
B2: Static Code Analysis and Optimization

Advanced Computer Architecture

Daniel Mueller-Gritschneder

Agenda

• Control and Data Flow

• Code Optimization

• Live Variable Analysis

V1.0 ACA 2

V1.0 ACA 3

B2-0 Recap - Compiler Basics

4

Compilation C-code:
val1=val1+4;

Assembly-code:
ADDI x10,x10,4

Machine code:
0x00450513

Compilation Flow

Program (C, C++)

Frontend (Lexical, Syntax, Semantical Analyzer)

Abstract Syntax Tree (AST)

Lowering

Intermediate Representation Code

Backend (Code Generation)

Assembler Code

So
ft

w
ar

e
 c

o
m

p
ila

ti
o

n

Optimization

V1.0 ACA 5

V1.0 ACA 6

B2-1 Control and Data Flow Analysis

Running Example - Goertzel-Algorithm in C

• Computes power spectrum for one frequency component.

• C-Code:

float goertzel (float freq, const float x[])

{

int i;

float coeff, s, s_prev1 ,s_prev2, power;

s_prev1 = 0.0;

s_prev2 = 0.0;

coeff = 2.0 * cos(2.0 * 3.14 * freq);

for (i = 0; i < 64; i++) {

 s = x[i] + (coeff * s_prev1) - s_prev2;

 s_prev2 = s_prev1;

 s_prev1 = s;

}

power = (s_prev1*s_prev1) + (s_prev2*s_prev2) - (s_prev1*s_prev2*coeff);

return power;

}

ACA
V1.0 7

Basic Blocks

• A basic block is a maximal sequence of instructions with:
• no jump target labels (except at the first instruction), and

• no jumps (except in the last instruction)

• Idea:
• Cannot jump into a basic block (except at beginning)

• Cannot jump out of a basic block (except at end)

• A basic block is a single-entry, single-exit, straight-line code segment

ACA
V1.0 8

Control Flow Graph (CFG) (1/2)

• Control flow graph:

• Nodes are basic blocks of the algorithm

• Edges: Next possible basic blocks
• Branches in the CFG: Conditional constructs
• Cycles in the CFG: Loop constructs

• Alternative paths in the CFG describe alternative flow of control (only one
of them is executed!)

ACA
V1.0 9

ACA

• Example 1: Goertzel Algorithm (IR Code)

B1

B2

B3

Control Flow Graph (CFG) (2/2)

B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 2*3.14

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i]

t5 := t4 - s_prev2

s := t3 + t5

s_prev2 := s_prev1

s_prev1 := s

i:=i+1

if i < 64 goto B2

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power

V1.0 10

Data Flow Graph (DFG) (1/3)

• DFG for basic block Bx:

• DFG is directed acyclic graph

• Nodes: Operations inside one basic block Bx

• Number of Operations:

• Edges describe data dependencies between operations

• Paths in the DFG describe concurrent operations, that may be executed in parallel.

ACA
V1.0 11

Data Flow Graph (DFG) (3/3)



+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Three address code:

B3: t6:=s_prev1 * s_prev1

 t7:=s_prev2 * s_prev2

 t8:=s_prev1 * s_prev2

 t9:=t8 * coeff

 t10:=t6+t7

 power:=t10 – t9

return power

Basic block B3 of the Goertzel algorithm:

power = (s_prev1*s_prev1) + (s_prev2*s_prev2) - (s_prev1*s_prev2*coeff);

return power;

ACA

return

V1.0 12

Control Data Flow Graph (CDFG) (1/2)

• Hierarchical graph: Each node of CFG holds DFG of basic block.

• CDFG:

• Paths for edges between basic blocks: Alternative execution of control flow

• Path for edges inside one basic block: Concurrency for possible parallel execution of
operations

ACA
V1.0 13

ACApower

B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 2*3.14

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i]

t5 := t4 - s_prev2

s := t3 + t5

s_prev2 := s_prev1

s_prev1 := s

i:=i+1

if i < 64 goto B2

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power

s_prev1 s_prev2 i coeff

0.0 0 freq 3.14


cos

2







coeff s_prev1 s_prev2

−
+

+

s_prev2 is_prev1

641



coeff s_prev1 s_prev2

 

 +
−

return

read x

ix

= = =

==

V1.0 14

Control Data Flow Graph (CDFG) (2/2)

V1.0 ACA 15

B2-2 Code Optimization Steps

Local Code Optimization Techniques

• Local optimization techniques take into consideration only one single basic block:

• Common techniques:
• Common subexpression elimination

• Dead code elimination

• Arithmetic identities

• Constant folding (propagation)

• Strength reduction

• Tree height reduction

ACA
V1.0 16

Common Subexpression Elimination

• Two instructions execute same operation on the same operands.

