
TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 1
Introduction

Consider a fabrication processwith 25cmwafers (diameter) and a defect rate of 0.5 defects/cm2.

(a) Calculate the yield of the process, if the chip area is 0.75cm2. How many functioning chips do
you receive per wafer?

• Number of dies: Dies per wafer ≈ wafer area
die area = (π4 · d

2)/die area ≈ 654

• Yield: 1
(1+Defects per area·Die area/2)2 ≈ 0.709

• Functioning chips: 654 · 0.709 ≈ 463

(b) Calculate the yield of the process, if the chip area is 1.5cm2. How many functioning chips do
you receive per wafer?

• Number of dies: 327

• Yield: 0.529

• Functioning chips: 172

(c) Assume that the costs per wafer are 3000$: What is the minimum sale price of the chips of (a)
and (b) to prevent financial losses?

• (a) 3000$/463 ≈ 6.48$

• (b) 3000$/172 ≈ 17.45$

(d) Assume that the wafer diameter can be increased by 10cm while having the same defect rate:
Recalculate the yield and the number of functioning chips for the chip area given in (a).

• Number of dies: 1282

• Yield: 0.709

• Functioning chips: 908

(e) Calculate themaximum acceptable cost per wafer, given that the sale price for the chips should
not be increased when using the bigger wafers.

• 6.48$ · 908 ≈ 5884$

(f) Assume that for the parameters of (a), the fabrication process can be improved such that the
resulting yield is 0.85. Calculate the defect rate.

• Defect rate ≈ 0.2257

Note that the formulas presented in the lecture are approximated. In case you are interested
in seeing more precise results and a graphical representation, you can check online calculators,
e.g., https://caly-technologies.com/die-yield-calculator/

Page 1 of 19

https://caly-technologies.com/die-yield-calculator/

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 2
Performance

A program uses 5% of its operations for floating point multiplications, 15% for floating point divi-
sions and30% for floating point additions. To speedup the execution of the program, the following
suggestions are made:

(a) Speed up the addition by factor 4.

(b) Speed up the multiplication by factor 8.

(c) Speed up the addition and division by factor 1.5, respectively.

(d) Speed up the multiplication and division by factor 2, respectively.

Show the results for all options above.

• (a) Ti = 0.3 · T · 1/4 + 0.7 · T = 0.775 · T

• (b) Ti = 0.05 · T · 1/8 + 0.95 · T = 0.95625 · T

• (c) Ti = 0.3 · T · 1/1.5 + 0.15 · T · 1/1.5 + 0.55 · T = 0.85 · T

• (d) Ti = 0.05 · T · 1/2 + 0.15 · T · 1/2 + 0.8 · T = 0.9 · T

(e) Which option is the best one?

Option a is the best one.

Page 2 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 3
Performance

Consider two processors P1 and P2 implementing the same instruction set. They have the fol-
lowing characteristics:

• P1: 2.2GHz clock rate; 1.9 average CPI

• P2: 1.3GHz clock rate; 1.1 average CPI

(a) Calculate the performance in terms of instructions per second for processors P1 and P2.

instr_per_sec(P1) = 2.20 · 109/1.9 = 1.16 · 109
instr_per_sec(P2) = 1.30 · 109/1.1 = 1.18 · 109

(b) Assume that processor P1 executes a benchmark program in 30 seconds. Calculate the corre-
sponding number of cycles and the corresponding number of instructions.

#cycles(P1) = 2.20 · 109 · 30 = 6.60 · 1010
#instr(P1) = 6.60 · 1010/1.9 = 3.47 · 1010

(c) Assume that processor P2 executes the same benchmark program and requires the same num-
ber of instructions for its execution: Calculate the execution time.

ET (P2) = 6.60 · 1010 · 1.1 · 1/1.3GHz = 29.4s

Assume a third processor P3 implementing a different instruction set, which has a 3.5Ghz clock
rate, an averageCPI of 1.5 and executes 8·1010 instructions for executing the benchmark program.

(d) Calculate the execution time.

ET (P3) = 34.3s

(e) Calculate the MIPS rating of P1, P2 and P3.

MIPS(P1) = 1160
MIPS(P2) = 1180
MIPS(P3) = 2333

(f) Given the results calculated so far: Show that frequency/clock rate is not a good performance
metric.

