Exercise 8

Discrete Mathematics

November 26, 2020

Exercise 71

$x \wedge y$ ("meet") is the unique maximal element of all common lower elements of x, y if it exists. $x \vee y$ ("join") is the unique minimal element of all common upper bounds of x, y if it exists. P is called a lattice if $x \wedge y, x \vee y$ exist for all $x, y \in P$.
a) $0 \in P$ is the zero-element if and only if $\forall x \in P: 0 \leq x .1 \in P$ is the one-element if and only if $\forall x \in P: x \leq 1$.
Proof by induction. $P(n)$: A lattice L of size n has a 0 -element and a 1-element.
$P(1)$: By reflexivity holds for the only element $l \in L$ that $l \leq l$. Hence, x is zero-element and one-element.
$P(n) \rightarrow P(n+1)$: Assume $P(n)$. Consider the lattice $L \cup\{j\}$ of size $n+1$. Then there is $x \wedge j$ and $x \vee j$ for all $x \in L \cup\{j\}$. Note that this holds for $x=0$ and $x=1$. That is, there exists $1 \vee j$ and $0 \wedge j$. Case $1: 1 \leq j$. Then j is the new 1 and 0 remains 0 . Case 2: $0 \leq j \leq 1$. Then 1 and 0 remain equal. Case $3: j \leq 0$. Then j is the new 0 and 1 remains 1 .

b) $x \wedge y$ is a common lower bound of x and y. That means $x \wedge y \leq y . x \wedge y$ is a lower bound of y. Therefore, y is the smallest common upper bound of $x \wedge y$ and itself. Hence, by definition $y=y \vee(x \wedge y)$.

c) https://en.wikipedia.org/wiki/Modular_lattice\#Examples Consider the following lattice.

We see that $x \leq y$, the hypothesis of the implication, holds. We also see that x and y are distinct. Note that $x=x \vee(y \wedge z)$ and $z=(x \vee y) \wedge z$. It follows
$x \vee(y \wedge z) \neq(x \vee y) \wedge z$. That means, the conclusion of the implication does not hold. Hence, the implication is wrong.

Exercise 73

1. Assume $\exists e \in \mathbb{Z}: b=a e, \exists f \in \mathbb{Z}: c=a f$. Let x, y be arbitrary integers. Then $x b=a e x$ and $y c=a f y$. By addition we get $x b+y c=a e x+a f y=a(e x+f y)$ where $e x+f y$ is just another integer, say $z \in \mathbb{Z}$. Then $x b+y c=a z$, so by definition $a \mid x b+y c$.
2. Could be shorter and without the lemma
https://math.stackexchange.com/a/1920634
Lemma: From $m a+n b=1$ with $a, b, n, m \in \mathbb{Z}$ (linear combination of a, b) follows that a, b are coprime.
Proof: Assume they are not coprime. Then there exists an integer $d>1$ that divides a and b. Then there exist integers s, t such that $a=d s$ and $b=d t$. It follows

$$
m a+n b=1 \Leftrightarrow m(d s)+n(d t)=1 \Leftrightarrow d(m s+n t)=1
$$

It follows that d divides 1 . The only positive number that divides 1 is 1 itself, so $d=1$. However, we previously had $d>1$. Contradiction. Hence, a and b are coprime. This concludes the proof of the lemma.
https://math.stackexchange.com/a/985209
Assume $\operatorname{gcd}(a, b)=1$ and $c \mid a$ and $d \mid b$. Then $\exists x \in \mathbb{Z}: a=x c$ and $\exists y \in \mathbb{Z}$: $b=y d$. Furthermore, Bézouts theorem implies $\exists e, f \in \mathbb{Z}: 1=a e+b f$, from which follows by substitution $\exists e, f \in \mathbb{Z}: 1=(x e) c+(y f) d$. As $x e$ and $y f$ are just integers, c and d are coprime, so by definition $\operatorname{gcd}(c, d)=1$.
3. Assume $a \mid c$ and $b \mid c$ and $\operatorname{gcd}(a, b)=1$. Then by definition $\exists x \in \mathbb{Z}: c=$ $x a$ and $\exists y \in \mathbb{Z}: c=y b$ and by Bézout's theorem $\exists e, f \in \mathbb{Z}: 1=a e+b f$. Multiplying both sides by c gives $c=a c e+b c f$ and by substituting c we get $c=a(y b) e+b(x a) f$. So we get $c=a b(y e+x f)$ where $y e+x f$ is an integer. Then by definition $a b \mid c$.

