’X
X 'U M N
U
X
> X
m— IF/ID ID/EX "
> EX/MS i —| MS/WB
> +4
" Extend > » N
. (@)
: > —> <

v
v
\ 4
\ 4

——

Vi1-1 ACA 24

Five-stage Pipeline with Forwarding Path and JR

* RET is a pseudo-instruction for jump register JR ra, which is a pseudo instruction for JALR x0,ra,0
* The Harris pipeline does not support to load a register value into PC
* We need another bus for implementing the JR instruction

JRTA (JR Branch Target Address)

N
\/ \/ M
U »
) R b "\ N =
> M Instruction » DI . - e [[T
“|u PC "| Memory > Register vh Z:I ; .)Lj
X — File — > M Data
> —{ U —
> « U Memory
> X —
IF/ID 1 ID/EX "
> > EX/MS —»| MS/WB
> +4
" Extend g > N
R (|
> > — <

Vi1-1 ACA 25

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 7

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle?7

RET Pseudo instr for
st a2,a1,2 [x| wms | ws JALR X0,ra,0
ADD a2,a0,a2 - IF X | ws | ws
LW a0,0(a2) “ ““m
- F] x|

ADD a0,a0,al stall

RET stall
Bubble RET ADD a0,a0,Rl LW a0,0(a2)
> \/ f—b
g g M
> M bC | Instruction -~ » DI Reist Ul
U g g egister
) Memory IR g- > X
A owewy -
m— IF/ID _m /EX
m—» EX/MS —»| MS/WB
> +4 1
" Extend [* N
R a
> > — <
— = — : J

Vi1-1 ACA 26

Five-stage Pipeline with Forwarding Path and JR - Example Program — Cycle 8

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8

RET Pseudo instr for
st a2,a1,2 [x| wms | ws JALR X0,ra,0
ADD a2,a0,a2 - IF X | ws | ws
L 20,0 (a2) - x| owms
- F]

ADD a0,a0,al stall

ADD a0,a0,al Bubble

Bubble N
\/ \/ M
U
‘ ‘ |t A\ | \
»| M Instruction » DI . - —]
U PC " ™ > Register SN = = . y
emory : L M < Dat X
X —| File U M ata N
> « U Memory
> X —
IF/ID _.| ID/EX »
‘ o) Ve
> +4
" Extend g > N
- o)
> » — <

Vi1-1 ACA 27

Five-stage Pipeline with Forwarding Path and JR - Example Program — Cycle 9

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9

SLLI a2,al,2 “ “mm RET Pseudo instr for

JALR x0,ra,0
ADD a2,a0,a2

LW a0,0(a2)
ADD a0,a0,al

RET
Instr 1 Bubble Bubble RET ADD a0,a0;al
N/ AN ud
U -
N Instr 1 R . ol _ N N | N
> | Instruction -~ » DI _]
U HE "| Memory > Register ’h <= U
X — i — > M Data X
> U R
D « U Memory
_pc-ra [3 L,
IF/ID 0 ID/EX >
> > EX/MS _“ —| Ms/wB
> +4 ___’
" Extend > » N
. (|
> > 2
V1-1 ACA -

Five-stage Pipeline with Forwarding Path and JR - Example Program — Cycle 10

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10

SLLI a2,al,2 “ “mm RET Pseudo instr for

ADD a2 .a0 . a2 JALR x0,ra,0
ac.at,8 WB on x0 has

no effect,

LW a0,0(a2)

ADD a0,a0,al

RET stall
Instr 2 \\// Instr 1 N Bubble
N/ M
u .
> Instr 2 > > > X 5 \/ \/ —> M
> | Instruction _ » DI — — |
U HE " ™ > Register SN = =
% smer ; :x (< Data X
PC+4 Y Memory M
" . (== —
IF/ID ID/EX gl
> EX/MS —| MS/WB
> +4
" Extend > * 0O
. ()
> > e <

v
v
\ 4
\ 4
|

V1-1 ACA 29

V1-1

C1-2 Data Hazards

ACA

30

Five-stage Pipeline with Forwarding Path and JR - Pipeline Execution Diagram

Bubble

* With forwarding path: Possible data hazard after load with penalty of 1 clock cycle (cc)
RAW dep —
ADD a2,a0,a2 ﬂ
after load instruction
ADD a0,a0,al 1CC penalty
One instructions reads operand that is written as result of previous instructions.