ET (P1) > ET (P2) (i.e., execution of the benchmark program on P1 takes longer than on
P2) while f(P2) < f(P1) (i.e., the clock rate of P2 is lower than the one of P1).

Page 3 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 4
Instructions/Processor/Pipelining

(a) Consider the following RISC-V assembly code (32-bit RISC-V version). It was written for a 5-
stage RISC-V pipeline, where forwarding and handling of control hazards are implemented. De-
scribe in one sentence as precisely as possible which functionality it implements.

1 <func >
2 lw a5 ,4(a0)
3 lw a4 ,8(a0)
4 nop
5 add a5,a5,a4
6 lw a4 ,0(a0)
7 nop
8 add a5,a5,a4
9 lw a0 ,12(a0)

10 nop
11 add a0,a5,a0
12 srli a0,a0 ,0x2
13 jalr zero ,0(ra)

The code loads four memory/array entries, calculates their sum and divides the sum by 4
→ integer average of the entries of an array of size 4.

(b) Explain why the "nop" instructions at (4), (7) and (10) are required.

The nop instructions are required because the add instructions can’t follow the load instruc-
tions directly as otherwise the old values would be used for processing→ Load-use Data
Hazard.

(c) Rewrite the code of (a) for a 5-stage RISC-V pipeline that neither supports forwarding nor hazard
detection. Try to keep the performance as high as possible. Explain your changes.

Only rearranging
1 lw a5 ,4(a0)
2 lw a4 ,8(a0)
3 nop
4 nop
5 add a5,a5,a4
6 lw a4 ,0(a0)
7 nop
8 nop
9 add a5,a5,a4

10 lw a0 ,12(a0)
11 nop
12 nop
13 add a0,a5,a0
14 nop
15 nop
16 srli a0,a0 ,0x2
17 jalr zero ,0(ra)
18 nop
19 nop
20 nop

Using more registers (better solution)
1 lw a5 ,4(a0)
2 lw a2 ,8(a0)

Exercise 4 continued on next page. . . Page 4 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

3 lw a3 ,0(a0)
4 lw a4 ,12(a0)
5 add a0,a5,a2
6 nop
7 add a5,a3,a4
8 nop
9 nop

10 add a0,a0,a5
11 nop
12 nop
13 srli a0,a0 ,0x2
14 jalr zero ,0(ra)
15 nop
16 nop
17 nop

(d) Optimize the code of (a) with respect to the code size. Consider a 5-stage RISC-V pipeline, where
forwarding and handling of control hazards are implemented.

Using more registers and rearranging code
1 lw a5 ,4(a0)
2 lw a2 ,8(a0)
3 lw a3 ,0(a0)
4 lw a4 ,12(a0)
5 add a0,a5,a2
6 add a0,a0,a3
7 add a0,a0,a4
8 srli a0,a0 ,0x2
9 jalr zero ,0(ra)

"Undoing" loop unrolling (better solution)
1 addi a4,a0 ,16
2 addi a5,zero ,0
3 L1: lw a3 ,0(a0)
4 addi a0,a0 ,4
5 add a5,a5,a3
6 bne a0,a4,L1
7 srli a0,a5 ,0x3
8 jalr zero ,0(ra)

Page 5 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 5
Instructions/Processor/Pipelining

Consider the following RISC-V assembly code (32-bit RISC-V version).
1 <func >:
2 addi a5,zero ,0
3 nop
4 nop
5 nop
6 label1: bne a5,a2 ,label2
7 nop
8 nop
9 nop

10 jalr zero ,0(ra)
11 nop
12 nop
13 nop
14 label2: addi a3,zero ,0
15 nop
16 nop
17 nop
18 addi a4,zero ,0
19 nop
20 nop
21 nop
22 label3: slli a6,a4 ,0x2
23 nop
24 nop
25 nop
26 add a6,a0,a6
27 nop
28 nop
29 nop
30 lw a6 ,0(a6)
31 nop
32 nop
33 nop

34 add a3,a3,a6
35 nop
36 nop
37 nop
38 addi a4,a4 ,1
39 nop
40 nop
41 nop
42 bge a5,a4,label3
43 nop
44 nop
45 nop
46 slli a4,a5 ,0x2
47 nop
48 nop
49 nop
50 add a4,a1,a4
51 nop
52 nop
53 nop
54 sw a3 ,0(a4)
55 nop
56 nop
57 nop
58 addi a5,a5 ,1
59 nop
60 nop
61 nop
62 jal zero ,label1
63 nop
64 nop
65 nop

(a) Describe in one sentence as precisely as possible which functionality it implements. Hint: a0
holds the base address of an array containing the input, a1 holds the base address of an array for
the output, a2 contains the number of array entries.

