
Lab1

General Remarks
 Your solution has to compile and run with Java 7. In other words, you are free to use

Java 7 or older but we do not accept solutions that require Java 8.

 Don't use any other 3rd party library except the ones we provided for you (e.g. Bouncy

Castle).

Submission
 You must upload your solution using TUWEL before the submission deadline: 13.11.2014,

18:00 CET. - please note that the deadline is hard! You are responsible for submitting your

solution in time. If you do not submit, you won't get any points!

 Upload your solution as a ZIP file. Please submit only the provided template and your

classes, the build.xml file and a readme.txt (no compiled class files, no third-party libraries

- except the libraries already provided in the template, no svn/git metadata, no hidden files

etc.).

 The purpose of readme.txt is to reflect about your solution. It should contain a short

summary of the status of your code so that a tutor can get the information right before the

mandatory interview (see below) and can give you some tips for the next assignment.

 Your submission must compile and run in our lab environment. Use and complete the project

template provided in TUWEL.

 Test your solution extensively in our lab environment. It'll be worth the time.

 Please make sure that your upload was successful (i.e., you should be able to download your

solution - as the tutors will do during the interview).

Interviews
 After the submission deadline, there will be a mandatory interview (Abgabegespräch). You

must register for a time slot for the interviews using TUWEL.

 You can do the interview only if you submitted your solution before the deadline!

 The interview will take place in the DSLab PC room (see General Course Information). During

the interview, you will be asked about the solution that you uploaded (i.e., changes after the

deadline will not be taken into account!). In the interview you need to explain your code,

design and architecture in detail.

 Remember that you can do the interview only once!

Important: Please note that Lab 2 will extend your Lab 1 solution. That means that it will pay to

implement your solution in an extensible way (just like you would build 'real' software).

https://tuwel.tuwien.ac.at/mod/book/view.php?id=188410

Project Template
In TUWEL you can find a project template that contains everything you need to get started e.g.,

an Ant script. Ant is a Java-based build tool that significantly eases the development process. If

you have not installed Ant yet, download it and follow the instructions. Note that some Ant

versions have a bug regarding input/output handling. It is recommended to use the same

version that is used in the lab (which is 1.8.4).

We provide a template build file (build.xml in the project template) in which you only have to

adjust some parameters and class names. Furthermore, there are .properties files that contain

parameters such as TCP ports. Fill in those parameters as stated in the description within the file

(or according to the Lab Port Policy section). The specific sections are marked with # TODO:

REPLACE with real value such as Please do not add additional parameters because we

might replace those files for testing purposes.

Put your source into the subdirectory src/main/java . To compile your code, simply type ant in

the directory where the build file is located. Enter ant run-controller to start the cloud

controller, ant run-client to start the client and ant run-nodeX (with X being 1 to 4) to start the

respective node. Note that it's absolutely required that we are able to start your programs with

these predefined commands! Also note that build files created by IDE's like NetBeans very often

aren't portable, so please use the provided template.

The template contains a skeleton of the project, plus some (very) basic tests. We encourage you

to use the Eclipse IDE, since the template already provides the

respective .classpath and .project files (see the Links section to get started). Furthermore we

plan to use Eclipse for the final Lab-Test, so this is a good opportunity to get familiar with

it. Please adhere to the structure of the template and add your implementation to make the test

run through. The template uses the factory pattern to instantiate the key components of the

framework. Simply follow the // TODO blocks in the factory class test.ComponentFactory (located

in src/test/java) and return your implementation of the respective interfaces.

Please note that there are two different ways for you to start your application. One is through ant

run-* targets which execute the static main method of your specified starter class, and the other

way is indirectly through test.ComponentFactory , which gets executed by some tests. For the

latter way it is important that you make use of the provided objects (Config) as these might

get mocked by the test classes. (The class Config is described in the implementation details

below.)

The template includes a Shell class which reads user requests from a

given InputStream (System.in by default). The user commands are transformed into method

invocations of a Java object which handles the commands, using the Java reflection mechanism.