CC2 CcC3 CCa CC5 CC6 CcC7 CC8 CC9 CC10
RAW de& -
LW a0,0(a2) “H
RAW data hazard -
RAW dep. :
|~ [0 3 Y
RET
Read After Write (RAW) dependency or ,true dependency”:
Data hazard prevents the next instruction in the instruction stream from executing during its designated clock cycle.
V1-1 ACA 31

Compiler Instruction Scheduling to Avoid RAW Data Hazards after Load Instructions

* Compiler often can move instructions to avoid RAW data hazards after loads

* Program order must not change (See next session)

» Rarely data hazard penalty observed in five-stage pipeline with forwarding paths

»Example:

vec_add for:
LW t1,0(a0)
LW t2,0(al)

RAW

ADD t1,tl,t2
SW t1,0(a2)

ADDI
ADDI
ADDI
ADDI

(...)

Vi1-1

tl
t2
1CC penalty

tl =

c[i]
a0,a0,4 #base
al,al,4 #base
a2,a2,4 #base
t0,t0,1 # i++

= a[i]
= b[i]

a[i] + b[i]

= tl

address + 4
address + 4
address + 4

vec_add for:

ACA

LW t1,0(a0)
LW t2,0(al)
ADDI t0,t0,1
ADD tl1,tl,t2
SW t1,0 (a2)
ADDI a0,al,4
ADDI al,al,4
ADDI a2,a2,4

(...)

t1l = a[i]
t2 b[i]
#
#

i++

tl = a[i] + b[i]
c[i] = tl
#base address + 4
#base address + 4
#base address + 4

32

V1-1

C1-3 Control Hazards

ACA

33

Control Hazards

Control hazards arise from instructions that change the PC

When the flow of instruction addresses is not sequential
* Unconditional branches (jal, jalr)
e Conditional branches (beg, bne, ...)
* Exceptions

Possible approaches
e Stall (impacts CPI)
* Move decision point as early in the pipeline as possible (Extra HW)
* Predict and hope for the best!
* Delay decision (requires compiler support)

Control hazards occur less frequently than data hazards,
but there is nothing as effective against control hazards as forwarding is for data hazards

Vi1-1 ACA 34

Control Hazards — Conditional Branches

 Branch determines flow of control

* Fetching next instruction depends on branch outcome (Branch taken/Not taken)
* Next PCis either PC+4 (branch not taken) or PC+imm<<1 (branch taken)

Branch taken/not taken
decision computed in ALU

Vi1-1

v

PC -

cC

Instruction
Memory

v

+4

v

v

Branch not taken PC
computed in IF

\ 4

\/ \/ ->|V| \
U .
R R o \/ > \/
. -)
» DI —p
Register ’h Z:I {
— : — > M Data
> File —_— U
> A Y Memory
> X —
IF/ID 1 ID/EX "
> > EX/MS —| Ms/wB
" Extend g > N
R (@)
. - < \
\

Branch target address (BTA) for

ACA

taken computed in EXE

11

Handling Control Hazards: Stall on Branch

* Conservative Approach: Wait until branch outcome determined before fetching next
instruction

Conservative approach: Stall immediately after fetching a branch, wait
until outcome of branch is known and fetch branch address.

* Reducing Branch Delay:

* E.g. Move Branch Decision to ID Stage: Extra hardware so that we can test registers,
calculate the branch address, and update the PC during the second stage of the pipeline

Vi1-1 ACA 36

Handling Control Hazards: Conservative Approach (Branch not Taken)

e Control hazard (branch not taken): stall pipeline until decision known

* Branch penalty: 2 clock cycles

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10
40 BEQ al,a2,Ll H“H

' ws IR
Branch not taken
Pc=pc+4 —

] - [l -]
@ o | - Jiszgy - e
2 on v o |
0 1 e Bl
. LW al,4(a4)

Vi1-1 ACA 37

Handling Control Hazards: Conservative Approach (Branch Taken)

e Control hazard (branch taken): stall pipeline until decision and branch target known

* Branch penalty: 2 clock cycles
CC2

CC1 CC3 CC4 CC5 CC
o e [O] BHET D
5

pc=pc+8<<1=40 + 16 =56

6 CcC7 CC8 CC9 CC10

44

48
Branch

52 taken

56 Ll1: N
LW al,4(ad) Bubble Bubblel, “H MMHM

Vi1-1 ACA 38

Reducing Branch Delay - Move Branch Decision to ID Stage

* A lot of branches rely on simple tests (e.g.,
equality)