Takes an array of size reg(a2) as an input and calculates for each index i the sum of the
entry itself and all its "predecessors" (i.e., entries with indices 0..i-1) in the array and stores
it at index i in the output array (running sum).

(b) The code above was written for a basic 5-stage RISC-V pipeline without forwarding and haz-
ard detection. Optimize the code for an enhanced version of the pipeline, where forwarding and
handling of control hazards are implemented. You may re-arrange and remove instructions, but
you are not allowed to add or modify instructions. Explain your optimizations and justify potentially
remaining "nop" instructions.

Optimized
1 addi a5,zero ,0
2 label1: bne a5,a2,label2
3 jalr zero ,0(ra)
4 label2: addi a3,zero ,0
5 addi a4,zero ,0
6 label3: slli a6,a4 ,0x2
7 add a6,a0,a6
8 lw a6 ,0(a6)
9 addi a4,a4 ,1

Exercise 5 continued on next page. . . Page 6 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

10 add a3,a3,a6
11 bge a5,a4,label3
12 slli a4,a5 ,0x2
13 add a4,a1,a4
14 sw a3 ,0(a4)
15 addi a5,a5 ,1
16 jal zero ,label1

There are two aspects to take care of: (1) Realizing that all nops except for (30) can be
removed directly (load-use data hazard, which is not solved by forwarding). (2) Then, this
nop can be removed by swapping the add instructions directly following the lw.

(c) Describe which further improvements can be made by rewriting the code above completely.
Write the corresponding assembly code.

Rewritten
1 10218: 00261613 slli a2,a2 ,0x2
2 1021c: 00000793 addi a5,zero ,0
3 10220: 00000713 addi a4,zero ,0
4 10224: 00 c79463 bne a5,a2 ,1022c
5 10228: 00008067 jalr zero ,0(ra)
6 1022c: 00 f506b3 add a3,a0,a5
7 10230: 0006 a683 lw a3 ,0(a3)
8 10234: 00 d70733 add a4,a4,a3
9 10238: 00 f586b3 add a3,a1,a5

10 1023c: 00 e6a023 sw a4 ,0(a3)
11 10240: 00478793 addi a5,a5 ,4
12 10244: fe1ff06f jal zero ,10224

Instead of calculating the individual sums from scratch for every entry in the output array,
the already existing result from the output array can just be used. Then, only the sum of the
entry with index i from the input array and entry with index i-1 from the output array has to
be calculated, forming the result for index i in the output array.

Page 7 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 6
Instructions/Processor/Pipelining

(a) Consider the following RISC-V assembly code (32-bit RISC-V version). Complete the missing
machine code.

1 <func >:
2 101f4: 00052503 lw a0 ,0(a0)
3 101f8: ________ lw a5 ,0(a1)
4 101fc: ________ bltu a0,a5 ,10208
5 10200: ________ sub a0,a0 ,a5
6 10204: ________ bgeu a0 ,a5 ,10200
7 10208: ________ jalr zero ,0(ra)

1 <func >:
2 101f4: 00052503 lw a0 ,0(a0)
3 101f8: 0005 a783 lw a5 ,0(a1)
4 101fc: 00 f56663 bltu a0,a5 ,10208
5 10200: 40 f50533 sub a0 ,a0 ,a5
6 10204: fef57ee3 bgeu a0 ,a5 ,10200
7 10208: 00008067 jalr zero ,0(ra)

(b) Describe in one sentence as precisely as possible which functionality the code shown in (a)
implements.

The code returns the remainder of the division of two values a and b by using repeated
subtractions, i.e., it calculates a%b (where a is loaded by the first ’lw’ and b is loaded by the
second ’lw’).