The dslab14-shell-example.zip available in TUWEL provides a simple usage example, and you

may also take a look into the implementation of cli.Shell to see how the mechanism works.

You do not have to use the provided I/O facility if you prefer to implement the I/O handling on

your own. In case you want to use the Shell , make sure to register your implementation

of client.IClientCli using Shell.register() . The same mechanism applies for the cloud

controller and the node. This allows the Shell to look up and invoke the appropriate method for

each user command.

http://ant.apache.org/
http://ant.apache.org/manual/install.html#installing
https://tuwel.tuwien.ac.at/mod/book/view.php?id=188410&chapterid=45
http://www.eclipse.org/downloads/
https://tuwel.tuwien.ac.at/mod/book/view.php?id=188410&chapterid=42
http://en.wikipedia.org/wiki/Mock_object

The template also contains a class ScenarioTest . Its purpose is to let you define test scripts (see

examples in src/test/resources), consisting of a sequence of commands which are executed.

Hence, ScenarioTest allows you to automate a sequence of test commands, which you would

otherwise have to type manually in the terminal (see below). We advise you to write your own test

scenarios, but this is optional - i.e., if you prefer to test manually, you may also do so.

Note that the predefined tests cover only a very small part of the functionality. We advise you to

extend the project with your own testing code and testing scripts. Note that we will

run additional tests (which are not included in the template) during the grading process, i.e.,

there is no guarantee that you receive all points if the predefined tests execute successfully.

Test Scenarios (executed by class ScenarioTest)
The system you are going to implement is based on commands

like !login , !credits or !users , typed on the command line (see below for further details). In

order to facilitate testing and relieve you from having to type these commands in multiple

terminals over and over, we provide a simple infrastructure that allows to automate your tests.

Please refer to Test Scenario.

https://tuwel.tuwien.ac.at/mod/page/view.php?id=188427#test-scenario

Description
In this assignment you will learn

 the basics of TCP and UDP socket communication

 how to develop and synchronize multithreaded programs

 different connection types

Overview
In this year's first assignment we are going to build a simple client-server system that can be

used to evaluate arithmetic expressions. The architecture is as follows: nodes provide the

computation power to perform mathematical operations and are handled by a cloud controller.

At any point of communication, the clients only know the address of one particular server. This

server provides no computation power at all, but forwards any incoming calculation request to

one or more of the available nodes. Due to this task, we will call this server 'cloud controller' in the

following.

The cloud controller handles information about every client and every node in the communication

process. Clients are limited in the amount of calculations they are allowed to perform. Because it

schedules the client's requests, the cloud controller can easily keep track of the user's current

limit and block calculation requests where necessary. The same approach is used to balance the

upcoming load of the nodes: The node to choose for responding to the next client request is

always the one with the lowest usage at that time (assuming that it provides the required

mathematical operation). Figure 1 illustrates a simple example with two clients each evaluating an

expression ('client1', 'client2'). The 'Cloud Controller' splits the expressions and forwards them to

the nodes that provide the specific mathematical operation. The figure also illustrates how the

user credits decrease (it is sufficient that you decrease them at the time when the result is

returned).

In case of an error (e.g., division by zero), just subtract credits for every operation that has been

performed (including the one that failed) and return an appropriate error message.

Note that you must not change the credits if a calculation cannot be performed due to any

technical reason e.g., a node crashed in the meantime and the request cannot be handled

because at least one operator is not supported.

For the sake of simplicity, there are a couple of definitions that make the evaluation easier:

 The credits are based on the number of operators in an expression. More concretely, the

client has to pay 50 credits per operator e.g.: for 10 + 10 the client pays 50; for 10 + 10 *

2 the client pays 100; ...).

 You can assume that the expressions are valid arithmetic expressions. They consist of two or

more numbers separated by a single operator + , - , * , / . Between the numbers and the

operators there is a whitespace so you can split an expression into its parts more easily. Note

that expressions like 5 * -2 are valid because 5 and -2 are valid numbers and there is

exactly one operator between them.