* Add hardware to determine outcome of branch in
the ID stage
— Reduce cost of the taken branch
e Subcomputation: Compute Branch Target Address in ID
 Move target address adder from EX to ID
* PC and immediate are already in IF/ID pipeline register

e Subcomputation: Comparison

» Additional register comparator (done before in EX via the
ALU)

* Additional Forwarding and Hazard Handling

Vi1-1 ACA

IF/ID

\ 4
\ 4

A\ 4

\ 4
v

ID/EX

v

[
»

i3ranch Taken
/Not Taken

\ 4

\ 4

PC h
Ul

e
Branch Target Address (BTA)

39

Reducing Branch Delay - Move Branch Decision to ID Stage — Branch Taken

* Target address adder in ID, Extra comparator to get branch decision in ID

* Branch penalty: Only one clock cycle

CC1 CC2 CC3 CC4 CC5 CCeé CC7 CC8 CC9 CC10
| - [magpsaal = [
40 BEQ al,a2,Ll
L
. >
e

a4 PC=PC+8<<1=40 + 16 =56

48

52 Branch
taken

56 L1: \
ookl EED

40

V1-1

C1-4 Static Branch Prediction

ACA

41

Motivation: Branch Prediction

* Longer pipelines can’t readily determine branch outcome early
* Branch penalty becomes unacceptable

* Predict outcome of branch
* Only stall if prediction is wrong

e Simple Static Branch Prediction Schemes
» Always not Taken: Always predict branches not taken — Also called fall through (PC=PC+4)
» Always taken: Always predict branches taken

Vi1-1 ACA 42

Always Not Taken — Correct Prediction

* Prediction correct (Branch not taken)

* Branch penalty: O clock cycles

CC1
BEQ al,a2,Ll Hn

40

44

48

52

56

Vi1-1

predict pc=pc+4
AND a2,a0,a2

OR al0,a2,tl

ADD a0,a0,al

L1:
LW al,4 (a4)

CC2

CC3 CC4

uy s

&

-
2

ACA

CC9

CC10

43

Always not Taken — Incorrect Prediction (1/2)

e Prediction incorrect (Branch not taken) — Flush instructions from pipeline

* Branch penalty: 2 clock cycles

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10
40 BEQ al,a2,Ll HHH

predict branch not taken :E — Branch taken

pc=pc+4 ||

M
X

48 OR al0,a2,tl

52

56 Ll1:
LW al,4 (a4)

Vi1-1 ACA 44

Always not Taken — Incorrect Prediction (2/2)

e Prediction incorrect (Branch not taken) — Flush instructions from pipeline

* Branch penalty: 2 clock cycIes
CC2 cce CC7 cc8 Cc9 CClo

CC1
P - | :%ﬂmm

Branch taken

Bubble Bubble Bubble

44 AND a2,a0,a2 Flush H

48 OR a0,a2,tl Flush Bubble Bubble Bubble Bubble

[1] |

52
pc=pc+8<<1=40 + 16 =56

v
56 Ll1:
o gl - lisile-gl - [

Vi1-1 ACA 45

Always Taken — Correct Prediction

* Prediction (Branch taken) —> Branch target address is computed in EX stage

CC1 CC2 CC3 CC4 CC5 CCé CC7
predict branch taken *E_ Branch taken

—> Branch target address

No branch target

40 L2: .
AND a2,a0,a2 address in CC1

44 OR al0,a2,tl

Vi1-1 ACA 46

Branch Target Buffer (BTB)

 Stores the Branch Target Address (BTA) for a certain branch (e.g. identified by its own
Branch Instruction Address (BTI))

e Content Addressable Memory (Costly for entries)
* Update policy (similar to caches)
* Entries entered in pairs (BIA, BTA)
* entry not available for first branch execution

* Lookup via PC Branch in EX

Branch Target Buffer (BTB)

Branch Instruction Address (BIA) | Branch Target Address (BTA)
Lookup Update

BIA

y

PC

v

A

BTA

P

Valid BTB Entry (1), , Speculative taken
, No Valid BTB Entry (0) BTA

d—

Vi1-1 ACA 47

Five-stage Pipeline with Branch Target Buffer

e Only for branches and PC-relative Jumps J, JAL (not JALR, JR, RET)

Speculative Taken BTA
Branch)
o| Target | Entries(BIA, BTA) for branches
PC for Buffer |«
lookup
- R L \/ > \/ | N
> M Instruction -~ » DI . e b [[
> U PCM T Memory > Register Vi . v
X — - — Vi Data X
> File - U —>
> J Memory
> —
IF/ID 1 ID/EX "
> > EX/MS —| MS/WB
> +4
" Extend g J}l
> > ety <