(c) Consider the following RISC-V machine code (32-bit RISC-V version). Complete the missing
assembly instructions.

1 <func >:
2 101f4: 00052503 lw a0 ,0(a0)
3 101f8: 0005 a783 _____________
4 101fc: 00 f57463 _____________
5 10200: 00008067 _____________
6 10204: 40 f50533 _____________
7 10208: ff5ff06f _____________

1 <func >:
2 101f4: 00052503 lw a0 ,0(a0)
3 101f8: 0005 a783 lw a5 ,0(a1)
4 101fc: 00 f57463 bgeu a0,a5 ,10204
5 10200: 00008067 jalr zero ,0(ra)
6 10204: 40 f50533 sub a0 ,a0 ,a5
7 10208: ff5ff06f jal zero ,101fc

(d) Describe in one sentence as precisely as possible which functionality the code shown in (c)
implements.

As in (a), the code also returns a%b, but with a sligthly different set of instructions.

Page 8 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 7
Memory

You are given a processor system with a cache having the following design parameters:

• four-way set-associative

• LRU

• block size: 1 word

• number of sets: 4

(a) For the following byte addresses, write down (a) the block address, (b) the set, (c) the tag, (d) if
the access results in a hit or a miss and (e) the tag of the evicted entry.

Byte address Block address Set Tag Hit/Miss Evicted

19210 48 0 12 M

010 0 0 0 M

48010 120 0 30 M

44810 112 0 28 M

19210 48 0 12 HIT

8010 20 0 5 M 0

48810 122 2 30 M

48010 120 0 30 HIT

25610 64 0 16 M 28

6010 15 3 3 M

810 2 2 0 M

44810 112 0 28 M 12

810 2 2 0 HIT

7210 18 2 4 M

34410 86 2 21 M

16810 42 2 10 M 30

Exercise 7 continued on next page. . . Page 9 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Byte address Block address Set Tag Hit/Miss Evicted

19210 48 0 12 M

010 0 0 0 M

48010 120 0 30 M

44810 112 0 28 M

19210 48 0 12 HIT

8010 20 0 5 M 0

48810 122 2 30 M

48010 120 0 30 HIT

25610 64 0 16 M 28

6010 15 3 3 M

810 2 2 0 M

44810 112 0 28 M 12

810 2 2 0 HIT

7210 18 2 4 M

34410 86 2 21 M

16810 42 2 10 M 30

(b) Show the cache state after the last access.

Set Valid Tag Valid Tag Valid Tag Valid Tag

0 V 28 V 5 V 30 V 16

1

2 V 10 V 0 V 4 V 21

3 V 3

Set Valid Tag Valid Tag Valid Tag Valid Tag

0 V 28 V 5 V 30 V 16

1

2 V 10 V 0 V 4 V 21

3 V 3

Page 10 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 8
Memory

(a) Assume a system with a 2-way set associative cache using byte addressing. The partitioning
of the main memory address looks as follows:

31 7 6 3 2 0

Tag Index Offset

Calculate the block size, the number of blocks, the number of sets, the capacity (only data) and the
overall size of the cache.

• Block size: 23Byte = 8Byte

• Number of blocks: 2 · 24 = 32

• Number of sets: 24 = 16

• Capacity: #blocks · block size = 32 · 8Byte = 256Byte

• Overall size: #blocks · (block size+ tag+valid bit) = 32 · (64bit+25bit+1bit) = 360Byte

(b) Given the system shown in (a): Give five alternative cache designs with the same capacity (only
data) while keeping the same block size. Additionally, show the partitioning of the main memory
address, respectively.

• Direct mapped/1-way set associative (32 sets)
31 8 7 3 2 0

Tag Index Offset

• 4-way set associative (8 sets)
31 6 5 3 2 0

Tag IndexOffset

• 8-way set associative (4 sets)
31 5 4 3 2 0

Tag Idx Offset

• 16-way set associative (2 sets)
31 4 3 2 0

Tag I Offset

• Fully associative/32-way set associative (1 set)
31 3 2 0

Tag Offset

Page 11 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 9
Memory

(a) Assume that the accesses tomemory addresses shown in the tables below are given. For those
accesses compare different cache designs (by filling the following tables). The cache is initially
empty, byte addressing is used and the replacement strategy is LRU.

