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Exercise 71
x ∧ y (”meet”) is the unique maximal element of all common lower elements of x, y if
it exists. x∨ y (”join”) is the unique minimal element of all common upper bounds of
x, y if it exists. P is called a lattice if x ∧ y, x ∨ y exist for all x, y ∈ P .

a) 0 ∈ P is the zero-element if and only if ∀x ∈ P : 0 ≤ x. 1 ∈ P is the one-element if
and only if ∀x ∈ P : x ≤ 1.
Proof by induction. P (n): A lattice L of size n has a 0-element and a 1-element.
P (1): By reflexivity holds for the only element l ∈ L that l ≤ l. Hence, x is
zero-element and one-element.
P (n) → P (n+ 1): Assume P (n). Consider the lattice L ∪ {j} of size n+ 1. Then
there is x ∧ j and x ∨ j for all x ∈ L ∪ {j}. Note that this holds for x = 0 and
x = 1. That is, there exists 1 ∨ j and 0 ∧ j. Case 1: 1 ≤ j. Then j is the new 1
and 0 remains 0. Case 2: 0 ≤ j ≤ 1. Then 1 and 0 remain equal. Case 3: j ≤ 0.
Then j is the new 0 and 1 remains 1.
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b) x∧ y is a common lower bound of x and y. That means x∧ y ≤ y. x∧ y is a lower
bound of y. Therefore, y is the smallest common upper bound of x ∧ y and itself.
Hence, by definition y = y ∨ (x ∧ y).

c) https://en.wikipedia.org/wiki/Modular_lattice#Examples Consider the fol-
lowing lattice.

We see that x ≤ y, the hypothesis of the implication, holds. We also see that x
and y are distinct. Note that x = x ∨ (y ∧ z) and z = (x ∨ y) ∧ z. It follows
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x ∨ (y ∧ z) 6= (x ∨ y) ∧ z. That means, the conclusion of the implication does not
hold. Hence, the implication is wrong.

Exercise 73
1. Assume ∃e ∈ Z : b = ae,∃f ∈ Z : c = af . Let x, y be arbitrary integers. Then

xb = aex and yc = afy. By addition we get xb+ yc = aex+ afy = a(ex+ fy)
where ex + fy is just another integer, say z ∈ Z. Then xb + yc = az, so by
definition a | xb+ yc.

2. Could be shorter and without the lemma
https://math.stackexchange.com/a/1920634
Lemma: From ma+nb = 1 with a, b, n,m ∈ Z (linear combination of a, b) follows
that a, b are coprime.
Proof: Assume they are not coprime. Then there exists an integer d > 1 that
divides a and b. Then there exist integers s, t such that a = ds and b = dt. It
follows

ma+ nb = 1 ⇔ m(ds) + n(dt) = 1 ⇔ d(ms+ nt) = 1

It follows that d divides 1. The only positive number that divides 1 is 1 itself,
so d = 1. However, we previously had d > 1. Contradiction. Hence, a and b are
coprime. This concludes the proof of the lemma.
https://math.stackexchange.com/a/985209
Assume gcd(a, b) = 1 and c | a and d | b. Then ∃x ∈ Z : a = xc and ∃y ∈ Z :
b = yd. Furthermore, Bézouts theorem implies ∃e, f ∈ Z : 1 = ae + bf , from
which follows by substitution ∃e, f ∈ Z : 1 = (xe)c + (yf)d. As xe and yf are
just integers, c and d are coprime, so by definition gcd(c, d) = 1.

3. Assume a | c and b | c and gcd(a, b) = 1. Then by definition ∃x ∈ Z : c =
xa and ∃y ∈ Z : c = yb and by Bézout’s theorem ∃e, f ∈ Z : 1 = ae + bf .
Multiplying both sides by c gives c = ace + bcf and by substituting c we get
c = a(yb)e + b(xa)f . So we get c = ab(ye + xf) where ye + xf is an integer.
Then by definition ab | c.

Exercise 74
For integers a, b holds x = 2a+ 1 and y = 2b+ 1. It follows

x2 + y2 = (2a+ 1)2 + (2b+ 1)2

= 4(a2 + a) + 1 + 4(b2 + b) + 1

= 4z + 2
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where z = a2 + a+ b2 + b is some integer. This means that x2 + y2 divided by 4 leaves
remainder 2, that is 4 - (x2 + y2). As x, y are odd it follows x2, y2 are odd which
implies x2 + y2 is even, that is 2 | (x2 + b2).

Alternatively, consider x2 + y2 = 4z + 2 = 2(2z + 1). As z can be any integer,
2z + 1 is an odd integer. As 2z + 1 is an integer, it follows again 2 | (x2 + b2). As
it is additionally odd (and odd multiples of 2 are not divisble by 4), it follows again
4 - (x2 + y2).

k 1 2 3 4 5 6 7 8 9
2k 2 4 6 8 10 12 14 16 18

Exercise 75
• Note that n2 − n = (n − 1)n is the product of two consecutive integers. One

factor must be divisible by two. Therefore, the product is divisible by two.
Hence, n2 − n is even.

• https://math.stackexchange.com/a/211122
https://math.stackexchange.com/a/1359478
Note that n3 − n = (n− 1)n(n+ 1) is the product of three consecutive integers.
One factor must be even and one must be a multiple of three. Hence, the product
is a multiple of both 2 and 3. Therefore, it is divisble by by the least common
mulitple of 2 and 3, which is 6.

