(Einige der folgenden Sätze kommen schon in der Datei ordinal.pdf vor.)

Ordinalzahlen, Kardinalzahlen

DEFINITION 1. α heißt Ordinalzahl $\Leftrightarrow \alpha$ ist transitiv und (α, \in) ist eine strikte Wohlordnung.

SATZ 2. Für jede Wohlordnung (W, <) gibt es genau eine Ordinalzahl $\alpha = \text{otp}(W, <)$ $(,Ordnungstyp\ von\ (W, <))\ mit\ (W, <) \simeq (\alpha, \in)$. Überdies ist der Isomorphismus eindeutig.

SATZ 3. Die Ordinalzahlen bilden eine echte Klasse Ord. Diese Klasse wird durch \in wohlgeordnet. Für alle Ordinalzahlen α, β gilt: $\alpha \in \beta \Leftrightarrow \alpha \subsetneq \beta$. Wir schreiben statt $\alpha \in \beta$ auch $\alpha < \beta$.

DEFINITION 4. κ heißt Kardinalzahl $\Leftrightarrow \kappa$ ist Ordinalzahl und für alle $\alpha < \kappa$ gilt: κ ist nicht gleichmächtig mit α .

(Allgemeiner: Eine WO heißt "initiale Wohlordnung" wenn sie zu keinem echten Anfangsabschnitt gleichmächtig ist. Kardinalzahlen sind dann die Ordnungstypen von initialen Wohlordnungen.)

DEFINITION 5. Ord = Klasse der Ordinalzahlen. Card=Klasse der Kardinalzahlen. ICard=Klasse der unendlichen Kardinalzahlen.

DEFINITION 6. Für jede Menge A sei |A| die kleinste Ordinalzahl κ mit $\kappa \approx A$. ("Kardinalität von A".)

Offensichtlich ist |A| immer eine Kardinalzahl, und für jede Kardinalzahl κ gibt es eine Menge A mit $|A| = \kappa$, nämlich $A := \kappa$. Für endliche Mengen ist |A| (alternative Notation: #A) genau die Anzahl der Elemente von A im naiven Sinn.

Beispiele: $0, 1, 2, \ldots, \omega, \omega_1, \omega_2, \ldots$

Statt ω schreiben wir auch \aleph_0 , wenn mir mehr an der Kardinalität dieser Menge interssiert sind als an der Wohlordnung von ω . Analog $\aleph_1 := \omega_1$, etc.

DEFINITION 7. Sei (L, <) eine strikte (antireflexive) partielle Ordnng (und sei $x \le y :\Leftrightarrow (x < y \lor x = y)$.

- (1) Eine Teilmenge $B \subseteq L$ heißt beschränkt, wenn es ein $l \in L$ gibt mit $\forall b \in B : b \leq l$.
- (2) Eine Menge $K \subseteq L$ heißt kofinal wenn $\forall l \in L \ \exists k \in K : l \leq k$.
- (3) Eine Funktion $f: M \to L$ heißt kofinal wenn ihr Wertebereich $f[M] \subseteq L$ in L kofinal ist.
- (4) Die Kofinalität von L ist die kleinste Kardinalität einer kofinalen Teilmenge von L.

$$\operatorname{cf}(L) = \min\{|K| : K \subseteq L \text{ ist kofinal}\}\$$

Lemma 8.

- Wenn L ein größtes Element m hat, dann ist jede Teilmenge von L beschränkt, und die kleinste kofinale Menge ist $\{m\}$. Daher: cf(L) = 1. Uninteressant. (Und $cf(\emptyset) = 0$. Das interessiert uns noch weniger.)
- Wenn L eine lineare Ordnung (=Totalordnung = Kette) ist und kein größtes Element hat, dann bedeutet "unbeschränkt" dasselbe wie "kofinal".
- Offensichtlich ist $cf(L) \leq |L|$.

LEMMA 9. Sei (W, <) eine Wohlordnung (oder eine Ordinalzahl), $cf(W, <) = \lambda$. Dann gibt es eine strikt monotone kofinale Funktion $f: \lambda \to W$.

BEWEIS. ObdA (warum?) $\lambda > 1$. Sei $g : \lambda \to W$ kofinal. Man kann f induktiv definieren: $f(\alpha + 1) > \max(f(\alpha), g(\alpha))$, und $f(\delta) = \sup(f[\delta])$. (Warum ist das wohldefiniert? Warum ist f kofinal?)

Wir erhalten mit dieser Konstruktion sogar eine "stetige" Funktion: $f(\sup M) = \sup f[M]$.

DEFINITION UND SATZ 10. Für jede Ordinalzahl α gilt $cf(\alpha) \leq |\alpha| \leq \alpha$.

 α ist genau dann eine Kardinalzahl wenn $|\alpha| = \alpha$.

Wir nennen α regulär wenn $cf(\alpha) = \alpha$ gilt, sonst singulär.

Für jede Kardinalzahl κ gilt: $cf(\kappa)$ ist regulär.

(Die Begriffe "regulär" und "singulär" verwendet man üblicherweise nur für unendliche Kardinalzahlen.)

DEFINITION UND SATZ 11. Für jede unendliche Kardinalzahl κ gibt es eine kleinste Kardinalzahl $> \kappa$, nämlich $\kappa^+ := \{\alpha \in Ord : |\alpha| \le \kappa\}.$

BEWEIS. Vor allem ist zu zeigen, dass diese Definition tatsächlich eine Menge liefert; der Rest folgt dann leicht.