(I) A direct-mapped cache with a capacity (data) of 512 bytes and a block size of 8 bytes.
Byte address Block address Set Tag Hit/Miss Evicted

1133210 1416 8 22 M -

1134410 1418 10 22 M -

1081810 1352 8 21 M 22

1184010 1480 8 23 M 21

1132810 1416 8 22 M 23

1185610 1482 10 23 M 22

(II) A 2-way set-associative cache with a capacity (data) of 512 bytes and a block size of 8 bytes.
Byte address Block address Set Tag Hit/Miss Evicted

1133210 1416 8 44 M -

1134410 1418 10 44 M -

1081810 1352 8 42 M -

1184010 1480 8 46 M 44

1132810 1416 8 44 M 42

1185610 1482 10 46 M -

(I) BLK_SIZE: 8; CAPACITY: 512Byte; ASSOC: 1
TAG: 23bit | INDEX: 6bit | OFFSET: 3bit
#BLOCKS: 64; #SETS: 64; OVERALL SIZE: 704Byte

Byte address Block address Set Tag Hit/Miss Evicted

1133210 1416 8 22 M -

1134410 1418 10 22 M -

1081810 1352 8 21 M 22

1184010 1480 8 23 M 21

1132810 1416 8 22 M 23

1185610 1482 10 23 M 22

Exercise 9 continued on next page. . . Page 12 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

(II): BLK_SIZE: 8Byte; CAPACITY: 512Byte; ASSOC: 2;
TAG: 24bit | INDEX: 5bit | OFFSET: 3bit
#BLOCKS: 64; #SETS: 32; OVERALL SIZE: 712Byte

Byte address Block address Set Tag Hit/Miss Evicted

1133210 1416 8 44 M -

1134410 1418 10 44 M -

1081810 1352 8 42 M -

1184010 1480 8 46 M 44

1132810 1416 8 44 M 42

1185610 1482 10 46 M -

(b) Find two different better alternative cache designs instead of the ones presented in part (a),
which achieve a better hit rate for the given accesses. In general, valid solutions have to vary dif-
ferent cache design parameters, respectively, and can only change one design parameter at a time
compared to the configuration in (a).I or (a).II. Explain why (or show that) your solution achieves a
better hit rate.

Option 1: Increase the associativity
BLK_SIZE: 8Byte; CAPACITY: 512Byte; ASSOC: 4
TAG: 25bit | INDEX: 4bit | OFFSET: 3bit
#BLOCKS: 64; #SETS: 16; OVERALL SIZE: 720Byte
Note that higher associativities work as well, but giving e.g., a 4-way and an 8-way set as-
sociative cache as an answer does not fulfill the requirements of the question as the same
design parameter (i.e., associativity) is varied in both cases.
Explanation: Hit for 1132810 as no eviction happens by accessing 1081810 or 1184010 due to
the higher associativity.

Byte address Block address Set Tag Hit/Miss Evicted

1133210 1416 8 88 M -

1134410 1418 10 88 M -

1081810 1352 8 84 M -

1184010 1480 8 92 M -

1132810 1416 8 88 HIT -

1185610 1482 10 92 M -

Option 2: Increase the capacity
BLK_SIZE: 8Byte; CAPACITY: 1024Byte; ASSOC: 1
TAG: 22bit | INDEX: 7bit | OFFSET: 3bit
#BLOCKS: 128; #SETS: 128; OVERALL SIZE: 1392Byte
Explanation: Hit for 1132810 aswith the higher capacity, the accesses to 1081810 and 1184010

(causing evictions earlier) map to a different set.

Exercise 9 continued on next page. . . Page 13 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Byte address Block address Set Tag Hit/Miss Evicted

1133210 1416 8 11 M -

1134410 1418 10 11 M -

1081810 1352 72 10 M -

1184010 1480 72 11 M 10

1132810 1416 8 11 HIT -

1185610 1482 74 11 M -

Page 14 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 10
Memory

(a) In the lecture it was shown that oftentimes a better hit rate can be achieved when increasing
cache associativity. Is this always the case? If yes, explain why. If no, show a counterexample.