Exercise 76
https://math.stackexchange.com/a/1114724

By definition, we have to show that 4 | (a+ b)∧ 4 | 4∧ (t | (a+ b) ∧ t | 4 =⇒ t | 4).
As (t | (a+ b) ∧ t | 4 =⇒ t | 4) is a tautology, what we have to show is

4 | (a+ b)

From gcd(a, 4) = 2 follows a = 2k where k is odd. Otherwise the gcd would be 4.
k 1 2 3 4 5 6 7 8 9
a 2 4 6 8 10 12 14 16 18

gcd(a, 4) 2 4 2 4 2 4 2 4 2
Likewise, from gcd(b, 4) = 2 follows b = 2m where m is odd. Hence, a+b = 2(k+m).

As for all odd numbers, the sum of k+m is even. So for some integer x holds k+m = 2x,
which yields a+ b = 2 · 2x = 4x. Therefore, we get the required property 4 | (a+ b).

Exercise 77
Can also be calculated using the definitions of gcd and lcm

https://math.stackexchange.com/a/470827
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We know Bézout’s identity from the lecture:

d = gcd(a, b) =⇒ ∃e, f ∈ Z : d = ae+ bf (1)

Note that d divides ab. Let m = ab
d . To complete the proof, we show that m is the

least common multiple of a and b. Certainly m is some multiple of a and b. Let n be
any other common positive multiple of a and b. We show that m divides n. This will
show that m ≤ n, making m the least common multiple.

We have
n

m
=

nd

ab
=

n(ae+ bf)

ab
=

n

b
e+

n

a
f.

As we assumed n to be a multiple of a and b, the term n
b e+

n
a f is certainly an integer,

and therefore n/m is an integer, too. Hence, n is a multiple of m.
From our initial assumption m = ab

d follows the identity

md = ab

Exercise 78

2863 = 1057 · 2 + 749

1057 = 749 · 1 + 308

749 = 308 · 2 + 133

308 = 133 · 2 + 42

133 = 42 · 3 + 7

42 = 7 · 6 + 0

7 = 133− 42 · 3
= 133− (308− 133 · 2) · 3 = 7 · 133− 3 · 308
= 7 · (749− 2 · 308)− 3 · 308 = 7 · 749− 17 · 308
= 7 · 749− 17 · (1057− 749) = 24 · 749− 17 · 1057
= 24 · (2863− 2 · 1057)− 17 · 1057 = 24 · 2863− 65 · 1057

Multiply both sides by 6 to get

42 = 144 · 2863− 390 · 1057

so a = 144 and b = −390. You can also start the second/backwards part at the line
308 = 133 · 2 + 42 and avoid the multiplication by 6.
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Exercise 79
solver

x3 + 5x2 + 7x+ 3 =
(
x3 + x2 − 5x+ 3

)
1 +

(
4x2 + 12x

)
x3 + x2 − 5x+ 3 =

(
4x2 + 12x

)(1

4
x− 1

2

)
+ (x+ 3)

4x2 + 12x = (x+ 3) 4x+ (0)

The GCD (last non-zero remainder) is x+ 3.
Calculation example: To calculate(
x3 + x2 − 5x+ 3

)
:
(
4x2 + 12x

)
we start with 1

4x to adjust 4x2 to x3. As
(
x3 + x2 − 5x+ 3

)
−

1
4x

(
4x2 + 12x

)
= −2x2− 5x+3 has the same degree as

(
4x2 + 12x

)
, we continue and

add − 1
2 to adjust 4x2 to −2x2. The following division yields the remainder x + 3.

Then we are done with this line.

Exercise 80
Illustration of n ≡ m mod 4:

n -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
m 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

Assume to the contrary that there are only finitely many primes p with p ≡ 3
mod 4. Let this set be P = {p1, p2, . . . , pn}.

Let a = 4p1p2 . . . pa − 1. Then a − (−1) = 4p1p2 . . . pn. Then 4 | a − (−1). By
definition x ≡ y mod m ⇔ m | (x− y). Therefore, a ≡ −1 ≡ 3 mod 4 (see table).

Only the product of two odd numbers gives an odd number. a is odd. Therefore,
all prime divisors of a are odd. Let t be an arbitrary one of them. Then t must be of
the form 4k + 1 or 4k + 3, and can certainly not be of the form 4k or 4k + 2 for some
integer k. Hence, for for any prime divisor t of a holds t ≡ 1 mod 4 or t ≡ 3 mod 4.

Furthermore, there is at least one prime factor q of the prime factorization of a with
q 6≡ 1 mod 4. Proof by contradiction: Suppose all prime factor of a are congruent
to 1 modulo 4. Then they are of the form 4m + 1. Notice that the product of two
such prime factors (4m + 1)(4k + 1) = 4(4km + k +m) + 1 is of the same form. By
induction, the product of all prime factors of a is of that form. So a itself is of that
form, and hence a ≡ 1 mod 4. But we have shown that a ≡ 3 mod 4. Contradiction.
Therefore, q 6≡ 1 mod 4. By our previous result follows q ≡ 3 mod 4.

Additionally, it holds q /∈ P . Suppose the contrary. Then q = pj for some 1 ≤ j ≤ n.
As q is a prime factor of a, it holds q | a. As q = pj it holds pj | 4p1p2 . . . pn. But then
it must also hold that q | (−1). However, this is impossible as only for q = 1, a = −1
and q = −1, a = 1 the divisbility definition qa = −1 is fulfilled. However, q is primes
and primes are defined to be strictly greater than 1. This contradiction concludes the
proof that q /∈ P .

So in the end we have q ≡ 3 mod 4 and q /∈ P . This contradicts our initial
assumption. Hence, there are infinitely many solutions of the equation p ≡ 3 mod 4.
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https://math.stackexchange.com/a/714048
https://math.stackexchange.com/a/1433518
https://math.stackexchange.com/a/30579
pdf from some university
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