 Be sure to handle division correctly (round half away from zero) e.g., 7 / 4 results to 2 , 7

/ 3 results to 2 whereas 5 / 2 results to 3 and do not forget to handle divisions by 0.

 You do not have to check for numerical overflows. You can assume that there will not be a

calculation that produces a value larger than Integer.MAX_VALUE or smaller

than Integer.MIN_VALUE .

 There is no operator precedence. In other words, expressions are evaluated from left to right.

Examples:

5 * 3 + 10 = 25 because (5 * 3) + 10

10 + 5 * 3 = 45 because (10 + 5) * 3

Figure 1

To avoid a waste of network resources, there is no connection being held between the cloud

controller and a node between two distinct requests. That is, after the node has responded to the

cloud controller's request, the connection gets closed again. However, to signal that it is still

online and ready to handle requests, a node needs to send UDP messages (so called "isAlive"

packets) in a recurring manner - any other communication in this assignment is done using TCP.

Figure 2 illustrates this behavior: Imagine that in the example above, 'Node 1' would fail to send

isAlive packets to the 'Cloud Controller'. The 'Cloud Controller' will remove 'Node 1' from its list of

available nodes.

Figure 2

Please note that these figures are for illustration purposes and some details have been omitted

for the sake of simplicity. You find these details (parameters, return values etc.) below.

When implementing your solution, you should focus particularly on proper handling of multi-

threading and resource utilization! That is, make sure your code properly closes and cleans up

all resources (e.g., sockets, I/O streams), does not utilize excessive CPU resources (avoid "busy

waiting"!), and does not leave behind any inaccessible "zombie" threads. Also, make sure that all

components of your system can be individually stopped and restarted. In particular, it should be

possible to temporarily stop and restart the nodes, and the cloud controller should handle such

situations gracefully. If the cloud controller gets restarted, it will lose its state (which is intended),

but after some time the state should be recovered (e.g., list of nodes is updated as soon as

the !alive messages arrive).

In short summary, you should implement the following classes. The description further below

discusses the implementation details.

 client.Client

 controller.CloudController

 node.Node

To send requests between the different components (client, cloud controller, node) simply send

strings. You are not allowed to use any other types of objects. Especially, you must not use data

transfer objects (DTOs) or serialized objects (byte[]).

In other words, you must not use ObjectInputStream / ObjectOutputStream or use the Java

serialization mechanism in order to transmit objects.

Cloud Controller

Configuration Parameters

The cloud controller application reads the following parameters from

the controller.properties config file:

 tcp.port : the port to be used for instantiating a java.net.ServerSocket (handling TCP

connection requests from clients).

 udp.port : the port to be used for instantiating a java.net.DatagramSocket (handling UDP

isAlive from nodes).

 node.timeout : the period in milliseconds each node has to send an isAlive packet

(containing the node's TCP port and the supported operations). If no such packet is received

within this time, the node is assumed to be offline and is no longer available for handling

requests.

 node.checkPeriod : specifies the number of delay milliseconds to repeatedly test whether a

node has timed-out or not (see node.timeout).

You can assume that the parameters are valid and do not have to verify them.

Implementation Details

The first thing the cloud controller needs to do on startup is to read the user.properties file

which must be located in its classpath (the properties file is provided in the template). Each line of

a .properties-file stores a single property consisting of key and value. We will use a .properties-file

here to store information about each user, more precise, the user's password required for logging

in and the particular credits limiting the user in the amount of calculations he/she is allowed to

schedule. For instance, an entry in such a .properties-file for user alice with password 12345 and

500 credits looks this:

alice.password = 12345

alice.credits = 500

The class util.Config can be used to read .properties-files from the classpath. Note that you

cannot directly obtain a list of users from it. You somehow have to determine them on your own.

