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Making Simple Decisions



Decision Theory

» Decision-theoretic agent:
e combines utility theory with probability theory

e makes rational decisions based on beliefs and desires in
contexts of uncertainty and conflicting goals

e has a continuous measure of outcome quality
= in contrast to goal-based agents that have only a binary
distinction between good (goal) and bad (non-goal) states.
» Decision theory:
e In its simplest form, deals with choosing among actions based
on the desirability of their immediate outcomes.

e Thereby, the environment is assumed to be episodic, i.e.,
— an agent's experience can be divided into atomic episodes
such that succeeding episodes do not depend on actions
taken in previous episodes.

= This is in contrast to sequential environments, where
current decisions influence future decisions. 1/40



Outcomes and Utilities

» We furthermore deal with nondeterministic, partially observable
environments.
e Possible outcome states are represented in terms of random
variables:
— RusuLT(a) denotes a random variable whose values are
the possible outcome states for taking action a.
e The probability of outcome s’, given evidence observations e, is
written as
P(REsuLT(a) = s'|a, e),

where a stands for the event that action a is executed.

» The agent's preferences are expressed by a utility function U(s)
e assigns a single number to a state to express its desirability
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Expected Utility

» The expected utility of an action a given evidence e, denoted
EU(ale), is the average utility value of the outcomes, weighted by
the probability that the outcome occurs:

U(ale) = ) ~ P(REsuLT(a) = s'|a,e)U(s')

s’

» Principle of maximum expected utility (MEU):

e a rational agent should choose the action that maximises the
agent's expected utility:

action = argmax EU(ale).
a
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Preferences

» The MEU principle can be derived from general conditions that a
rational agent should have.

» We use the following notation to describe an agent's preferences:
A >~ B: the agent prefers A over B;
A ~ B: the agent is indifferent between A and B;
A - B: the agent prefers A over B or is indifferent between
them.

» What sort of things are A and B?
e States of the world, but: uncertainty about what is really being
offered.

— E.g., if you are an airline passenger and are offered pasta
or chicken, you do not really know what lurks beneath the
tinfoil cover.

= The set of outcomes for each action can be seen as a lottery,

where each action is a ticket.
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Lottery

» A lottery, L, with possible outcomes 51, ..., S, that occur with
probabilities p1, ..., p, is written as

L = [p1, S1;p2,S2; ... Pn, Sn]-

e Each §; is either an atomic state or another lottery.

» Primary issue of utility theory:

e How do preferences between complex lotteries relate to
preferences between the underlying states in those lotteries?

W To address this issue, we list some conditions that we require that
any reasonable preference relation should obey.
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Axioms of Utility Theory

» Orderability: Given any two lotteries, a rational agent cannot avoid

deciding which one it prefers, or whether it is indifferent between
them.

Exactly one of (A > B),(B > A), or (A ~ B) holds.

» Transitivity:
(A-B)A(B>C)=(A> ().
» Continuity: If some lottery B is between A and C in preference,
then:

e there is some probability p for which the agent will be
indifferent between getting B for sure and the lottery that
yields A with probability p and C with probability 1 — p.

A=B»C=3dp[p,A1—p,C]~B.
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Axioms of Utility Theory (ctd.)

» Substitutability: If an agent is indifferent between A and B, then it
is indifferent between two more complex lotteries that are the same
except that B is substituted for A.

A~B=[p,Al-p,Cl~[p,B;1-pC]
This holds for = instead of ~ as well.

» Monotonicity: Suppose two lotteries have the same possible
outcomes A and B.

e If an agent prefers A to B, then the agent must prefer precisely
the lottery that has a higher probability for outcome A.

A>—B:>(p>q<:>[paAv1_po]>_[q~Av1_an])
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Axioms of Utility Theory (ctd.)

» Decomposability: Compound lotteries can be reduced to simpler
ones using the laws of probability.

[p.A;1—p,[q,B:1—q,C]] ~[p, A (1 - p)g, B; (1 - p)(1 - q), C].

This is known as the “no fun in gambling” rule:
e two consecutive lotteries can be compressed into a single
equivalent lottery.

P A

is equivalent to 1
ad-ra __ ,
(I-p)(1-q) ~€
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Axioms of Utility Theory (ctd.)

» These conditions are known as the axioms of utility theory.

» Each axiom can be motivated by showing that an agent violating it
will exhibit irrational behaviour.

» Consider, e.g., an agent with intransitive preferences
A= B >~ C = A can be induced to give away all its money:

1. If the agent has A, we could offer to
trade C for A plus one cent. The agent
prefers C, so is willing to make the trade.

A
2. We then offer B for C, extracting another I Ie
cent, as the agent prefers B over C.
3. Finally, we trade A for B. We are back to B C!

1 except that the agent gave us 3 cents. \T'/
{43
4. We continue until the agent has no
money.

