Nformatics

Advanced Computer Architecture
B2: Static Code Analysis and Optimization

Daniel Mueller-Gritschneder

e Control and Data Flow
 Code Optimization

* Live Variable Analysis

V1.0 ACA 2

B2-0 Recap - Compiler Basics

V1.0 ACA

Compilation

C-code:

vall=vall+4;

7 -

C/C++ Source
Makefile and Headers
(*.c, *.cpp, *.h)

Assembly Source| |Linker Command
Files (*.asm,*.s) File (*.Ink)

I

| Make Utility \

4) J

‘ Preprocessor |
\ v\

\A' I Compiler

|Archive Utility }4

B
3

'

Object Files (*.0)

!

=

Library Files (*.a, |
*lib)

Linker and Locator

.

N

+

Shared Object
File (*.so, *.dll)

Executable File
(*.elf, *.hex,
etc.)

4

J

Link Map File
(*.map)

Assembly-code:
ADDI x10,x10,4

Machine code:
0x00450513

Compilation Flow

Program (C, C++)

@

[Frontend (Lexical, Syntax, Semantical Analyzer) J

@

Abstract Syntax Tree (AST)

@

Lowering

Intermediate Representation Code ! | Optimization J

{ Backend (Code Generation)

v ~

Assembler Code

@

Software compilation
'S

@

V1.0 ACA

B2-1 Control and Data Flow Analysis

V1.0 ACA

Running Example - Goertzel-Algorithm in C

* Computes power spectrum for one frequency component.

e C-Code:

float goertzel (float freqg, const float x[])
{

int 1i;

float coeff, s, s prevl ,s prevZ, power;

s prevl = 0.0;

s prevZz = 0.0;

coeff = 2.0 * cos (2.0 * 3.14 * freq);

for (i = 0; 1 < 64; i++) {

s = x[1] + (coeff * s prevl) - s prevz;
S _prevZz = s prevl;
s_prevl = s;
}
power = (s prevl*s prevl) + (s prevZ2*s prev2) - (s prevl*s prev2*coeff);

return power;

}

V1.0 ACA 7

Basic Blocks

* A basic block is a maximal sequence of instructions with:
* no jump target labels (except at the first instruction), and
* no jumps (except in the last instruction)

* |dea:
e Cannot jump into a basic block (except at beginning)
e Cannot jump out of a basic block (except at end)
* A basic block is a single-entry, single-exit, straight-line code segment

V1.0 ACA 8

Control Flow Graph (CFG) (1/2)

Control flow graph: GC(V, E)

Nodes are basic blocks of the algorithm

V = {B@ L1 = 1,...,%3}

Edges: Next possible basic blocks
* Branches in the CFG: Conditional constructs
e Cycles in the CFG: Loop constructs

E = {(BZ,BJ) . Z,] — 1, ...,?’LB}

Alternative paths in the CFG describe alternative flow of control (only one
of them is executed!)

V1.0 ACA 9

Control Flow Graph (CFG) (2/2)

* Example 1: Goertzel Algorithm (IR Code)

Bl

B2

B3

V1.0 ACA

Bl: s prevl 0.0
s prev2 := 0.0
1:=0
tl = 2*3.14
f :=tl * freq
param f
t2 := call cos,1
coeff:=2.0*t2
B2: t3:= coeff * s prevl
td:= x[1i]
t5 := t4 - s prev2
s := t3 + t5
s prev2 := s prevl
s prevl := s
1:=1+1
if i < 64 goto B2
B3: t6o:= s prevl * s prevl
t7:= s prevZ * s prev2
t8:= s prevl * s prev2

£t9:= t8 * coeff
tl1l0:= toe+t7
power:= tl0 - t9
return power

10

Data Flow Graph (DFG) (1/3)

DFG for basic block Bx: Gy p1(V, E)
DFG is directed acyclic graph

Nodes: Operations op;inside one basic block Bx

Number of Operations: T4 Bz
V={op;:i=1,...,n4.8:}
Edges describe data dependencies between operations

E = {(opi,opj) : 1,5 =1,....,n4 Bz }
Paths in the DFG describe concurrent operations, that may be executed in parallel.

V1.0 ACA 11

Data Flow Graph (DFG) (3/3)

V1.0

Basic block B3 of the Goertzel algorithm:

power = (s prevl*s prevl) + (s prevZ2*s prev2)
return power;

- (s_prevl*s prev2*coeff);

Three address code:

B3: tb6:=s prevl * s prevl
t/7:=s prev2z2 * s prevz
t8:=s prevl * s prev2
t9:=t8 * coeff
tl0:=to+t7
power:=t10 - t9
return power

s prevl

S prevz

coeff

ACA

12

Control Data Flow Graph (CDFG) (1/2)

Hierarchical graph: Each node of CFG holds DFG of basic block.