Exercise 74

For integers a, b holds $x=2 a+1$ and $y=2 b+1$. It follows

$$
\begin{aligned}
x^{2}+y^{2} & =(2 a+1)^{2}+(2 b+1)^{2} \\
& =4\left(a^{2}+a\right)+1+4\left(b^{2}+b\right)+1 \\
& =4 z+2
\end{aligned}
$$

where $z=a^{2}+a+b^{2}+b$ is some integer. This means that $x^{2}+y^{2}$ divided by 4 leaves remainder 2 , that is $4 \nmid\left(x^{2}+y^{2}\right)$. As x, y are odd it follows x^{2}, y^{2} are odd which implies $x^{2}+y^{2}$ is even, that is $2 \mid\left(x^{2}+b^{2}\right)$.

Alternatively, consider $x^{2}+y^{2}=4 z+2=2(2 z+1)$. As z can be any integer, $2 z+1$ is an odd integer. As $2 z+1$ is an integer, it follows again $2 \mid\left(x^{2}+b^{2}\right)$. As it is additionally odd (and odd multiples of 2 are not divisble by 4), it follows again $4 \nmid\left(x^{2}+y^{2}\right)$.

k	1	2	3	4	5	6	7	8	9
2 k	2	4	6	8	10	12	14	16	18

Exercise 75

- Note that $n^{2}-n=(n-1) n$ is the product of two consecutive integers. One factor must be divisible by two. Therefore, the product is divisible by two. Hence, $n^{2}-n$ is even.
- https://math.stackexchange.com/a/211122
https://math.stackexchange.com/a/1359478
Note that $n^{3}-n=(n-1) n(n+1)$ is the product of three consecutive integers. One factor must be even and one must be a multiple of three. Hence, the product is a multiple of both 2 and 3 . Therefore, it is divisble by by the least common mulitple of 2 and 3 , which is 6 .

Exercise 76

https://math.stackexchange.com/a/1114724
By definition, we have to show that $4|(a+b) \wedge 4| 4 \wedge(t|(a+b) \wedge t| 4 \Longrightarrow t \mid 4)$. As $(t|(a+b) \wedge t| 4 \Longrightarrow t \mid 4)$ is a tautology, what we have to show is

$$
4 \mid(a+b)
$$

From $\operatorname{gcd}(a, 4)=2$ follows $a=2 k$ where k is odd. Otherwise the gcd would be 4 .

k	1	2	3	4	5	6	7	8	9
a	2	4	6	8	10	12	14	16	18
$\operatorname{gcd}(a, 4)$	2	4	2	4	2	4	2	4	2

Likewise, from $\operatorname{gcd}(b, 4)=2$ follows $b=2 m$ where m is odd. Hence, $a+b=2(k+m)$. As for all odd numbers, the sum of $k+m$ is even. So for some integer x holds $k+m=2 x$, which yields $a+b=2 \cdot 2 x=4 x$. Therefore, we get the required property $4 \mid(a+b)$.

Exercise 77

Can also be calculated using the definitions of gcd and lcm
https://math.stackexchange.com/a/470827

We know Bézout's identity from the lecture:

$$
\begin{equation*}
d=\operatorname{gcd}(a, b) \Longrightarrow \exists e, f \in \mathbb{Z}: d=a e+b f \tag{1}
\end{equation*}
$$

Note that d divides $a b$. Let $m=\frac{a b}{d}$. To complete the proof, we show that m is the least common multiple of a and b. Certainly m is some multiple of a and b. Let n be any other common positive multiple of a and b. We show that m divides n. This will show that $m \leq n$, making m the least common multiple.

We have

$$
\frac{n}{m}=\frac{n d}{a b}=\frac{n(a e+b f)}{a b}=\frac{n}{b} e+\frac{n}{a} f .
$$

As we assumed n to be a multiple of a and b, the term $\frac{n}{b} e+\frac{n}{a} f$ is certainly an integer, and therefore n / m is an integer, too. Hence, n is a multiple of m.