One counterexample can be shown comparing a direct-mappedwith a 2-way set associative
cache for the following access pattern:
Design 1: Associativity: 1 (i.e., direct-mapped); Capacity: 16Byte; Block size: 4Byte

Byte address Block address Set Tag Hit/Miss Evicted

35210 88 0 22 M -

36010 90 2 22 M -

28010 70 2 17 M 22

35410 88 0 22 HIT -

Design 2: Associativity: 2 (i.e., 2-way set-associative); Capacity: 16Byte; Block size: 4Byte
Byte address Block address Set Tag Hit/Miss Evicted

35210 88 0 44 M -

36010 90 0 45 M -

28010 70 0 35 M 44

35410 88 0 44 M 45

(b) Assume that you are given a system and you are asked to find out the cache design parameters.
The only information given is the following:

• Byte addressing is used

• Block size: 4, 8, 16, 32 or 64Byte

• Associativity: 1-, 2-, 4-, or 8-way set-associative

• Capacity (data): 2048Byte or 4096Byte

• Replacement: LRU

The only way to find out the actual design parameters is to give the system a sequence of accesses
(with an initially empty cache) and observing the hit rate of the cache after finishing the complete
sequence. Explain your solution.
(I) Propose a sequence of accesses for finding out the block size of the cache.

The idea is to start with address 0 and test for accesses potentially going to the same block,
based on the block sizes, which are known to be an option, i.e.,

Access # 1 2 3 4 5 6 7 8

Address 0 2 4 8 16 32 64 128

Exercise 10 continued on next page. . . Page 15 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Assume that a hit rate of 2/8 is observed: This means that the accesses to 2 and 4 result
in a hit, respectively, as the block is brought into the cache by the access to address 0. The
block size can’t be smaller than 8, as otherwise a lower hit rate would be observed. The
block size also can’t be larger than 8, as otherwise the access to address 8 would result in
a hit as well and therefore a larger hit rate would be observed. Consequently, the block size
must be 8Byte.

(II) Propose a sequence of accesses for finding out the associativity of the cache.

The idea is to design the accesses in a way, that all accesses map to the same set and ac-
cess different blocks, independent of the block size and the size of the cache (when staying
within the boundaries stated above). This can be achieved in the following way:

Access # 1 2 3 4 5 6 7 8 9 10 11

Address 0 4096 0 8192 12288 0 16384 20480 24576 28672 0

The following cases can occur:

• Hit rate 0/11: Direct-mapped (all accesses map to the same set, therefore each access
(except for the first one) leads to an eviction)

• Hit rate 1/11: 2-way set-associative (the second access to 0 results in a hit, as there is
a free entry left in the set when accessing 4096, where the corresponding block can be
stored; the following accesses to 0 result in a miss due to the following evictions)

• Hit rate 2/11: 4-way set-associative (the second and the third access to 0 result in a hit,
when accessing 0 for the fourth time, the corresponding block is evicted as four other
blocks were accessed in between)

• Hit rate 3/11: 8-way set-associative (the second, the third and the fourth access to 0 result
in a hit)

(III) Propose a sequence of accesses for finding out the capacity of the cache.

The idea is to test for evictions that would happen in the cache of the smaller size, but not
in the one with the larger size. Therefore, based on the associativity found in the previous
analysis, one of the following cases can be considered to find the cache size:

• DM: 0, 2048, 0→ Addresses 0 and 2048 map to the same set for the smaller cache size
(no hit for last access; hit rate 0/3) and to different sets for the larger cache size (hit for
last access; hit rate 1/3)

• 2W: 0, 4096, 1024, 0→ Addresses 0 and 1024 map to the same set for the smaller cache
size (no hit for last access; hit rate 0/4) and to different sets for the larger cache size (hit
for last access; hit rate 1/4). The access to address 4096maps to the same set as address
0 in both cases, so that for the following access to 1024 either an eviction occurs in set 0
(smaller cache) or not (larger cache).

• 4W: 0, 4096, 8192, 12288, 512, 0 → Same idea as above, but more blocks have to be
brought to set 0, so that the access to address 512 either leads to an eviction or not.

• 8W: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 256, 0→ Same idea as above, but
more blocks have to be brought to set 0, so that the access to address 256 either leads to
an eviction or not.