Vi1-1 ACA 48

Always Taken — Correct Prediction (BTB has entry)

* Prediction (Branch taken) - BTA via Branch Target Buffer (BTB)

* Branch penalty: O clock cycles
cC1 CC2 C

C3 CC4 CC5 CC

6 CcC7

predict branch taken *E Branch taken
| A 4 |
Lookup PC=56
Branch Target = 40 BTB
L - BTB
40 L2: BIA BTA
AND a2,a0,a2 56 40

44 OR a0,a2,tl n

Vi1-1 ACA 49

First execution of branch we cannot do a branch taken prediction.
Entry was written to BTB on earlier execution of branch with (56,40)

BTFNT: Enhancing Static Branch Prediction

Typical Statistics 60% to 70% of branches are taken
Example:

* 60% are backward branches (negative offset)

* Loops: Usual more than one iteration (branch will be taken more than once) — taken ~90%
* Typical behavior: TTTT...T NT
e About 90% of backward branches are taken

40% are forward branches (positive offset)
» |f-(Else) Constructs: Branches go forward (jump over code)
* About ~20% of forward branches are taken

Always not taken: (0,6 -0,9) + (0,4 - 0,2) = 62% mispredictions

Always taken: (0,6 -0,1) + (0,4 - 0,8) = 38% mispredictions

Enhanced Static Branch Prediction: Backward Taken, Forward Not Taken (BTFNT)
* Predict forward branches not taken: ~10% mispredictions

* Predict backward branches taken: ~20% mispredictions
* Overall: (0,6-0,1) + (0,4 -0,2) = 14% mispredictions

Vi1-1 ACA 50

Effect of Misprediction Rate and Branch Penalty on CPI

Program with:

e Relative number of branch instructions (branch rate b)
* The branch cycle penalty p for mispredictions

* The branch misprediction rate m

e CPI: Cycles per Instructions (data hazards rare so base CPI=1)

CPI=1+b-p-m

Five stage pipeline: b=15%, p=2 Longer pipeline: b=15%, p=5

Always not taken: m=62% -> CPl1 = 1,186 Always not taken: m=62% -> CPl = 1,465
Always taken: m=38% ->CPl=1,114 Always taken: m=38% -> CPl = 1,285
BTFNT: m=14% -> CPl = 1,042 BTFNT: m=14% -> CPl = 1,105

In longer pipelines, branch penalty is more significant

Vi1-1 ACA 51

V1-1

C1-5 Dynamic Branch Prediction

ACA

52

Dynamic Branch Prediction

* In longer pipelines, branch penalty is more significant

* Branch prediction buffer (aka branch history table (BHT)) for dynamic prediction
 Stores last outcome (taken/not taken)

* To execute a branch
» Check table, expect the same outcome
» Start fetching from fall-through (not taken) or target (taken)
» In case of misprediction, flush pipeline and flip prediction

Vi1-1 ACA 53

Dynamic Branch Prediction: 1-Bit Predictor

* Single-Bit / 1-Bit / Last-Time Predictor
* Indicates which direction the branch went last time it executed
 PNT: Predict NT (Bit=0): Fetch the instruction from (PC+4)
* PT: Predict T (Bit=1): Get target address from the BTB

Taken
Taken

Not Taken

Vi1-1 ACA 54

Global Predictor

* One single Branch History Entry for all branches to save last decision

* Branch reaches IF stage

* Indexed Lookup with PCin BTB Global Branch
—> predict NT (PNT)
-> Supply PC=PC+4 PT/PNT Branch in EX
e Valid BTB entry
i B h Target Buffer (BTB
-> Global Predictor result based on BHT: PT/PNT ranch Target Buffer (BTB) BIA
-> Supply PC=BTA/PC+4 o BIA BTA .
* Branch reaches EX stage | Lookup | BIAI BTA1 [Update |,
e Indexed Lookup with PC in BTB BTA

-> No BTB entry -> Update BTB (create entry)
-> Eventually only in case that branch is taken

* Update Global Branch History Entry

Vi1-1 ACA 55

Local Predictor

* Branch History Table (BHT): One entry for each BTB entry

* Branch in IF stage Branch T/NT
* Indexed Lookup with PCin BTB

* No valid BTB entry Branch in EX

—> predict NT
-> Supply PC=PC+4 Branch Target Buffer (BTB)

* Valid BTB entry BIA | BTA | BHT

-> Local BHT Predictor result T/NT PC
-> Supply PC=BTA/PC+4 Lookup | BIA1 | BTA1|PT/PNT| Update

= BIA

y 3

A 4

y

BTA

* Branch in EX stage

* Indexed Lookup with BIA in BTB
* No BTB entry -> Update BTB (create entry), initialize BHB with T/NT
» BTB entry: Update Local BHT with T/NT

Vi1-1 ACA 56

Example Nested Loop Program - Static Branch Prediction

* Example Nested Loop Program:

for (x =1024; x > 0; x--)
fzro(ysz ri;e\;hj:é(\)/(‘;l))_ Inner Loop (LO9 Branch Pattern): (T-T-T-NT)
= — Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T....