From our initial assumption $m=\frac{a b}{d}$ follows the identity

$$
m d=a b
$$

Exercise 78

$$
\begin{aligned}
2863 & =1057 \cdot 2+749 \\
1057 & =749 \cdot 1+308 \\
749 & =308 \cdot 2+133 \\
308 & =133 \cdot 2+42 \\
133 & =42 \cdot 3+7 \\
42 & =7 \cdot 6+0
\end{aligned}
$$

$$
\begin{aligned}
7 & =133-42 \cdot 3 \\
& =133-(308-133 \cdot 2) \cdot 3=7 \cdot 133-3 \cdot 308 \\
& =7 \cdot(749-2 \cdot 308)-3 \cdot 308=7 \cdot 749-17 \cdot 308 \\
& =7 \cdot 749-17 \cdot(1057-749)=24 \cdot 749-17 \cdot 1057 \\
& =24 \cdot(2863-2 \cdot 1057)-17 \cdot 1057=24 \cdot 2863-65 \cdot 1057
\end{aligned}
$$

Multiply both sides by 6 to get

$$
42=144 \cdot 2863-390 \cdot 1057
$$

so $a=144$ and $b=-390$. You can also start the second/backwards part at the line $308=133 \cdot 2+42$ and avoid the multiplication by 6 .

Exercise 79

solver

$$
\begin{aligned}
x^{3}+5 x^{2}+7 x+3 & =\left(x^{3}+x^{2}-5 x+3\right) 1+\left(4 x^{2}+12 x\right) \\
x^{3}+x^{2}-5 x+3 & =\left(4 x^{2}+12 x\right)\left(\frac{1}{4} x-\frac{1}{2}\right)+(x+3) \\
4 x^{2}+12 x & =(x+3) 4 x+(0)
\end{aligned}
$$

The GCD (last non-zero remainder) is $x+3$.
Calculation example: To calculate
$\left(x^{3}+x^{2}-5 x+3\right):\left(4 x^{2}+12 x\right)$ we start with $\frac{1}{4} x$ to adjust $4 x^{2}$ to x^{3}. As $\left(x^{3}+x^{2}-5 x+3\right)-$ $\frac{1}{4} x\left(4 x^{2}+12 x\right)=-2 x^{2}-5 x+3$ has the same degree as $\left(4 x^{2}+12 x\right)$, we continue and add $-\frac{1}{2}$ to adjust $4 x^{2}$ to $-2 x^{2}$. The following division yields the remainder $x+3$.
Then we are done with this line.

Exercise 80

Illustration of $n \equiv m \bmod 4$:

n	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
m	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1

Assume to the contrary that there are only finitely many primes p with $p \equiv 3$ $\bmod 4$. Let this set be $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
Let $a=4 p_{1} p_{2} \ldots p_{a}-1$. Then $a-(-1)=4 p_{1} p_{2} \ldots p_{n}$. Then $4 \mid a-(-1)$. By definition $x \equiv y \bmod m \Leftrightarrow m \mid(x-y)$. Therefore, $a \equiv-1 \equiv 3 \bmod 4$ (see table).

Only the product of two odd numbers gives an odd number. a is odd. Therefore, all prime divisors of a are odd. Let t be an arbitrary one of them. Then t must be of the form $4 k+1$ or $4 k+3$, and can certainly not be of the form $4 k$ or $4 k+2$ for some integer k. Hence, for for any prime divisor t of a holds $t \equiv 1 \bmod 4$ or $t \equiv 3 \bmod 4$.

Furthermore, there is at least one prime factor q of the prime factorization of a with $q \not \equiv 1 \bmod 4$. Proof by contradiction: Suppose all prime factor of a are congruent to 1 modulo 4. Then they are of the form $4 m+1$. Notice that the product of two such prime factors $(4 m+1)(4 k+1)=4(4 k m+k+m)+1$ is of the same form. By induction, the product of all prime factors of a is of that form. So a itself is of that form, and hence $a \equiv 1 \bmod 4$. But we have shown that $a \equiv 3 \bmod 4$. Contradiction. Therefore, $q \not \equiv 1 \bmod 4$. By our previous result follows $q \equiv 3 \bmod 4$.

Additionally, it holds $q \notin P$. Suppose the contrary. Then $q=p_{j}$ for some $1 \leq j \leq n$. As q is a prime factor of a, it holds $q \mid a$. As $q=p_{j}$ it holds $p_{j} \mid 4 p_{1} p_{2} \ldots p_{n}$. But then it must also hold that $q \mid(-1)$. However, this is impossible as only for $q=1, a=-1$ and $q=-1, a=1$ the divisbility definition $q a=-1$ is fulfilled. However, q is primes and primes are defined to be strictly greater than 1 . This contradiction concludes the proof that $q \notin P$.
So in the end we have $q \equiv 3 \bmod 4$ and $q \notin P$. This contradicts our initial assumption. Hence, there are infinitely many solutions of the equation $p \equiv 3 \bmod 4$.
https://math.stackexchange.com/a/714048
https://math.stackexchange.com/a/1433518
https://math.stackexchange.com/a/30579
pdf from some university

