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Exercise 71

x Ay ("meet”) is the unique maximal element of all common lower elements of z,y if
it exists.  Vy ("join”) is the unique minimal element of all common upper bounds of
x,y if it exists. P is called a lattice if x A y,x V y exist for all z,y € P.

a) 0 € P is the zero-element if and only if Vo € P: 0 < z. 1 € P is the one-element if
and only if Ve € P:x < 1.

Proof by induction. P(n): A lattice L of size n has a 0-element and a 1-element.

P(1): By reflexivity holds for the only element [ € L that [ < [. Hence, z is
zero-element and one-element.

P(n) = P(n+1): Assume P(n). Consider the lattice L U {j} of size n 4+ 1. Then
there is A j and x V j for all x € L U {j}. Note that this holds for z = 0 and
x = 1. That is, there exists 1V j and 0 A j. Case 1: 1 < j. Then j is the new 1
and 0 remains 0. Case 2: 0 < 7 < 1. Then 1 and 0 remain equal. Case 3: j < 0.
Then j is the new 0 and 1 remains 1.
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b) x Ay is a common lower bound of x and y. That means z Ay < y. z Ay is a lower
bound of y. Therefore, y is the smallest common upper bound of x A y and itself.
Hence, by definition y =y V (z A y).
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c) https://en.wikipedia.org/wiki/Modular_lattice#Examples Consider the fol-
lowing lattice.
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We see that x < y, the hypothesis of the implication, holds. We also see that z
and y are distinct. Note that x = 2V (y A z) and z = (z Vy) A z. It follows
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https://en.wikipedia.org/wiki/Modular_lattice#Examples

xV (yAz)# (xVy) Az That means, the conclusion of the implication does not
hold. Hence, the implication is wrong.

Exercise 73

1. Assume e € Z : b = ae,3f € Z : ¢ = af. Let z,y be arbitrary integers. Then
b = aex and yc = afy. By addition we get xb + yc = aex + afy = alex + fy)
where ex + fy is just another integer, say z € Z. Then b+ yc = az, so by
definition a | zb + yc.

2. Could be shorter and without the lemma
https://math.stackexchange.com/a/1920634

Lemma: From ma+nb = 1 with a,b,n, m € Z (linear combination of a, b) follows
that a,b are coprime.
Proof: Assume they are not coprime. Then there exists an integer d > 1 that
divides a and b. Then there exist integers s,t such that a = ds and b = dt. It
follows

ma—+nb=1<m(ds) +n(dt) =1< dims+nt) =1

It follows that d divides 1. The only positive number that divides 1 is 1 itself,
so d = 1. However, we previously had d > 1. Contradiction. Hence, a and b are
coprime. This concludes the proof of the lemma.

https://math.stackexchange.com/a/985209

Assume ged(a,b) =1and c|aand d |b. ThenIxr € Z:a =2cand Jy € Z :
b = yd. Furthermore, Bézouts theorem implies Je, f € Z : 1 = ae + bf, from
which follows by substitution Je, f € Z : 1 = (xe)c + (yf)d. As xe and yf are
just integers, ¢ and d are coprime, so by definition ged(e,d) = 1.

3. Assume a | ¢ and b | ¢ and ged(a,b) = 1. Then by definition Jx € Z : ¢ =
za and Jy € Z : ¢ = yb and by Bézout’s theorem de, f € Z : 1 = ae + bf.
Multiplying both sides by ¢ gives ¢ = ace + bcf and by substituting ¢ we get
¢ = a(yb)e + b(za)f. So we get ¢ = ab(ye + xf) where ye + zf is an integer.
Then by definition ab | c.

Exercise 74

For integers a,b holds z = 2a + 1 and y = 2b + 1. It follows

2?4+ 9% = (20 + 1)% + (2b + 1)?
=4(a®*+a)+1+4(b*+b) +1
=4z+2



where z = a? + a + b + b is some integer. This means that 22 +y? divided by 4 leaves
remainder 2, that is 4 { (22 + y?). As z,y are odd it follows 22,y? are odd which
implies 22 + y? is even, that is 2 | (22 + b?).

Alternatively, consider 22 + y? = 4z +2 = 2(2z + 1). As z can be any integer,
2z + 1 is an odd integer. As 2z + 1 is an integer, it follows again 2 | (22 + b?). As
it is additionally odd (and odd multiples of 2 are not divisble by 4), it follows again
LF @ +p?).

k1 2 3 4 ) 6 7 8 9
2k 2 4 6 8 10 12 14 16 18

Exercise 75

e Note that n? —n = (n — 1)n is the product of two consecutive integers. One
factor must be divisible by two. Therefore, the product is divisible by two.
Hence, n? — n is even.

 https://math.stackexchange.com/a/211122
https://math.stackexchange.com/a/1359478

Note that n® —n = (n — 1)n(n + 1) is the product of three consecutive integers.
One factor must be even and one must be a multiple of three. Hence, the product
is a multiple of both 2 and 3. Therefore, it is divisble by by the least common
mulitple of 2 and 3, which is 6.