When communicating with clients and nodes, the credits of users may change. However, do

not store these changes back to the .properties-file: The credits of each user shall be reset to the

initial value after a restart of the cloud controller.

Next, create a java.net.ServerSocket as well as a java.net.DatagramSocket instance. We want

to concurrently listen for new connections from clients on the ServerSocket and wait for incoming

isAlive packets on the DatagramSocket . Since both relevant methods

(ServerSocket.accept() and DatagramSocket.receive()) are blocking operations, you shall

spawn a new thread for each in which you call these methods in a loop. This way, the cloud

controller is still able to listen for command line inputs.

Since a java.net.Socket , which is returned by ServerSocket.accept() , provides blocking I/O-

operations (via getInputStream() and getOutputStream()) and we want to serve multiple clients

simultaneously, again each socket connection shall be handled in a separate thread.

Study the java sockets and datagrams tutorial to get familiar with these constructs. We

recommend using thread pools (implementations of java.util.concurrent.ExecutorService) for

implementing the described behavior. They help to minimize the overhead of creating a thread

every time a request is received by reusing already existing thread instances. Java provides

some sophisticated implementations that can be easily instantiated by using the static factory

methods of java.util.concurrent.Executors . Anyway you may also manually instantiate new

threads on your own without using these classes. During the interview sessions, you should be

able to explain in detail which threading strategy you've implemented, how the threads are

reused in the pool, whether and how you limit the total number of concurrent threads, etc. and

especially why you have implemented it that way (what are the alternatives and what are the

drawbacks). Help can be found in the Java Concurrency Tutorial.

After loading the user information and initializing all sockets and threads, your cloud controller is

able to serve requests.

Concerning the DatagramSocket , isAlive messages are the only valid packets that may arrive

here. Nodes that did not send such a packet for the specified time (node.timeout) must be

concerned offline. You can either use a thread or a java.util.Timer in combination with

a java.util.TimerTask (be careful with resource handling!) to implement this kind of garbage

collector. Do a recurring check every node.checkPeriod ms. (If you know a better approach,

please feel free to implement it that way. There are a couple of more efficient solutions.)

In case a node goes offline, its usage statistics shall not get lost. It is enough to keep this

information in-memory, so the usage statistics can finally get lost after stopping the cloud

controller.

Whenever a request is processed successfully, the usage statistics is increased by 50 * (number

of result digits) e.g.: 11 * 22 = 242 and therefore usage is 50 * 3 = 150 . In every other

case e.g., division by zero, the usage statistics is not changed.

Concerning TCP communication, different client messages may arrive (described in detail in the

client part further below). Some of them require the cloud controller to forward them to one of the

available nodes (sometimes the cloud controller may need to adapt the message and add

additional information first). In this case, the cloud controller should always choose the least used

node that is supposed to be online and is able to handle the request, i.e., the node that has the

lowest usage statistics. Keep in mind that even though you listen for isAlive packets, this does not

guarantee a node reported to be online did not go down in the meantime.

If the client requests an operation that cannot be handled by any node or the user does not have

enough credits to start the computation, return the respective error message.

Again, if the calculation cannot be performed due to any reason which the user is not responsible

for, make sure that you do not subtract credits from the users account.

Because the cloud controller is the communication interface for both clients and nodes, the cloud

controller can easily keep track of the users' credits and the nodes' usage statistics.

http://java.sun.com/docs/books/tutorial/networking/sockets/index.html
http://java.sun.com/docs/books/tutorial/networking/datagrams/index.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

Each computation decreases the credits of a single user and increases the usage of the used

node. Naturally, the cloud controller has to count the number of operators in the expression.

Since you've got to manage users and nodes across threads you have to deal

with synchronization – make sure your code is thread-safe. Study the Java Concurrency

Tutorial if you are not familiar with threading and/or synchronization.

Finally, the cloud controller accepts the following interactive commands:

 !nodes

Prints out some information about each known node, online or offline. A node is known if it has

sent at least one isAlive packet since the cloud controller's last startup. The information shall

contain the node's IP, TCP port, online status (online/offline) and usage.