01: 1i sO, 1024

02: xloop: _ o
03: 1li sl, 4 Static Branch Prediction:
04: yloop: > Always not taken: ~80% Mispredictions

82; 2: Zﬁ :g » Always taken: ~20% Mispredictions

07: jal ra, do _something | » BTFNT (same as always taken): ~20% Mispredictions
08: addi sl, s1, -1
09: bnez sl, yloop
10: addi sO0, sO0, -1
11: bnez s0, xloop

Vi1-1 ACA 57

Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

01: 1i sO, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T(T-T-T-NT) T.... | 070 5710 5o comething
08: addi sl1, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi sO, s0, -1
. . 4. 11: bnez s0, xloop
Mlspredlctlon rate:
Branch Start | LO9 L09 (LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LOO
BTB entry LO9 Y
BTB entry L11 Y
Global BHT PNT
Prediction NT
Direction -
Correct? -

Vi1-1

ACA

58

Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

01: 1i s0, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi sO, s0, -1
: . 11: b 0, x1
Misprediction rate: eE ST ROOP
Branch Start | LO9 L09 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LOS
BTB entry LO9 Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y
Global BHT PNT | PNT PT PT PT PNT
Prediction NT NT T NT
Direction - T T NT T
Correct? - N

Vi1-1

ACA

59

Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

01: 1i sO, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: 3jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi sO, s0, -1
. e L. . 11: b 0, x1
Misprediction rate: ~40% (2 out of five) Repeats e PO
Branch Start | LO9 109 | LO9 | LO9 | L11 | LO9 | LO9 | LOS9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y Y Y Y Y Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y
Global BHT PNT | PNT PT PT PT PNT PT PT PT PT PNT
Prediction NT NT T NT T NT
Direction - T T NT T T NT T
Correct? - N N

Vi1-1

ACA

60

Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

. 01: 1i sO, 1024
* Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
10: addi sO0, sO0, -1
. . .. 11: b 0, x1
Misprediction rate: R O
Branch Start | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y
BTB entry L11 Y
BHT L9 PNT
BHT L11 PNT
Prediction PNT
Direction -
Correct? -
61

Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

0l1: 1i sO, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) ... |05% 70202 °3 onething
08: addi sl1, sl1, -1
09: bnez sl, yloop
10: addi sO0, sO0, -1
. . 4. ~ o . 11: bnez s0, xloop
Misprediction rate: ~40% (2 out of five)
Branch Start | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y
BHT L9 PNT | PNT PT PT PT PNT
BHT L11 PNT | PNT | PNT | PNT | PNT | PNT
Prediction PNT NT T NT
Direction - T T NT T
Correct? - N
62

Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

01: 1i sO, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
10: addi sO0, sO0, -1
. e L. . 11: b 0, x1
Misprediction rate: ~40% (2 out of five) Repeats e PO
Branch Start | L09 | LO9 | LO9 | LOS | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y Y Y Y Y Y Y Y Y Y Y
BTBentry L11 | Y Y Y Y Y Y Y Y Y Y Y
BHT L9 PNT | PNT | PT | PT | PT | PNT|PNT| PT | PT | PT | PNT
BHT L11 PNT | PNT | PNT | PNT | PNT | PNT | PT | PT | PT | PT | PT
Prediction PNT NT T NT NT T
Direction - T T NT T T T NT
Correct? - N N
63

Improving the 1-Bit Predictor

* Problem: A 1-bit predictor changes its prediction from T->NT or NT=>T too quickly

* Even though the branch may be mostly taken or mostly not taken

* Solution Idea: Add hysteresis to the predictor so that prediction does not change on a
single different outcome

* Use two bits to track the history of predictions for a branch instead of a single bit
e Can have 2 states for T or NT instead of 1 state for each