CDFG: Gc,d(va E)

Paths for edges between basic blocks: Alternative execution of control flow

Path for edges inside one basic block: Concurrency for possible parallel execution of
operations

V1.0 ACA 13

Control Data Flow Graph (CDFG) (2/2)

o O
o O

@ Bl: s prevl
S _prev2

‘%’ 1:=0
(=) (=) @ 1 := 2%3.14

f :=tl * freq
param f

t2 := call cos,1
coeff:=2.0*t2

B2: t3:= coeff * s prevl
td:= x[1]
t5 := t4 - s prev2
s := t3 + tb
s _prev2z := s prevl
s prevl := s
1:=1+1
s prevl s _prevz i if 1 < 64 goto B2

|
i' B3: t6:= s prevl * s prevl

coeff s prevl s prev2 t7:= s prev2 * s prev2

A y t8:= s prevl * s prev2
t9:= t8 * coeff
t1l0:= toe+t7
power:= tl10 - t9
return power

V1.0 14

V1.0

B2-2 Code Optimization Steps

ACA

15

Local Code Optimization Techniques

* Local optimization techniques take into consideration only one single basic block:

 Common techniques:
« Common subexpression elimination
* Dead code elimination
* Arithmetic identities
* Constant folding (propagation)
e Strength reduction
* Tree height reduction

V1.0 ACA 16

Common Subexpression Elimination

e Two instructions execute same operation on the same operands.
* One operation can be replaced by a copy statement.

e SSA form shows common subexpressions

Three address code: Optimized Three address code:
a := b + c a := b + c

b :=a -4d b :=a -d

c := b + c c := b + cC

d :=a -d d :=Db

SSA: Optimized SSA:

as$l := b$l + c$1 as$l := bS1l + cS$1

b$2 := a$l - ds$1 b$2 := a$l - dsl

c$2 := bS$2 + c$1 c$2 := bS2 + cS1

d$2 := a$l - d$1 ds$2 := bS$2

V1.0 ACA 17

Dead Code Elimination

* Live variable: Value of variable is used as program output or
input to other operation.

* Lifetime of variable determined by live variable analysis.

* Delete any node from DFG that has no live variable attached
to one of its leaving edges.

Three address code:

Optimized Three address code:

a := b + c d 2 b := 2*d
b := 2*d a :=b - c
a := b - cC C b
b
SSA:
as$l := bS1l + ¢ Optimized SSA:
bs$2 := 2*d bS2 := 2*d
as$2 := bS$2 -wg as2 := DbsS2 - c
4 a

a$S1 dead because value rewritten

V1.0 ACA 18

Algebraic Identities

* Use algebraic identities to reduce number of operations

Three address code: Optimized Three address code:
a:=b+0 a:=b
c:=d*1 cee
f:=g*0 o=
h:=1*1 h:=1
j:=k/1 =
Three address code: Optimized Three address code:
tl:=a*a tl:=a+b
£2:=b*b c:=tl*tl
t3:=a*b
td:=2*t3
thi=tl1+t2
c:=t4+tbh
V1.0 ACA

19

Strength Reduction

* Replace operation with equivalent operation that is cheaper
to execute in hardware.

Three address code: L
X:=2*y Optimized Three address code:
vi=w/2 X:=yty

v:=w*0.5

Optimized Three address code:
xX:=y<<1
vVi=w>>1

Division only if v and w are unsigned type or
signed positive

V1.0 ACA 20

Constant folding (propagation)

* Operations on two constant values can be computed on compilation time.
* Example: First basic block of Goertzel algorithm

Bl: s prevl := 0.0 Bl: s prevl := 0.0
s prevZ2 := 0.0 s prev2 := 0.0
i:=0 1:=0
tl := 2*3.14 f := 6.28 * freq
f := tl * freq param £
param f t2 := call cos,1
t2 := call cos,1 coeff:=2.0%t2
coeff:=2.0%t2

V1.0 ACA 21

Tree Height Reduction

* Increase possible concurrency by avoiding data dependencies.

* Increases possibilities for parallel execution in hardware
implementations or on multi-issue processors.

e:=d+ (c-a*b) 2 < e:=(d+c)-a*b a b ¢ d
tl:= a * b tl:= a * b
t2:= ¢ - tl C t2:= d + c
e:= d + t2 e:= t2 - tl
d
No parallel Parallel
execution due execution of e
multiplication
to data . ! |p|. .I Tree height = 2.
dependencies. e and addition
possible.

Tree height = 3.

V1.0 ACA 22

Global Code Optimization Techniques

* Global optimization techniques optimize the code by considering more than one basic
block

e Assumption: Program spends most time in most inner loops.