E.g.:

>: !nodes

1. IP: 127.0.0.1 Port: 10001 offline Usage: 750

2. IP: 127.0.0.2 Port: 10002 online Usage: 200

 !users

Prints out some information about each user, containing username, login status (online/offline)

and credits.

E.g.:

>: !users

1. alice online Credits: 500

2. bill offline Credits: 180

 !exit

Shutdown the cloud controller. Do not forget to logout each logged in user (you do not have to

inform them but you must close the connections properly). Note that as long as there is any non-

daemon thread alive, the application won't shut down, so you need to stop them. Therefore

call ServerSocket.close() , which will throw a java.net.SocketException in the thread blocked

in ServerSocket.accept() , and DatagramSocket.close() , which will throw a SocketException in

the thread blocked in DatagramSocket.receive() . All other threads currently alive should simply

run out. If you are using an ExecutorService you have to shut it down (there are a couple of

methods including shutdown() , shutdownNow() , awaitTermination() , etc.) and in case of

a Timer , call Timer.cancel() . Anyway you may not call System.exit() , instead free all

acquired resources orderly.

Further implementation details can be found in the following parts.

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

Node

Configuration Parameters

The node application reads the following parameters from the nodeX.properties config file:

 log.dir : the directory where the log files are written to (path relative to the project root

directory.

Note for Windows users: please make sure you are using forward slashes

(e.g., logs/node1).

 tcp.port : the port to be used for instantiating a ServerSocket (handling the TCP requests

from the cloud controller).

 controller.host : the host name (or an IP address) where the cloud controller is running.

 controller.udp.port : the UDP port where the cloud controller is listening for node

datagrams.

 node.alive : the period in ms the node needs to send an isAlive datagram to the cloud

controller.

 node.operators : a string of supported operators (+ , - , * , /) without whitespace

e.g., node.operators=+ (supports only addition) or node.operators=*/ (supports

multiplication and division).

You can assume that the parameters are valid and do not have to verify them.

Implementation Details

A node provides up to 4 arithmetic operations (node.operators). The calculation simply takes

two numeric operands and applies the operation + , - , * or / , respectively. If the calculation

is successful, the resulting number is sent back to the cloud controller. Otherwise, the cloud

controller somehow has to be informed about the reason of the failure.

To be able to receive requests from the cloud controller, you have to create

a ServerSocket again. Blocking I/O-operations should be handled in own threads using exactly

the same approach described for the cloud controller part. After a node has completely processed

a request and sent the response back to the cloud controller, the respective Socket should be

closed. For any new request, a new Socket needs to be created.

Furthermore, after the request has been handled a log file has to be written to the directory

specified by log.dir . The name of the file is <time>_<nodeId>.log where <time> is the current

time formatted as follows: yyyyMMdd_HHmmss.SSS and <nodeId> is the name of the node

e.g., 20141001_123015.937_node2.log .

For the sake of simplicity, you can assume that a node will never finish multiple requests at the

same millisecond. However, make sure that your logging facility is thread-safe and concurrent!

Hint: When dealing with Date , there could be a concurrency issue. Read the documentation

thoroughly and you will find out that ThreadLocal is ideally suited for this kind of problem.

Use ThreadLocal along with SimpleDateFormat to format the Date properly. During the interview

you should be able to explain briefly how this works and discuss alternatives.

http://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html

The log file has exactly two lines. The first line is the request whereas the second line is either the

result of the computation or a string with an error message in case of a failure.

5 / 2

3

or

5 / 0

Error: division by 0

From time to time, each node needs to send isAlive packets to the cloud controller to

demonstrate it is still online and is ready to handle client requests. The very first packet that

arrives works as a registration in the cloud (i.e., the cloud controller then is aware of the new

node). Open a DatagramSocket on an arbitrary port and send an isAlive-packet

every node.alive ms. Use the DatagramSocket.send() method for this. Making the node's TCP

port as well as the supported operations part of the isAlive message is very important so that the

cloud controller knows where to forward client requests (example: !alive 12502 */). Again, you

can either use a Thread or a Timer to continually send these datagrams.