Page 16 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

Exercise 11
Memory

Assume a systemwith Virtual Memory (VM). The Virtual Address width is 14 bit and the page size
is 256Byte. The Physical Address (PA) width is 12bit. A 2-way set-associative TLB with overall
4 blocks/entries and a block size of 1 page table entry is implemented, which uses LRU replace-
ment.

(a) Illustrate the detailed subdivision of the Virtual Address (also considering the TLB) and show
the translation to (and the subdivision of) the Physical Address.

Virtual Page Number (VPN)

n-1

Page Offset

p p-1 0

Virtual Address

Physical Page Number (PPN)

m-1

Page Offset

p p-1 0

Physical Address

Valid Dirty Tag PPN

TLB

Virtual Address: | VPN: 6bit [13..8] | page offset: 8bit [7..0] |
→ TLB access: VPN: | Tag [13..9] | Index [8] |
Physical Address: | PPN: 4bit [11..8] | page offset: 8bit [7..0] |

(b) The following virtual (byte) addresses are accessed: 0x628, 0x308, 0x9FC, 0x1A0
Given (A) the page table and (B) the TLB below: Fill the corresponding tables based on the informa-
tion given.

For the Page Table:

• Note down the final state of the page table after all accesses are completed.

• If a page must be brought from disk, assume it is brought to the next highest page number.

Page Table (V: Valid; PP#: Physical page number)
V PP#/Disk V PP#/Disk

0 1 10 1 10
1 1 8 1 8
2 0 Disk 0 Disk
3 0 Disk 1 11
4 1 5 1 5
5 1 9 1 9
6 1 7 1 7
7 0 Disk 0 Disk
8 0 Disk 0 Disk
9 1 6 1 6

10 0 Disk 0 Disk

Exercise 11 continued on next page. . . Page 17 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

For the TLB:

• Note down if the access results in a TLB hit (Yes/No) and if it causes a page fault (Yes/No).

• Show the state of the TLB after each access. In case of multiple invalid entries in a set, evict the
leftmost entry.

TLB (V: Valid; PP#: Physical page number; LAT: Last Access Time (higher number means more
recent access))

Initial State
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 1 1 0 10 0
1 1 4 6 0 0

Accessed VM address: 0x628→ TLB Hit? N | Page Fault? N
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 0 0

Accessed VM address: 0x308→ TLB Hit? N | Page Fault? Y
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 0 1 1 11 1

Accessed VM address: 0x9FC→ TLB Hit? Y | Page Fault? N
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 1 1 1 11 0

Accessed VM address: 0x1A0→ TLB Hit? N | Page Fault? N
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 0 1 0 8 1

Page Table (V: Valid; PP#: Physical page number)
V PP#/Disk V PP#/Disk

0 1 10 1 10
1 1 8 1 8
2 0 Disk 0 Disk
3 0 Disk 1 11
4 1 5 1 5
5 1 9 1 9
6 1 7 1 7
7 0 Disk 0 Disk
8 0 Disk 0 Disk
9 1 6 1 6

10 0 Disk 0 Disk

Exercise 11 continued on next page. . . Page 18 of 19

TU Wien - 182.690 Computer Organization and Design (Kriebel) 2022

TLB (V: Valid; PP#: Physical page number; LAT: Last Access Time (higher number means
more recent access))

Initial State
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 1 1 0 10 0
1 1 4 6 0 0

Accessed VM address: 0x628→ TLB Hit? N | Page Fault? N
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 0 0

Accessed VM address: 0x308→ TLB Hit? N | Page Fault? Y
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 0 1 1 11 1

Accessed VM address: 0x9FC→ TLB Hit? Y | Page Fault? N
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 1 1 1 11 0

Accessed VM address: 0x1A0→ TLB Hit? N | Page Fault? N
Set V Tag PP# LAT V Tag PP# LAT
0 1 2 5 0 1 3 7 1
1 1 4 6 0 1 0 8 1

Page 19 of 19

	
	Calculate the yield of the process, if the chip area is 0.75cm2. How many functioning chips do you receive per wafer?
	Calculate the yield of the process, if the chip area is 1.5cm2. How many functioning chips do you receive per wafer?
	Assume that the costs per wafer are 3000$: What is the minimum sale price of the chips of (a) and (b) to prevent financial losses?
	Assume that the wafer diameter can be increased by 10cm while having the same defect rate: Recalculate the yield and the number of functioning chips for the chip area given in (a).
	Calculate the maximum acceptable cost per wafer, given that the sale price for the chips should not be increased when using the bigger wafers.
	Assume that for the parameters of (a), the fabrication process can be improved such that the resulting yield is 0.85. Calculate the defect rate.