* Common techniques:
* Global common subexpression elimination
Global dead code elimination
Code Motion
Induction variable reduction
Loop Unrolling

V1.0 ACA 23

Code Motion

* Move statements that always compute same value in each loop iteration out of loop
body.

Three address code: Optimized three address code:

i:=0 1:=0
c:=0 c:=0
B2: c:=c+a tl:=a+b
c:=cCc+b B2: c:=c+tl
i:=1+1 i:=1i+1
1f 1 < 16 goto B2 if 1 < 16 goto B2
ACA

V1.0 24

Induction Variable Reduction

* Induction variables change by constant value in each iteration
of loop.

* Apply strength reduction and common subexpression
elimination on induction variables.

Three address code: Optimized three address code:

i:=0
J:=0

1:=0 k:=]

B2: J:=1*4 B2: tl:=x[7]
k:=1i*4 t2:=k-1
tl:=x[]] t3:=c[t2]
t2:=k-1 td:=t1+t3
t3:=c[t2] clk]:= t4
td:=t1+t3 Ji=9+4
clk]:= t4 k:=7
i:=i+1 1:=1+1
if 1 < 16 goto B2 if i < 16 goto B2

V1.0 ACA 25

Loop classification

* Do-all loops: No data dependencies between loop iterations.

1:=0
B2: tl:=a[i]
i=0; t2:=b[1i]
while (i<4){ t3:=t1+t2
clil=ali]l+b[i]; cl[i]:=t3
S ir=i+1
} if 1 < 4 goto B2

* Do-across loops: There exist possible data dependencies between loop iterations.

' 1:=0

— c:=0 |

while (i<4){ B2 tl:=bli]
c=c-b[i]; ?‘:?‘tl
1 AR ¢ 1:=1+1

) if 1 < 4 goto B2

V1.0 ACA 26

Loop Unrolling

* Loop unrolling executes several loop iterations in one single iteration of optimized loop.

* Unroll factor: Number of non-optimized loop iterations executed in one iteration of optimized

V1.0

loop.

1:=0 1:=0 tl:=a[0]
B2: tl:=ali] B2: tl:=a[i] t2:=b[0]
t2:=b[i] t2:=b[1i] t3:=t1+t2
t3:=t1+t2 t3:=t1+t2 c[0]:=t3
cl[i]:=t3 cl[i]:=t3 tl:=al[l]
i:=1+1 i:=1+1 t2:=b[1]
if i < 4 goto B2 td:=a[i] t3:=t1+t2
t5:=b[1i] c[l]:=t3

t6:=t4+t5 tl:=al2]

cl[i]:=t6 t2:=b[2]
ii=1i4+1 t3:=tl+t2

if i < 4 goto B2 cl[2]:=t3

tl:=al[3]

Unroll factor t2:=b[3]
t3:=tl1+t2

c[3]:=t3

ACA

Unroll factor 4 (fully unrolled)

27

V1.0

B2-3 Live Variable Analysis

ACA

28

Data-flow Analysis

Live Variable Analysis is a data-flow analysis.

Data-flow analysis determines data-flow values at each point
in the program

Data-flow value:
* The program state we are interested in
* For Live Variable Analysis: Is a variable live?

Set of data-flow values before
Intermediate representation (IR) statement S;: IN|s;]

* Set of data-flow values after
Intermediate representation (IR) statement s;: OUT[s;]

V1.0 ACA 29

Data-flow Transfer Functions

* Each IR statement applies a transfer function on the data flow values:

* Forward flow analysis: OUT[s;| = fs.;(IN[s;])

e Backward flow analysis: IN[si] = fs,z'(OUT[Sz‘])

* The transfer function of a complete basic block B.. is the composition
of the transfer functions of all IR statements inside the basic block:

fB,:B — fS,l Ofs,z ... Ofs,n

* Forward flow problem: OUT[B,] = f5..(IN[B,])

» Backward flow problem: IN[B,] = f5..(OUT|B,])

V1.0 ACA *°

Control Flow Constraints

* Flow of control places some constraints on the data-flow values.