The only interactive command the node accepts is !exit which shuts down the node. To this,

the same rules as for the cloud controller apply.

Client

Configuration Parameters

The client application reads the following parameters from the client.properties config file):

 controller.host : the host name (or an IP address) where the cloud controller is running.

 controller.tcp.port : the TCP port where the cloud controller is listening for client

connections.

You can assume that the parameters are valid and do not have to verify them.

Implementation Details

The client communicates with the cloud controller to schedule calculations.

One of the first things to do here is to create a Socket and connect to the cloud controller. You

will need the controller.host and controller.tcp.port values for this. Unlike the other

components, listening in a separate thread on the client side is not strictly required. Out- and in-

bound communication may be blocking and in a single thread. Outgoing messages are sent each

time the user enters one of the interactive commands described below. Keep the connection

open as long as either the client or the cloud controller shuts down.

Interactive commands

 !login <username> <password>

Log in the user. Before the user hasn't successfully logged in, this is the only command that will

be executed by the cloud controller.

E.g.:

>: !login alice 23456

Wrong username or password.

>: !login alice 12345

Successfully logged in.

>: !login bill 23456

You are already logged in!

 !credits

Requests the user's current amount of credits. Requires a successfully logged in user.

E.g.:

>: !credits

You have 500 credits left.

 !buy <credits>

Allows the user to increase his/her amount of credits. Requires a successfully logged in user.

E.g.:

>: !credits

You have 500 credits left.

>: !buy 1000

You now have 1500 credits.

 !list

Gets the list of arithmetic operations that can be used. Requires a successfully logged in user.

E.g.:

>: !list

+-*

 !compute <term>

Sends the given mathematical term to the controller, who returns the result or an appropriate

error message in case of a failure.

Eg.:

>: !compute 5 + 5

10

 !logout

Log out the currently logged in user, and drop any state information from memory that the client

has associated with this user.

 !exit

Shutdown the client: Logout the user if necessary and be sure to release all resources, stop all

threads and close any open sockets.

General
Your implementation should be able to deal with unknown commands or missing arguments

(reply with a simple usage message in this case). The cloud controller should also make sure that

clients cannot execute any commands different from !login or !exit before they have actually

logged in successfully.

Test Scenario
The syntax of the test scenarios is very simple, as illustrated by the example below

(see src/test/resources/00_login_test.txt in the template):

* CloudController controller

* Client alice

* Node node1

alice: !credits

> verify("500", T(test.util.Flag).NOT)

alice: !login alice 12345

> verify("success")

alice: !credits

> verify("500")

controller: !users

> verify(".*alice.*online.*bill.*offline.*", T(util.Flag).REGEX)

controller: !exit

alice: !exit

node1: !exit

There are four types of commands:

 comments (lines starting with #)

e.g. # check whether the credits are updated

 start instruction (lines starting with a star *)

e.g. * Client alice

 evaluation commands (lines starting with a > are executed directly by the JVM)

e.g. > System.out.println("check done")

 terminal commands (simulates input on a component)

e.g. alice: !credits

The example first starts a cloud controller named "controller", a client named "alice" and a node

name "node1" (lines starting with a star, *), simulating three separate "terminal windows". The

following lines start with the identifier of the terminal ("alice", "controller" and "node1"), followed

by a colon (":"). After the colon, you can define the command that should be executed.

The ScenarioTest will simply execute these commands one after the other, which may prove

convenient as you develop your solution. You may extend the provided test scenario

in src/test/resources/scenario . Steps are simple text files that should start with an increasing

two-digits number followed by an underscore ('_'), e.g., 01_mytest1.txt , 02_mytest2.txt etc.

As already mentioned, using the test script feature is optional.

Zuletzt geändert: Donnerstag, 9. Oktober 2014, 11:18