• One operation can be replaced by a copy statement.

• SSA form shows common subexpressions

Three address code:
a := b + c

b := a - d

c := b + c

d := a - d

SSA:
a$1 := b$1 + c$1

b$2 := a$1 – d$1

c$2 := b$2 + c$1

d$2 := a$1 – d$1

Optimized Three address code:
a := b + c

b := a - d

c := b + c

d := b

Optimized SSA:
a$1 := b$1 + c$1

b$2 := a$1 – d$1

c$2 := b$2 + c$1

d$2 := b$2

ACA
V1.0 17

Dead Code Elimination

• Live variable: Value of variable is used as program output or
input to other operation.

• Lifetime of variable determined by live variable analysis.

• Delete any node from DFG that has no live variable attached
to one of its leaving edges.

Three address code:
a := b + c

b := 2*d

a := b - c

SSA:
a$1 := b$1 + c

b$2 := 2*d

a$2 := b$2 - c

Optimized Three address code:
b := 2*d

a := b - c

Optimized SSA:
b$2 := 2*d

a$2 := b$2 - c



+
−

bc

a$1 dead because value rewritten

a

d 2

b

a

ACA
V1.0 18

Algebraic Identities

• Use algebraic identities to reduce number of operations

Three address code:
a:=b+0

c:=d*1

f:=g*0

h:=i*1

j:=k/1

Optimized Three address code:
a:=b

c:=d

f:=0

h:=i

j:=k

Three address code:
t1:=a*a

t2:=b*b

t3:=a*b

t4:=2*t3

t5:=t1+t2

c:=t4+t5

Optimized Three address code:
t1:=a+b

c:=t1*t1

ACA
V1.0 19

Strength Reduction

• Replace operation with equivalent operation that is cheaper
to execute in hardware.

Three address code:
x:=2*y

v:=w/2

Optimized Three address code:
x:=y+y

v:=w*0.5

Optimized Three address code:
x:=y<<1

v:=w>>1

Division only if y and w are unsigned type or
signed positive

ACA
V1.0 20

Constant folding (propagation)

• Operations on two constant values can be computed on compilation time.

• Example: First basic block of Goertzel algorithm

B1: s_prev1 := 0.0

 s_prev2 := 0.0

 i:=0

 t1 := 2*3.14

 f := t1 * freq

 param f

 t2 := call cos,1

 coeff:=2.0*t2

B1: s_prev1 := 0.0

 s_prev2 := 0.0

 i:=0

 f := 6.28 * freq

 param f

 t2 := call cos,1

 coeff:=2.0*t2

ACA
V1.0 21

Tree Height Reduction

• Increase possible concurrency by avoiding data dependencies.

• Increases possibilities for parallel execution in hardware
implementations or on multi-issue processors.

e:=d+(c-a*b)



−

+

t1:= a * b

t2:= c - t1

e:= d + t2

No parallel
execution due
to data
dependencies.

a b

c

d

e

e:=(d+c)-a*b

 +

−

t1:= a * b

t2:= d + c

e:= t2 – t1

Parallel
execution of
multiplication
and addition
possible.

a b c d

e

Tree height = 3.

Tree height = 2.

ACA
V1.0 22

Global Code Optimization Techniques

• Global optimization techniques optimize the code by considering more than one basic
block

• Assumption: Program spends most time in most inner loops.