= Clearly, the agent behaves irrationally.
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Existence of Utility Function

As shown by von Neumann and Morgenstern (1944), the axioms of utility
theory imply the following:

» Existence of Utility Function: Given an agents preferences that
satisfy the axioms of utility theory, there exists a real-valued
function U such that

UA)>UB) & A-B
UA)=UB) <« A~B

» Expected Utility of a Lottery: The utility of a lottery is the sum of
the probability of each outcome times the utility of that outcome.
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Utility Scales and Assessment

The preceding results show that a utility function exists, but they do not
imply that it is unique.

» It can be shown that an agent's behaviour does not change if its
utility function U(S) is replaced by

U'(S) = aU(S) + b,
where a and b are constants and a > 0.

w [/ is determined up to linear (affine) transformations.
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Utility Scales and Assessment (ctd.)

» In deterministic environments, where there are states and no
lotteries, the behaviour of an agent is unchanged by an application
of any monotonic transformation.

e For instance, we could apply the square root to all utilities
without changing the priority order of states.
e One says:

— An agent in a deterministic environment has a value
function or ordinal utility function,

— i.e., such functions just provide a preference ranking on
states—the numbers do not matter.

» How to work out an agents utility function?
e Present choices to an agent and use observed preferences to pin
down the underlying utility function.

e This process is called preference elicitation.
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Utility Scales

» As we have seen, there is no absolute scale for utilities but it is
useful to establish some scale for any particular problem.
» How to establish a scale?
e Fix the utilities of any two particular outcomes.

e Typically, we fix the utility of a “best possible prize” S, at
U(Sp) = ut and a "worst possible catastrophe” S, at
U(SW) = uj.

e Normalized utilities use a scale with v, = 0 and ut = 1.

13/40



>

>

Utility Scales: Examples

Some attempts have been made to find out the value that people
place on their own lives.

One common “currency” in medical and safety analysis is the
micromort:
e the event of a one-in-a-million chance of death.

If people are asked how much they would pay to avoid a risk of a
one-in-a-million chance of death they will respond with very large
numbers, but their actual behaviour reflects a much lower monetary
value for a micromort.
e E.g., driving in a car for 370 km incurs a risk of one micromort;
for a car with, say 150.000 km, that's about 400 micromorts.

e People appear to be willing to pay about 10.000 Dollars more
for a safer car that halves the risk of death (i.e., to incur 200
micromorts instead of 400), or about 50 Dollar per micromort.

In general, studies on a large number of people showed that one

micromort amounts to ca. 20 Dollars (in 1980s money). 10
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Utility Scales: Examples (ctd.)

» Another measure is the QALY (“quality-adjusted life year"), useful
for medical decisions involving substantial risks:

e one QALY equates to one year in perfect health.

» The QALY is an indicator for the time-trade-off (TTO) to choose
between remaining in a state of ill health for a period of time vs.
being restored to perfect health but having a shorter life expectancy.

e E.g., on average, kidney patients are indifferent between living
two years on a dialysis machine and one year at full health.
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The Utility of Money

Money plays a significant role in human utility functions.

Usually, an agent exhibits a monotonic preference for more money,
all other things being equal (“ceteris paribus”), i.e., the agent
prefers more money to less.

But: this does not mean that money behaves as a utility function,
because it says nothing about preferences between /otteries involving
money.

Example:
e Suppose you have won in a game show and are offered a choice:
— either take the $1,000,000 prize or
— gamble it on the flip of a coin: the coin coming up heads
means you end up with nothing, the coin coming up tails
means you get $2,500,000.
e How would you decide?
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The Utility of Money (ctd.)

» Assuming the coin is fair, i.e., there is a 50:50 chance for coming up
heads or tails, the expected monetary value (EMV) of the gamble is

$0+ —-$2,500,000 = $1, 250, 000

— The EMV is more than the original $1,000,000, but is accepting
the gamble the better decision?

» Let S, denote a state of possessing n Dollars, and say your current
wealth is k Dollars.

= The expected utilities of accepting and declining the gamble are

EU(Accept) =
EU(Decline) =

1
-U(Sk) + 5 U(Sk+2,500,000)

1
2
U(Sk+1,000,000)-

17/40



The Utility of Money (ctd.)

How to define the utility?
e The utility is not directly proportional to monetary value,
because the utility for the first million is very high, but what
about the utility for the next million?

Assume you assign a utility of 5 to your current financial status Sy,
9 to the state 5k+2,500,000: and 8 to the state 5k+1,000,000-

Then:

1 1 5 9
EU(Accept) = 7 - U(Sk) + 5 - UlSks2500000) = 5 + 5 =7
EU(Decline) = U(Sk+1,000,000) = 8.

— the rational action would be to decline, because the expected
utility of accepting is 7 and for declining 8.

On the other hand, a billionaire would most likely have a utility

function that is locally linear over the range of a few million more,

and thus would accept.

18/40



The Utility of Money (ctd.)

» In a pioneering study of actual utility functions, Grayson (1960)
found that the utility of money was almost exactly proportional to
the logarithm of the amount.