Vi1-1 ACA 64

2-Bit Predictor

* Prediction does not change on a single misprediction

e 2-Bit entry in BHT => Four States [2 for NT, 2 for T]
e PSNT: Strongly Not Taken (00), PWNT: Weakly Not Taken (01)
 PWT: Weakly Taken (10), PST: Strongly Taken (11)

* 2-Bit Counter
* Increment by 1 if branch taken, otherwise decrement by 1
e Saturate the counter value at 0 and 3
* A prediction must be wrong twice (consecutively) before the prediction bit is changed

Not Taken Taken
Predict Predict Predict Predict
Strongly Not Weakly Not Weakly Strongly
Taken (00 Taken (01 Taken (10 Taken (11

Not Taken Not Taken

Not Taken

Vi1-1 ACA 65

Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

01: 1i sO, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi sO, s0, -1
: . 11: b 0, x1
Misprediction rate: eE ST ROOP
Branch Start LO9 LO9 LO9 LO9 L11 LO9 LO9 LO9 LO9 L11 LO9 LO9
BTB entry LO9 Y
BTB entry L11 Y
Global BHT PWNT
Prediction NT
Direction -
Correct? -

Vi1-1

ACA

66

Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

01: 1i s0, 1024
« Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi sO, s0, -1
: . 11: b 0, x1
Misprediction rate: eE ST ROOP
Branch Start LO9 LO9 LO9 LO9 L11 LO9 LO9 LO9 LO9 L11 LO9 LO9
BTB entry LO9 Y Y Y Y Y
BTB entry L11 Y Y Y Y Y
Global BHT PWNT | PWNT | PWT PST PST
Prediction NT NT T
Direction - T T T NT
Correct? - N Y Y N

Vi1-1

ACA

67

Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

01: 1i s0, 1024
e Example Nested Loop Program: 02: xloop:
03: li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
. 06: mv al, sl
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... 07: jal ra, do_something
08: addi sl1, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi sO, s0, -1
: o : 11: b 0, x1
Misprediction rate: ~20% (1 out of five) Repeats e PO
Branch Start LO9 LO9 LO9 LO9 L11 LO9 LO9 LO9 LO9 L11 LO9 LO9
BTB entry LO9 Y Y Y Y Y Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y
Global BHT PWNT | PWNT | PWT PST PST PWT PST PST PST PST PWT
Prediction NT NT T T
Direction - T NT T T NT
Correct? - N N

Vi1-1

ACA

68

2-bit Predictor: Limits

Still penalty on regular patterns:
e Recap: Inner loop iterations: T-T-T-NT
* Branches often show such regular patterns

Can we incorporate this regularity? -> Use a history

Two-level-history adaptive branch predictors (many variants *)
* Learn the history and loop pattern T-T-T-NT
*Tse-Yu Yeh and Y. N. Patt, "A Comparison Of Dynamic Branch Predictors That Use

* They usuad I Iy can have h igher aCCura Cy Two Levels Of Branch History," Proceedings of the 20th Annual International
° ThIS iS Stl” 90t|es tech nology % Symposium on Computer Architecture, San Diego, CA, USA, 1993

Modern branch predictors for complex processors
e Based on neural networks
* Learn patterns, history and interrelation between branches
* Can achieve very small misprediction rates

Vi1-1 ACA 69

Optional, not relevant for exam

A Look at a Real Processor — CVAG6

“CVAG6 is a RISC-V compatible application processor core that can be configured as a 32- or 64-bit core:
CV32A6 and CV64A6".

--- CVA& User Manual
https://docs.openhwgroup.org/projects/cvab-user-manual/01_cva6_user/Introduction.html

Developed initially as part of PULP project (ETH Ziirich), now maintained by the OpenHW Group

CVAG6 Branch Predictor

“Branch Predict: If the BHT and BTB predict a branch on a BIA~ BTA ~ BHT

Certa|n PC’ PC Gen Sets the next PC to the predicted - =V anti_alias | target address | saturationcnt | compressed?

address and also informs the IF stage that it performed a
prediction on the PC. (...)” e e

LAll branch prediction data structures reside in a single
register-file like data structure. It is indexed with the N
appropriate number of bits from the PC and contains -
information about the predicted target address as well as (DA EranepreaRErRR e Erkry
the outcome of a configurable-width saturation counter
(two by default). The prediction result is used in the
subseqguent stage to jump (or not).”

taken?

to instruction fetch

-- CVAG Design Document (deprecated) — Branch Prediction (05.04.2024)
https://docs.openhwgroup.org/projects/cvab-user-manual/03_cva6_design/pcgen_stage.html

Vi1-1 ACA 71

Optional, not relevant for exam

A Look at a Real Processor — ESP32-C3

ESP32-C3 Technical Reference Manual

https://www.espressif.com/sites/default/files/documentation/esp32-
c3 _technical_reference_manual_en.pdf#riscvcpu

Low Power Mikro-Controller — ESP32-C3

Picture: Alibaba-
Costs less than 1€

Vi1-1

Scalar in-order processors with five or less pipeline stages are used in
low-cost micro-controller-type devices.