* Within one basic block, the data flow values after an IR statement are the same as the data-flow
values before the next IR statement (same point in the program):

OUT[SZ] = IN[S?;_|_1]

* Between basic blocks the control flow constraints are:
* Forward flow problem: The data flow values at the entry to the basic block are the union of the data-flow
values at the end of all its predecessor basic blocks Py :

IN[B,] = Up. Out[P]

* Backward flow problem: The data flow values at the end to the basic block are the union of the data-flow
values at the entry of all its successor basic blocks .S :

OUT(B,| = Us. INIS,]

V1.0 ACA 31

Variable Liveliness Analysis

Start
* Variables are live from generation until last ©

v X,a,b live
use as operand. B1: y:=0
1

i:=0

* For each basic block:

* Variables live at entry of basic block:

X,a,b,y,1 live

. . . . vx,a,b,y,i live
e All variables used as operands in this basic B2: £1 =% [1]
bloc.k, \{vhlch_value_s are not computed before Lf (t1<=0) goto B else
use inside this basic block. o
. .] x,a,b,y,tl,1 lifve
* The variables live at end of basic block, x,a,b,y,1i 1i
which values are not computed inside the B3: t2:=y | a ,b,y,tl,1i| live
basic block. t3:=y & b Bd:| y := y + tl
* Variables life at end of basic block are the union of td= t2 "~ t3 x, &b, y,1 liye
all variables live at entry to all its successor basic yi=y + t4
blocks. X,a,0,y,1 I3
X,a,b,y,1 live
B5: i = i+l
if (i<10) goto B loop
X,a,b,y,1i live

vy live

Bo:

return y

V1.0 ACA 32

Sets for Live Variable Analysis

* Variables live at entry to basic block B:
IN[B,]
* Variables live at end of basic block B, :
OUT|B,]|

» Set of variables defined (definitely assigned a value) in basic block B,
prior to any use of that variable in B,

DEF|B,]

* Set of variables whose values may be used in B prior to any B,
definition of the variable:

USE|B,]

V1.0 ACA 33

Conditions for Live Variable Analysis

* Live Variable Analysis is a backward flow analysis
* Transfer function: /N[B,] = USE[B,] U (OUT|B,] — DEF|B,))

* Control flow constraint: OUT[B,] = Jg INI[S.]

S, are all successor basic blocks of B,

* Boundary condition: No variables live at end of function

IN[END] = {}

* Task: Find all sets TN [B,| and OUT'[B,.] such that all three
conditions are satisfied.

V1.0 ACA 34

Algorithm for Live Analysis

* Iterative flow-analysis algorithm:

Live Variable Analysis (CFG,def [Bx],use[Bx])
{
for each basic block B x
IN[B_x] = {}
while (changes to any IN[B x] occur)
{
for each basic block B x other than end
{
OUT[B x] = Union of IN[S x], S x all successors of B x
IN[B x] = Union(use[B x], (OUT[B x] - def[B x]));

}
return IN[B x],O0UT[B x]

V1.0 ACA 35

Why variable lifetimes are important?

* The compiler does not need to assign registers to all variables during their full lifetime
(from generation to last use).

e We usually only need them in registers when they are generated or used (load-store architectures).
* But: Keeping them in registers is beneficial to avoid load and store operations.

 The number of required registers (register pressure) depend on the number of variables,
which are live at a certain point in a program (conflicting variables).

e Registers can be reused in case that the lifetime of variables does not overlap
(non-conflicting variables).

* If the compiler runs out of registers, he needs to store values on the stack
(register spilling).

V1.0 ACA 36

Conclusion

e Control and Data Flow
 Code Optimization

* Live Variable Analysis

V1.0 ACA 37

	Folie 1
	Folie 2: Agenda
	Folie 3
	Folie 4
	Folie 5: Compilation Flow
	Folie 6
	Folie 7: Running Example - Goertzel-Algorithm in C
	Folie 8: Basic Blocks
	Folie 9: Control Flow Graph (CFG) (1/2)
	Folie 10: Control Flow Graph (CFG) (2/2)
	Folie 11: Data Flow Graph (DFG) (1/3)
	Folie 12: Data Flow Graph (DFG) (3/3)
	Folie 13: Control Data Flow Graph (CDFG) (1/2)
	Folie 14: Control Data Flow Graph (CDFG) (2/2)
	Folie 15
	Folie 16: Local Code Optimization Techniques
	Folie 17: Common Subexpression Elimination
	Folie 18: Dead Code Elimination
	Folie 19: Algebraic Identities
	Folie 20: Strength Reduction
	Folie 21: Constant folding (propagation)
	Folie 22: Tree Height Reduction
	Folie 23: Global Code Optimization Techniques
	Folie 24: Code Motion
	Folie 25: Induction Variable Reduction
	Folie 26: Loop classification
	Folie 27: Loop Unrolling
	Folie 28
	Folie 29: Data-flow Analysis
	Folie 30: Data-flow Transfer Functions
	Folie 31: Control Flow Constraints
	Folie 32: Variable Liveliness Analysis
	Folie 33: Sets for Live Variable Analysis
	Folie 34: Conditions for Live Variable Analysis
	Folie 35: Algorithm for Live Analysis
	Folie 36: Why variable lifetimes are important?
	Folie 37: Conclusion