• Common techniques:
• Global common subexpression elimination

• Global dead code elimination

• Code Motion

• Induction variable reduction

• Loop Unrolling

ACA
V1.0 23

Code Motion

• Move statements that always compute same value in each loop iteration out of loop
body.

i:=0

 c:=0

B2: c:=c+a

 c:=c+b

 i:=i+1

 if i < 16 goto B2

i:=0

 c:=0

 t1:=a+b

B2: c:=c+t1

 i:=i+1

 if i < 16 goto B2

Optimized three address code:Three address code:

ACA
V1.0 24

i:=0

j:=0

k:=j

B2: t1:=x[j]

 t2:=k-1

 t3:=c[t2]

 t4:=t1+t3

 c[k]:= t4

 j:=j+4

 k:=j

 i:=i+1

 if i < 16 goto B2

i:=0

B2: j:=i*4

 k:=i*4

 t1:=x[j]

 t2:=k-1

 t3:=c[t2]

 t4:=t1+t3

 c[k]:= t4

 i:=i+1

 if i < 16 goto B2

Induction Variable Reduction

• Induction variables change by constant value in each iteration
of loop.

• Apply strength reduction and common subexpression
elimination on induction variables.

Optimized three address code:Three address code:

ACA
V1.0 25

Loop classification

• Do-all loops: No data dependencies between loop iterations.

• Do-across loops: There exist possible data dependencies between loop iterations.

i=0;

while (i<4){

 c[i]=a[i]+b[i];

 i++;

}

i:=0

B2: t1:=a[i]

 t2:=b[i]

 t3:=t1+t2

 c[i]:=t3

 i:=i+1

 if i < 4 goto B2

i=0;

c=0;

while (i<4){

 c=c-b[i];

 i++;

}

i:=0

 c:=0

B2: t1:=b[i]

 c:=c-t1

 i:=i+1

 if i < 4 goto B2

ACA
V1.0 26

Loop Unrolling

• Loop unrolling executes several loop iterations in one single iteration of optimized loop.

• Unroll factor: Number of non-optimized loop iterations executed in one iteration of optimized
loop.

i:=0

B2: t1:=a[i]

 t2:=b[i]

 t3:=t1+t2

 c[i]:=t3

 i:=i+1

 if i < 4 goto B2

t1:=a[0]

t2:=b[0]

t3:=t1+t2

c[0]:=t3

t1:=a[1]

t2:=b[1]

t3:=t1+t2

c[1]:=t3

t1:=a[2]

t2:=b[2]

t3:=t1+t2

c[2]:=t3

t1:=a[3]

t2:=b[3]

t3:=t1+t2

c[3]:=t3

i:=0

B2: t1:=a[i]

 t2:=b[i]

 t3:=t1+t2

 c[i]:=t3

 i:=i+1

 t4:=a[i]

 t5:=b[i]

 t6:=t4+t5

 c[i]:=t6

 i:=i+1

 if i < 4 goto B2

Unroll factor

Unroll factor 4 (fully unrolled)
ACA

V1.0 27

V1.0 ACA 28

B2-3 Live Variable Analysis

Data-flow Analysis

• Live Variable Analysis is a data-flow analysis.

• Data-flow analysis determines data-flow values at each point
in the program

• Data-flow value:
• The program state we are interested in

• For Live Variable Analysis: Is a variable live?

• Set of data-flow values before
Intermediate representation (IR) statement :

• Set of data-flow values after
Intermediate representation (IR) statement :

ACA
V1.0 29

Data-flow Transfer Functions

• Each IR statement applies a transfer function on the data flow values:

• Forward flow analysis:

• Backward flow analysis:

• The transfer function of a complete basic block is the composition
of the transfer functions of all IR statements inside the basic block:

• Forward flow problem:

• Backward flow problem:

ACA
V1.0 30

Control Flow Constraints

• Flow of control places some constraints on the data-flow values.

• Within one basic block, the data flow values after an IR statement are the same as the data-flow
values before the next IR statement (same point in the program):

• Between basic blocks the control flow constraints are:
• Forward flow problem: The data flow values at the entry to the basic block are the union of the data-flow

values at the end of all its predecessor basic blocks :

• Backward flow problem: The data flow values at the end to the basic block are the union of the data-flow
values at the entry of all its successor basic blocks :

ACA
V1.0 31

• Variables are live from generation until last
use as operand.

• For each basic block:
• Variables live at entry of basic block:

• All variables used as operands in this basic
block, which values are not computed before
use inside this basic block.

• The variables live at end of basic block,
which values are not computed inside the
basic block.