,ESP-RISC-V CPU is a 32-bit core based upon RISC-V ISA comprising base
integer (1), multiplication/division (M) and compressed (C) standard
extensions. The core has 4-stage, in-order, scalar pipeline optimized for
area, power and performance. (...)“

-- ESP32-C3 Technical Reference Manual
https://www.espressif.com/sites/default/files/documentation/esp32-
c3_technical_reference_manual_en.pdf#riscvcpu

ACA 73

Optional, not relevant for exam

Trap Handling

Terminology

Terminology is used often different for different architectures (x86,ARM, RISCV,...).

* For RISC-V:

* “We use the term exception to refer to an unusual condition occurring at run time
associated with an instruction in the current RISC-V hart.”

* “We use the term interrupt to refer to an external asynchronous event that may cause a
RISC-V hart to experience an unexpected transfer of control.”

* “We use the term trap to refer to the transfer of control to a trap handler caused by
either an exception or an interrupt.”

—- Volume 1, Unprivileged Specification version 20191213:
https://riscv.org/technical/specifications/

Vi1-1 ACA 75

Trap Handling

* For a function call the compiler assures that the function call standard of the ABI
is kept

* An exception and interrupt can happen during execution of a function ceither due
to an instruction (e.g. memory access error) or due to an external event (device
raises an interrupt)

* For a trap, we are in the middle of execution of a function and must save the
context of the current execution before calling a trap handler to handle the
exception or interrupt

* RISC-V has certain so-called Control Status Registers (CSRs) to identify the cause
of a trap

Vi1-1 ACA 76

Trap Handling Basics

* Trap is detected.

* Change mode

* Jump to trap handler

* Trap handler saves context

* Trap handler identifies cause (exception/interrupt)

» Corresponding exception/interrupt handler is called
* Some handlers do not return if they can not recover from an exception

* Trap handler restores context
* Change mode

* Jump back to program execution

Vi1-1 ACA 77

Causes for Traps

Interrupt | Exception Code | Description
Reserved
Supervisor software interrupt

Reserued * —-Volume 2, Privileged Specification version 20211203:

Machine software interrupt
Reserved -// 1 / 1 / 1Fi 1 /
B st https://riscv.org/technical/specifications
Reserved
Machine timer interrupt
Reserved . . .
Supervisor xternal interrupt Word trap is mentioned 301 times
Reserved
Machine external interrupt
12-15 | Reserved

>16 | Designated for platform use
Instruction address misaligned

Instruction access faul Different architectures treat exceptions differently e.g.

Illegal instruction
Breakpoint n/ici 1 1cl 1 1 -
Preskpoint et division by zero is not raising an exception in RISC-V
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
16-23 | Reserved
24-31 | Designated for custom use
32-47 | Reserved
48-63 | Designated for custom use

>64 | Reserved

01T DT W= O

—
==}

O 1O U WO

== = = e
(1 B S N = =]

OO OO OO OO O OO OO OO OO OO e

Vi1-1 ACA 78

https://riscv.org/technical/specifications/

Precise vs. Imprecise traps

* Precise traps:
* Associated with a certain instruction (e.g. illegal instruction exception)
* Easier to debug

* I[mprecise trap:
 Not associated with an instruction
* Hard to debug

* OR: Pipelined execution makes it hard to associate the exception with an instruction
(This is an issue with certain pipelines, which we see in next lecture)

Vi1-1 ACA 79

Where we are

* Five-Stage Scalar In-order Processor Pipeline
* Forwarding to mitigate data hazards
e Branch prediction to mitigate control hazards

»
»

* In-order pipeline
* Five Stages
e Scalar pipeline: CPI>=1

* Upcoming Lecture: Multi-cycle Functional Units (DIV/MUL) and Out-of-Order (Oo0O)

Vi1-1 ACA 81

Thank you for your attention!

