advanced aspects of IT infrastructure in healthcare
(The Austrian e-card System)

Linz, Oktober 2012
Agenda

- The Austrian e-card System - System Overview
- Requirements
- HA (high availability) datacenter and concepts
- Stages and staging
- Network, network services, monitoring and SLA monitoring
- Callcenter, Operating & Ticketing
- Support of ISVs
- SW Distribution
- HW-Infrastructure on health providers site (GINA, LAN-CCR, Router)
- Pseudonymisation / STS
- e-card infrastructure in ELGA
- What’s next?
GIN / eHI-Net
Health Information Network
eHealth Interconnection Network

Value Added Services (VAS)

Pharmacies

Preoperative Questionnaire
Online Backup

Electronic Transmission of Medical Findings

HS
Hospitals

Hospital Associations

eHealth Applications

e-card System/ Data Center

Social Insurance Institutions

VAS Access
GIN Access
GIN Access

Physicians
Applications, services and facilities

- Electronic Check of Entitlement
- Medication Approval Service
- Social Security Query Service
- Preventive Medical Checkup
- Electronic Temporary Disability Report
- Disease Management Programmes

Applications

- eMedication
 - ELGA – eMedication
 - Pilot in 3 Regions (Vienna, Upper Austria, Tirol)

Infrastructure ready for eHealth

- Trust Center and Card Service Portal
 - >67,000 Signatures

Citizen Cards

- Call Center
 - Hotline for Healthcare Providers
 - Hotline for Insured

Care Facilities

- Hospitals

e-card System Operation

- VAS
- eGovernment
- Medical Networks
- Internet
- Firewall
- Peering Point
- GIN
 - (Closed User Group)
- e-card Data Center
- Medical Practices
- IT Network
- Social Security Applications

Contact Information

- GINA
 - Monitor
 - Keyboard
 - PC
 - Network

- ELGA
 - PC
 - Network

- eMedication
 - PC
 - Network
Facts & Figures

- e-cards (active) ~ 8.900.000
- new e-cards (births, changes…) ~ 850.000 p.a.
- Health Care Providers connected ~ 11.000
- Pharmacies ~ 120
- Hospitals ~ 140
- Care Facilities ~ 15

- e-card Consultations
 - since March 2005 ~ 667.763.920
 - average contacts per day ~ 500.000
 - all time high (Dec. 14th, 2009) 629.150

- Citizen Cards ~ 67.000
Facts & Figures (contd.)

- SVC: ~ 100 employees
 - 42 in development

- Development
 - 25 developers and analysts
 - 9 system testers
 - 8 plattform engineers (App- and DB-Server, build&deployment, GINA, LAN-CCR)
The Austrian e-card

Front Side = e-card

Reverse Side = EHIC
Data in the Chip

- All eye readable data
- Gender
- Different cryptographic keys

Optional:
- Digital certificates (citizen card)

Not in use:
- User group identification
- Storage for future use
System Overview

Central Services

Medical Practices (11,000)

GINA

GIN

Router

LAN-CCR

Peering Point

SITE 1

SITE 2

Card Producer

Call Center and Social Security Agencies

HVB
Requirements

- 2 factor authentication for the MP
- Authentication solution of the patients must also be usable as citizen card (for eGovernment services)
- Guaranteed response times and bandwidth
- Network only reachable for entitled MPs (avoid using stolen MP identities over the web)
- Network not reachable from the internet (avoid denial of service and other security attacks from the web)
- Appropriate border protection
- End-to-End encryption for certain services
Requirements (contd.)

- Standalone functionality (for MPs without any computer, to spare them IT investment)
- Minimal footprint in MP’s IT infrastructure (No need to install software or drivers on MP’s site)
- Offline functionality for critical services (consultation) in case of network or central service outages
- Multi host chip card reader, to support more than one workplace with one chip card reader
- Hide complexity of handling smartcards from software vendors (Access of the cards and activation of crypto features)
HA (high availability) datacenter and concepts

- 2 independent sites
 - at least 5 km distance (not more than 10 km because of clustering)
- Physical access control
- Power supply
 - dual transformer station connection
 - Diesel engines
 - Emergency batteries
- Cooling
- Network connectivity
 - At least 2 providers and connections
- Extinguish Fire infrastructure
- Water
 - Detection and prevention of water intrusion
HA (high availability) datacenter and concepts (contd)

- each site represents a production line, ready to bear complete load
 - Network-connection
 - Web-server
 - App-server
 - DB-server
 - Storage
 - HSM
 - App-FW
- active-active configuration
- Web- and App-servers are stateless
- DB is clustered, state is held in DB (Oracle RAC)
- An alternative would be to run the DB active-passive and switch on demand or accident
Stages and staging

- Developer stage (workstation)
- Development and integration stage (centralised build starts here)
- Test stages
 - System Testing (~ 10-15 instances)
 - Performance Testing
- Production stages
 - ISV test reference system
 - Production

- PRESS (Production ReadinESS)
 - Verification that the system can be operated and monitored
 - performance and throughput, tracing, logging
 - failover and recovery
Network, network services, monitoring and SLA monitoring