Exercise 76

https://math.stackexchange.com/a,/1114724
By definition, we have to show that 4 | (a+b) A4 [4A(t]| (a+D) At |4 = t|4).
As (t| (a+b)At]|4 = t]4) is a tautology, what we have to show is

4] (a+0b)

From ged(a,4) = 2 follows a = 2k where k is odd. Otherwise the ged would be 4.
E 1 2 3 4 5 6 7 8 9
a 2 4 6 8 10 12 14 16 18
ged(a,4) 2 4 2 4 2 4 2 4 2
Likewise, from ged(b, 4) = 2 follows b = 2m where m is odd. Hence, a+b = 2(k+m).
As for all odd numbers, the sum of k+m is even. So for some integer x holds k+m = 2z,
which yields a + b = 2 - 22 = 4z. Therefore, we get the required property 4 | (a + b).

Exercise 77

Can also be calculated using the definitions of ged and lem
https://math.stackexchange.com/a/470827



We know Bézout’s identity from the lecture:
d=gcd(a,b) = Je,f €Z:d=ae+bf (1)

Note that d divides ab. Let m = %b. To complete the proof, we show that m is the
least common multiple of @ and b. Certainly m is some multiple of a and b. Let n be
any other common positive multiple of a and b. We show that m divides n. This will
show that m < n, making m the least common multiple.

We have p b
n_l:n(ae+ f):ﬁe+ﬁf.
m ab ab b a

As we assumed n to be a multiple of a and b, the term Fe+ = f is certainly an integer,
and therefore n/m is an integer, too. Hence, n is a multiple of m.
From our initial assumption m = %b follows the identity

md = ab

Exercise 78

2863 = 1057 - 2 + 749
1057 =749 - 1 4 308
749 = 308 - 2 4 133
308 =133 -2+ 42
133 =42-3+7
42=7-6+0

7T=133-42-3
=133 - (308 —-133-2)-3="7-133—3-308
=7-(749—-2-308) —3-308 =7-749 — 17 - 308
=7-749 — 17 - (1057 — 749) = 24 - 749 — 17 - 1057
=24 (2863 —2-1057) — 17 - 1057 = 24 - 2863 — 65 - 1057

Multiply both sides by 6 to get
42 = 144 - 2863 — 390 - 1057

so a = 144 and b = —390. You can also start the second/backwards part at the line
308 = 133 - 2 + 42 and avoid the multiplication by 6.



Exercise 79

solver

2® +52° + Tw + 3= (2° + 2° — 5w+ 3) 1 + (42® + 122)

11
2® +2° — 5z + 3 = (42” + 12z) (4x—2>+(x+3)

42* +12x = (z + 3) 4z + (0)

The GCD (last non-zero remainder) is = + 3.
Calculation example: To calculate
(IE?’ + 22 — bz + 3) : (4902 + 1233) we start with %:I: to adjust 422 to 23. As (x3 + a2 — b+ 3) —
ix (4302 + 123@) = —222 — 52+ 3 has the same degree as (4952 + 1233), we continue and
add —% to adjust 422 to —2z2. The following division yields the remainder = + 3.
Then we are done with this line.

Exercise 80

[lustration of n = m mod 4:
n -2 -1 0 1 2 3 4 5 6 7 & 9 10 11 12 13

m 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

Assume to the contrary that there are only finitely many primes p with p = 3
mod 4. Let this set be P = {p1,p2,...,0n}.

Let @ = 4p1ps...po — 1. Then a — (—1) = 4p1ps...pn. Then 4 | a — (—1). By
definition =y mod m < m | (x —y). Therefore, a = —1 =3 mod 4 (see table).

Only the product of two odd numbers gives an odd number. a is odd. Therefore,
all prime divisors of a are odd. Let ¢ be an arbitrary one of them. Then ¢t must be of
the form 4k + 1 or 4k + 3, and can certainly not be of the form 4k or 4k + 2 for some
integer k. Hence, for for any prime divisor ¢ of a holds t =1 mod 4 or t =3 mod 4.

Furthermore, there is at least one prime factor ¢ of the prime factorization of a with
g £ 1 mod 4. Proof by contradiction: Suppose all prime factor of a are congruent
to 1 modulo 4. Then they are of the form 4m + 1. Notice that the product of two
such prime factors (4m + 1)(4dk + 1) = 4(4km + k + m) + 1 is of the same form. By
induction, the product of all prime factors of a is of that form. So a itself is of that
form, and hence a =1 mod 4. But we have shown that a =3 mod 4. Contradiction.
Therefore, ¢ Z1 mod 4. By our previous result follows ¢ =3 mod 4.

Additionally, it holds ¢ ¢ P. Suppose the contrary. Then ¢ = p; for some 1 < j < n.
As g is a prime factor of a, it holds ¢ | a. As ¢ = p; it holds p; | 4p1p2 ... pn. But then
it must also hold that ¢ | (—1). However, this is impossible as only for ¢ = 1,a = —1
and ¢ = —1,a = 1 the divisbility definition qa = —1 is fulfilled. However, ¢ is primes
and primes are defined to be strictly greater than 1. This contradiction concludes the
proof that g ¢ P.

So in the end we have ¢ = 3 mod 4 and ¢ ¢ P. This contradicts our initial
assumption. Hence, there are infinitely many solutions of the equation p =3 mod 4.


https://mathsci2.appstate.edu/~cookwj/sage/algebra/Euclidean_algorithm-poly.html

https://math.stackexchange.com/a/714048
https://math.stackexchange.com/a/1433518
https://math.stackexchange.com/a/30579
pdf from some university


https://www.ms.uky.edu/~corso/teaching/MA261/Spring14/Worksheet_5_solution.pdf