	Folie 1
	Folie 2: Sources
	Folie 3: Sources
	Folie 4: Content – Session 1
	Folie 5
	Folie 6: Pipelined execution
	Folie 7: Recap: Five-Stage In-order Scalar Processor Pipeline (Harris & Harris)
	Folie 8: Five-stage Pipeline - Data Signal Busses
	Folie 9: Five-stage Pipeline - Stages
	Folie 10: Five-stage Pipeline - Data Signal Busses
	Folie 11: Five-stage Pipeline – Sub-computations in the Stages
	Folie 12: Five-stage Pipeline – Sub-computations in the Stages (Example ADD)
	Folie 13: Five-stage Pipeline – Example Program
	Folie 14: Five-stage Pipeline – Example Program – Cycle 1
	Folie 15: Five-stage Pipeline – Example Program – Cycle 2
	Folie 16: Five-stage Pipeline – Example Program – Cycle 3
	Folie 17: Five-stage Pipeline – Example Program – Cycle 4
	Folie 18: Five-stage Pipeline – Example Program – Cycle 5
	Folie 19: Five-stage Pipeline with Forwarding Path
	Folie 20: Five-stage Pipeline with Forwarding Path – Example Program – Cycle 2
	Folie 21: Five-stage Pipeline with Forwarding Path – Example Program – Cycle 3
	Folie 22: Five-stage Pipeline with Forwarding Path – Example Program – Cycle 4
	Folie 23: Five-stage Pipeline with Forwarding Path – Example Program – Cycle 5
	Folie 24: Five-stage Pipeline with Forwarding Path – Example Program – Cycle 6
	Folie 25: Five-stage Pipeline with Forwarding Path and JR
	Folie 26: Five-stage Pipeline with Forwarding Path – Example Program – Cycle 7
	Folie 27: Five-stage Pipeline with Forwarding Path and JR - Example Program – Cycle 8
	Folie 28: Five-stage Pipeline with Forwarding Path and JR - Example Program – Cycle 9
	Folie 29: Five-stage Pipeline with Forwarding Path and JR - Example Program – Cycle 10
	Folie 30
	Folie 31: Five-stage Pipeline with Forwarding Path and JR - Pipeline Execution Diagram
	Folie 32: Compiler Instruction Scheduling to Avoid RAW Data Hazards after Load Instructions
	Folie 33
	Folie 34: Control Hazards
	Folie 35: Control Hazards – Conditional Branches
	Folie 36: Handling Control Hazards: Stall on Branch
	Folie 37: Handling Control Hazards: Conservative Approach (Branch not Taken)
	Folie 38: Handling Control Hazards: Conservative Approach (Branch Taken)
	Folie 39: Reducing Branch Delay - Move Branch Decision to ID Stage
	Folie 40: Reducing Branch Delay - Move Branch Decision to ID Stage – Branch Taken
	Folie 41
	Folie 42: Motivation: Branch Prediction
	Folie 43: Always Not Taken – Correct Prediction
	Folie 44: Always not Taken – Incorrect Prediction (1/2)
	Folie 45: Always not Taken – Incorrect Prediction (2/2)
	Folie 46: Always Taken – Correct Prediction
	Folie 47: Branch Target Buffer (BTB)
	Folie 48: Five-stage Pipeline with Branch Target Buffer
	Folie 49: Always Taken – Correct Prediction (BTB has entry)
	Folie 50: BTFNT: Enhancing Static Branch Prediction
	Folie 51: Effect of Misprediction Rate and Branch Penalty on CPI
	Folie 52
	Folie 53: Dynamic Branch Prediction
	Folie 54: Dynamic Branch Prediction: 1-Bit Predictor
	Folie 55: Global Predictor
	Folie 56: Local Predictor
	Folie 57: Example Nested Loop Program - Static Branch Prediction
	Folie 58: Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)
	Folie 59: Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)
	Folie 60: Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)
	Folie 61: Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)
	Folie 62: Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)
	Folie 63: Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)
	Folie 64: Improving the 1-Bit Predictor
	Folie 65: 2-Bit Predictor
	Folie 66: Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)
	Folie 67: Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)
	Folie 68: Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)
	Folie 69: 2-bit Predictor: Limits
	Folie 70: A Look at a Real Processor – CVA6
	Folie 71: CVA6 Branch Predictor
	Folie 72: A Look at a Real Processor – ESP32-C3
	Folie 73: Low Power Mikro-Controller – ESP32-C3
	Folie 74: Trap Handling
	Folie 75: Terminology
	Folie 76: Trap Handling
	Folie 77: Trap Handling Basics
	Folie 78: Causes for Traps
	Folie 79: Precise vs. Imprecise traps
	Folie 80: Summary
	Folie 81: Where we are
	Folie 82: Thank you for your attention!