- GIN = on MPLS level separated private network, separated from Internet
 - Guaranteed throughput, next business day service
 - Accepts only GINAs (MAC-address, certificate)
- NTP, DNS, routing
- Firewalls, IDS, IPS
- Loadbalancer (content switch)
- Application firewall (XML-firewall) – IBM Datapower
- Special check services implemented in e-card central system
 - for content switch to verify availability of services per production lines
- Every component and service is monitored
- Consolidated view of availability thru Nagios
 - Service views are necessary (combination of components)
- Every transaction reports response times (with interim times measured)
Callcenter, Operating & Ticketing

- **Callcenter** (1st level support)
 - for insured persons
 - for health providers
 - Detailed questionnaires (covers 80-90% of calls)
- **Operating** (2nd level support)
 - Resolves the rest of problems or transfers to development, providers or ISVs helpdesk
- **Providers** (3rd level support)
 - Provider technician resolves issues central or at health providers site
- **Development** (3rd level support)
 - Resolves and/or finds workaround
- **Interconnected thru Ticket systems**
 - Each level and unit has its own ticket system (different requirements)
Support of ISVs

- ~ 85% of HP use specialised software (others use e-card Web-GUI)
- ~ 70 ISVs: ~ 11,000 HP
 - Physicians, Pharmacies, Hospitals, others (medical stores, patient care)
- Heterogeneous in skills and technology
- ISVs have to adopt new or changed interfaces at least once a year and deliver it to their customers
- Regular ISV workshops and information to ISVs
- Email and phone support
- 6 weeks before production date we deliver WSDL files, Java-Doc and a reference client implementation
SW Distribution

- 2 Releases per Year
- All interfaces are at least 1 version backward compatible
- No need (because impractical) for a bigbang scenario
- Central server systems are updated with defined downtime
 - Currently not possible to update with zero-downtime (DB !!)
- Peripheral: ~ 10,500 GINAs and ~ 15,000 LAN-CCRs

- Currently the first Saturday in May and November => Server deployment
- The following Tuesday to Wednesday night update of 300 selected HPs (guinea pigs)
- A week after (if no problems detected): rollout to ROW
SW Distribution (contd)

- Linux standards for SW distribution not sufficient
 - Need to determine distribution groups
 - Need to define distribution windows (not all of a group should start at the same time to prevent network overload)
- Client administration
 - Group GINAs (by service-type, by location, by distribution time slot)
 - Define distribution order
- SVC monitors state of every GINA during SW distribution
 - Distribution order accepted
 - Linux Download started/finished
 - Linux update started/finished
 - Application download started/finished
 - Ready (or not)!
SW Distribution (contd)

- If something goes totally wrong? => Rescue System in place

- GINAs not responding or not fully functional can be rescued
 - Remote (when reachable)
 - Local (Rescue button)
 - Self (when not booting within defined time)

- Worst case
 - Provider technician must visit health providers site

- What, if 10,500 devices are bricks?
HW-Infrastructure on health providers site (GINA, LAN-CCR, Router)

- **GINA**
 - Security capsule (crypto, card access, firewall, application firewall, first line of defense)
 - Offline consultation
 - Standalone usage (just a keyboard and a monitor needed)
 - Local application services (end-to-end encryption, local param checks => network roundtrips)

- **LAN-CCR**
 - Network attached
 - Zero footprint on health providers infrastructure (no drivers needed)
 - multi-user, multi-host
 - Robust, one-hand operation
GINA (2nd generation)
LAN-CCR
HW-Infrastructure on health providers site (GINA, LAN-CCR, Router) (contd)

- Router
 - 2 independent lines
 - GIN => e-card services (ELGA ?)
 - Value added services
 - Secure(d) internet service (AV-Services, content filter, port filter)
 - SW-Distribution of ISVs
 - Medical findings transmission (HP to HP)
 - Health provider’s waiting room TV
HW-Infrastructure on health providers site (GINA, LAN-CCR, Router) (contd)

- Management of peripheral hardware availability
 - SVC tracks availability and error rates of devices
 - Change rates of GINAs and LAN-CCR
 - Watch the „bathtub curve“
 - SVC negotiates provider contracts with HVB
 - every 4-5 years hardware design has to be renewed
 - Minor changes happen earlier
 - Controls major hardware change projects
 - Since Q2 2011: GINA1g => GINA2g (- Q1 2013)
 - currently designing LAN-CCR2g
Responsibilities at MP’s premise
Pseudonymisation

- Medical data and meta data separated and separately encrypted
Security Token Service

- e-card system is (and will be in ELGA) a trusted identity and „contact“ provider
- SAML based STS tickets for
 - Identifying a MP
 - Asserting a MP patient contact
- Today used for Web-Portals of some hospitals
- When a doctor wants to authenticate himself, he requests a ticket from the e-card system => hands over STS ticket to Service (ELGA), which then decides, whether and what rights the doctor has
- When he wants to access patient‘s data, requests a ticket from the e-card system to proof the contact (e.g. consultation) => hands over STS ticket of Service (ELGA), which then decides on policy and consent of the patient, what documents the doctor will get to know
What’s next?

● Currently waiting for ELGA (Austrian nationwide EHR project)
 When ELGA law passes parliament
 – eMedication application of ELGA

● Long list of social security processes waiting to be changed from paper based to electronic processing
 – further electronic approval services (other than medication) - EBS
 – ePrescription - eRezept
 – electronic assignment of patients to other MPs - UZE
Q&A

Rainer Schügerl
SVC
Head of Development, CSO
rainer.schuegerl@svc.co.at