	
	Speed up the addition by factor 4.
	Speed up the multiplication by factor 8.
	Speed up the addition and division by factor 1.5, respectively.
	Speed up the multiplication and division by factor 2, respectively.
	Which option is the best one?

	
	Calculate the performance in terms of instructions per second for processors P1 and P2.
	Assume that processor P1 executes a benchmark program in 30 seconds. Calculate the corresponding number of cycles and the corresponding number of instructions.
	Assume that processor P2 executes the same benchmark program and requires the same number of instructions for its execution: Calculate the execution time.
	Calculate the execution time.
	Calculate the MIPS rating of P1, P2 and P3.
	Given the results calculated so far: Show that frequency/clock rate is not a good performance metric.

	
	Consider the following RISC-V assembly code (32-bit RISC-V version). It was written for a 5-stage RISC-V pipeline, where forwarding and handling of control hazards are implemented. Describe in one sentence as precisely as possible which functionality it implements.
	Explain why the "nop" instructions at (4), (7) and (10) are required.
	Rewrite the code of (a) for a 5-stage RISC-V pipeline that neither supports forwarding nor hazard detection. Try to keep the performance as high as possible. Explain your changes.
	Optimize the code of (a) with respect to the code size. Consider a 5-stage RISC-V pipeline, where forwarding and handling of control hazards are implemented.

	
	Describe in one sentence as precisely as possible which functionality it implements. Hint: a0 holds the base address of an array containing the input, a1 holds the base address of an array for the output, a2 contains the number of array entries.
	The code above was written for a basic 5-stage RISC-V pipeline without forwarding and hazard detection. Optimize the code for an enhanced version of the pipeline, where forwarding and handling of control hazards are implemented. You may re-arrange and remove instructions, but you are not allowed to add or modify instructions. Explain your optimizations and justify potentially remaining "nop" instructions.
	Describe which further improvements can be made by rewriting the code above completely. Write the corresponding assembly code.

	
	Consider the following RISC-V assembly code (32-bit RISC-V version). Complete the missing machine code.
	Describe in one sentence as precisely as possible which functionality the code shown in (a) implements.
	Consider the following RISC-V machine code (32-bit RISC-V version). Complete the missing assembly instructions.
	Describe in one sentence as precisely as possible which functionality the code shown in (c) implements.

	
	For the following byte addresses, write down (a) the block address, (b) the set, (c) the tag, (d) if the access results in a hit or a miss and (e) the tag of the evicted entry.
	Show the cache state after the last access.

	
	Assume a system with a 2-way set associative cache using byte addressing. The partitioning of the main memory address looks as follows:
	Given the system shown in (a): Give five alternative cache designs with the same capacity (only data) while keeping the same block size. Additionally, show the partitioning of the main memory address, respectively.

	
	Assume that the accesses to memory addresses shown in the tables below are given. For those accesses compare different cache designs (by filling the following tables). The cache is initially empty, byte addressing is used and the replacement strategy is LRU.
	Find two different better alternative cache designs instead of the ones presented in part (a), which achieve a better hit rate for the given accesses. In general, valid solutions have to vary different cache design parameters, respectively, and can only change one design parameter at a time compared to the configuration in (a).I or (a).II. Explain why (or show that) your solution achieves a better hit rate.

	
	In the lecture it was shown that oftentimes a better hit rate can be achieved when increasing cache associativity. Is this always the case? If yes, explain why. If no, show a counterexample.
	Assume that you are given a system and you are asked to find out the cache design parameters. The only information given is the following:

	
	Illustrate the detailed subdivision of the Virtual Address (also considering the TLB) and show the translation to (and the subdivision of) the Physical Address.
	The following virtual (byte) addresses are accessed: 0x628, 0x308, 0x9FC, 0x1A0 Given (A) the page table and (B) the TLB below: Fill the corresponding tables based on the information given.