Die Hartogsmenge $M:=\{(X,S):X\subseteq\kappa,(X,S)\text{ ist WO}\}$ ist eine Menge (Potenzmengenaxiom), daher (Ersetzungsaxiom) auch die Menge aller Ordnungstypen $\{\text{otp}(X,S):(X,S)\in M\}\dots$

Zum Beispiel ist $\aleph_0^+ = \aleph_1 = \omega_1$. (Man könnte auch $n^+ := n + 1$ für endliche Kardinalzahlen n definieren, aber das führt zu Verwirrung.)

DEFINITION 12. Die aleph-Funktion von Ord nach ICard ist durch transfinite Rekursion definiert. $\aleph_0 = \omega, \ \aleph_{\alpha+1} = \aleph_{\alpha}^+, \ \text{und für Limesordinalzahlen} \ \delta \text{ sei } \aleph_{\delta} := \sup \{\aleph_{\alpha} : \alpha < \delta\}.$ (Zum Beispiel ist $\aleph_{\omega} = \bigcup_{n \in \omega} \aleph_n$.

SATZ 13. Für jede unendliche Kardinalzahl κ sei $I(\kappa) := \text{otp}(\{\lambda \in \text{ICard} : \lambda < \kappa\} \text{ der "Index" von } \kappa$.

Dann gilt für alle $\kappa \in ICard: \kappa = \aleph_{I(\kappa)}$, und für alle Ordinalzahl $\alpha: \alpha = I(\aleph_{\alpha})$.

Beweis. Transfinite Induktion.

Bemerkung 14.

- $\omega = \omega_0$ ist eine unendliche Wohlordnung. Alle echten Anfangsabschnitte sind endlich. Es gilt sogar: die beschränkten Teilmengen von ω sind genau die endlichen Teilmengen.
- ω_1 ist eine überabzählbare Wohlordnung. Alle echten Anfangsabschnitte sind abzählbar. (D.h.: höchstens abzählbar.) Es gilt sogar: die beschränkten Teilmengen von ω_1 sind genau die abzählbaren Teilmengen.

BEWEIS. Warum ist jede abzählbar unendliche Teilmenge $A := \{\alpha_n : n \in \omega\}$ beschränkt? Weil sup $A = \bigcup_{n \in \omega} \alpha_n$ als Vereinigung von abzählbar vielen abzählbaren Mengen selbst abzählbar ist. Daher ist $\alpha := \sup A$ eine (höchstens) abzählbare Ordinalzahl, also ist $\alpha \in \omega_1$ eine obere Schranke in (ω_1, \in) .

Ähnlich zeigt man:

SATZ 15. $\forall A \subseteq \kappa^+$: (A beschränkt $\Leftrightarrow |A| \le \kappa$.)

KOROLLAR 16. Für alle $\alpha \in Ord$ gilt $cf(\aleph_{\alpha+1}) = \aleph_{\alpha+1}$. Also: Nachfolgerkardinalzahlen (Kardinalzahlen $\lambda \geq \aleph_0$ von der Form $\lambda = \kappa^+$) sind immer regulär.

BEWEIS. Sei $\lambda = \kappa^+$. Die kofinalen(=unbeschränkten) Teilmengen sind genau die Mengen mit Kardinalität $> \kappa$, also $= \lambda$.

DEFINITION 17. ${}^{A}B$ sei die Menge aller Funktionen von A nach B.

SATZ 18. Für alle Mengen A, B, C gibt es Bijektionen $f: {}^A({}^BC) \to {}^{A \times B}C$ und $g: {}^AB \times {}^AC \to {}^A(B \times C)$.

KOROLLAR 19. $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$ und $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$ für alle Kardinalzahlen κ, λ, μ . (Sogar für endliche.)

SATZ 20 (Hausdorffs Nachfolgerformel). Für alle unendlichen Kardinalzahlen κ gilt $(\kappa^+)^{\lambda} = \kappa^{\lambda} \cdot \kappa^+ = \max(\kappa^{\lambda}, \kappa^+)$.

BEWEIS. Für "große" Exponenten ist das leicht. Sei $\lambda \geq \kappa^+$. Dann gilt

$$2^{\lambda} \le \kappa^{\lambda} \le (\kappa^{+})^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda} = 2^{\lambda \cdot \lambda} = 2^{\lambda}$$
 und $\kappa^{+} \le \lambda \le \kappa^{\lambda}$,

also $(\kappa^+)^{\lambda} = \kappa^{\lambda} = \max(\kappa^{\lambda}, \kappa^+).$

Nun betrachten wir den Fall $\lambda < \kappa^+$. Die Ungleichungen $(\kappa^+)^{\lambda} \ge \kappa^{\lambda}$ und $(\kappa^+)^{\lambda} \ge \kappa^+$ sind klar, damit gilt $(\kappa^+)^{\lambda} \ge \max(\kappa^{\lambda}, \kappa^+) = \kappa^{\lambda} \cdot \kappa^+$.

Zu zeigen ist noch " \leq ". Wegen cf $(\kappa^+) = \kappa^+$ hat jede Funktion $f : \lambda \to \kappa^+$ einen beschränkten Wertebereich; es gibt also ein $\alpha = \alpha_f < \kappa^+$ sodass $f : \lambda \to \alpha$. Daher ist

$$^{\lambda}\kappa = \bigcup_{\alpha < \kappa^{+}} {}^{\lambda}\alpha.$$

Jede Menge der Form $^{\lambda}\alpha$ hat Kardinalität $\leq \kappa^{\lambda}$, daher hat die Vereinigung Kardinalität $\leq \kappa^{\lambda} \cdot \kappa^{+}$.