• Variables life at end of basic block are the union of
all variables live at entry to all its successor basic
blocks.

Variable Liveliness Analysis

return y

Start

End

x,a,b live

x,a,b,y,i live

y live

y:=0

i:=0

t1:=x[i]

if (t1<=0) goto B_else

t2:=y | a

t3:=y & b

t4= t2 ^ t3

y:= y + t4

i := i+1

if (i<10) goto B_loop

y := y + t1

x,a,b,y,i live

x,a,b,y,i live

x,a,b,y,i live

x,a,b,y,i live

x,a,b,y,t1,i live

x,a,b,y,i live

B1:

B2:

B3:

B4:

B5:

x,a,b,y,t1,i live

x,a,b,y,i live

B6:

ACA
V1.0 32

Sets for Live Variable Analysis

• Variables live at entry to basic block :

• Variables live at end of basic block :

• Set of variables defined (definitely assigned a value) in basic block
prior to any use of that variable in

• Set of variables whose values may be used in prior to any
definition of the variable:

ACA
V1.0 33

Conditions for Live Variable Analysis

• Live Variable Analysis is a backward flow analysis

• Transfer function:

• Control flow constraint:

 Sx are all successor basic blocks of

• Boundary condition: No variables live at end of function

• Task: Find all sets and such that all three
conditions are satisfied.

ACA
V1.0 34

Algorithm for Live Analysis

• Iterative flow-analysis algorithm:

Live_Variable_Analysis(CFG,def[Bx],use[Bx])

{

 for each basic block B_x

 IN[B_x] = {}

 while (changes to any IN[B_x] occur)

 {

 for each basic block B_x other than end

 {

 OUT[B_x] = Union of IN[S_x], S_x all successors of B_x

 IN[B_x] = Union(use[B_x],(OUT[B_x] – def[B_x]));

 }

}

return IN[B_x],OUT[B_x]

}

ACA
V1.0 35

Why variable lifetimes are important?

• The compiler does not need to assign registers to all variables during their full lifetime
(from generation to last use).
• We usually only need them in registers when they are generated or used (load-store architectures).
• But: Keeping them in registers is beneficial to avoid load and store operations.

• The number of required registers (register pressure) depend on the number of variables,
which are live at a certain point in a program (conflicting variables).

• Registers can be reused in case that the lifetime of variables does not overlap
(non-conflicting variables).

• If the compiler runs out of registers, he needs to store values on the stack
(register spilling).

V1.0 ACA 36

Conclusion

• Control and Data Flow

• Code Optimization

• Live Variable Analysis

V1.0 ACA 37

	Folie 1
	Folie 2: Agenda
	Folie 3
	Folie 4
	Folie 5: Compilation Flow
	Folie 6
	Folie 7: Running Example - Goertzel-Algorithm in C
	Folie 8: Basic Blocks
	Folie 9: Control Flow Graph (CFG) (1/2)
	Folie 10: Control Flow Graph (CFG) (2/2)
	Folie 11: Data Flow Graph (DFG) (1/3)
	Folie 12: Data Flow Graph (DFG) (3/3)
	Folie 13: Control Data Flow Graph (CDFG) (1/2)
	Folie 14: Control Data Flow Graph (CDFG) (2/2)
	Folie 15
	Folie 16: Local Code Optimization Techniques
	Folie 17: Common Subexpression Elimination
	Folie 18: Dead Code Elimination
	Folie 19: Algebraic Identities
	Folie 20: Strength Reduction
	Folie 21: Constant folding (propagation)
	Folie 22: Tree Height Reduction
	Folie 23: Global Code Optimization Techniques
	Folie 24: Code Motion
	Folie 25: Induction Variable Reduction
	Folie 26: Loop classification
	Folie 27: Loop Unrolling
	Folie 28
	Folie 29: Data-flow Analysis
	Folie 30: Data-flow Transfer Functions
	Folie 31: Control Flow Constraints
	Folie 32: Variable Liveliness Analysis
	Folie 33: Sets for Live Variable Analysis
	Folie 34: Conditions for Live Variable Analysis
	Folie 35: Algorithm for Live Analysis
	Folie 36: Why variable lifetimes are important?
	Folie 37: Conclusion