» Preferences between different levels of debt can display a reversal of
the concavity associated with positive wealth.
e E.g., someone already $10,000,000 in debt might well accept a
gamble on a fair coin with a gain of $10,000,000 for heads and
a loss of $20,000,000 for tails.

— This leads to the S-shaped form of the curve.
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Risks

» For a positive wealth, given a lottery L with expected monetary value
EMV/(L), usually U(L) < U(Semy(r)), where Seppy(p) is the state of
being handed the expected money of the lottery as the sure thing.

w | e., people are risk-averse—they prefer a sure thing with a
payoff that is less than the expected monetary value of a
gamble.

» On the other hand, when in large debt, the behaviour is risk-seeking.

» The value an agent will accept in lieu of a lottery is the certainty
equivalent of the lottery.

e Studies have shown that most people will accept about 400
Dollars in lieu of a gamble that gives 1000 dollars half the time
and 0 Dollar the other half.

e That is, the certainty equivalent of the lottery is 400 Dollars vs.
the EMV of 500 Dollars.

— The difference is called the insurance premium.
20/40



Risks (ctd.)

» Risk aversion is the basis for the insurance industry, because it
means that insurance premiums are positive.

» People would rather pay a small insurance premium than gamble the
price of their house against the chance of a fire.
= The price of a house is small compared with the insurance
company's total reserves.
= The insurance company'’s utility curve is approximately linear
over such a small region, and the gamble costs the company
almost nothing.
» Note:

e for small changes in wealth compared to the current wealth,
almost any curve will be approximately linear.

= An agent that has a linear curve is said to be risk-neutral.
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Human Judgment and Irrationality

» Decision theory is a normative theory, i.e., it describes how a
rational agent should act.

» A descriptive theory, on the other hand, describes how actual agents
(e.g., humans) really do act.

» Evidence suggests that these two kinds of theories do not coincide

—> humans appear to be “predictably irrational”.
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Allais Paradox

» Assume that there is a choice between lotteries A and B and then
between C and D, which have the following prizes:
e A: 80% chance of winning $4000
e B: 100% chance of winning $3000
e C: 20% chance of winning $4000
e D: 25% chance of winning $3000
» Most people prefer B over A (taking the sure thing), and C over D
(taking the higher EMV).

» However, the normative analysis yields a different result:
e Assume, without loss of generality, a utility function with
U(%0) = 0.
e Then, B ~ A implies U($3000) > 0.8 - U($4000), and C = D
implies 0.2 - U($4000) > 0.25 - U($3000).
e From the latter we obtain
U($3000) < 0 5 2 UJ($4000) = 0.8 - U($4000).

= There is no utility function consistent with theses choices! 2340



Allais Paradox (ctd.)

One possible explanation for the apparent irrational preferences is
the certainty effect, i.e., people are strongly attracted to gains that
are certain.

Why is that?
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Allais Paradox (ctd.)

» Possible answers:
1. People may choose to reduce their computational burden: by
choosing the certain outcomes, there is no need to estimate
probabilities.

2. People may mistrust the legitimacy of the stated probabilities
(in particular, if stated by people with a vested interest in the
outcomes).

3. People may account their emotional state as well as their
financial state.

— People know they would experience regret if they gave up
a certain reward (B) for an 80% chance of a higher reward
and then lost.

— l.e., in choosing A, there is a 20% chance of getting no
money and feeling like a complete idiot, which is worse
than just getting no money.

w Choosing B over A and C over D may not be irrational: just willing
to give up $200 EMV to avoid a 20% chance of feeling like an idiot.
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Ellsberg Paradox

Prizes have an equal value, but probabilities are underconstrained.
Payoff depends on the color of a ball chosen from an urn.

You are told that the urn contains 1/3 red balls, and 2/3 either
black or yellow balls, but you do not know how many black and how
many yellow.

Then, you are asked to choose between A and B, and then between
C and D:
e A: $100 for a red ball

e B: $100 for a black ball

e C: $100 for a red or a yellow ball
e D: $100 for a black or yellow ball

If you think there are more red than black balls, you should prefer A
over B and C over D, and the opposite otherwise.

But most people prefer A over B and D over C!

People have ambiguity aversion.
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Ellsberg Paradox (ctd.)

Ambiguity aversion (ctd.):
e A: $100 for a red ball
e B: $100 for a black ball

e C: $100 for a red or a yellow ball
e D: $100 for a black or yellow ball

» A gives you a 1/3 chance of winning, while B could be anywhere
between 0 and 2/3.

» Likewise, D gives you a 2/3 chance, while C could be anywhere
between 1/3 and 3/3.

= Most people elect the known probability rather than the unknown
one.
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Decision Networks

» Decision networks (or influence diagrams) are a general framework
for supporting rational decisions.

» They contain information about an agent’s current state, its possible
actions, the state that will result from the agent’s action, and the
utility of that state.

» Example of a decision network for the airport siting problem:

Airport Site
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Decision Networks (ctd.)

Decision network uses three types of nodes:
» Chance nodes (ovals): represent random variables.
e E.g., the agent is uncertain about construction costs, the level
of air traffic, the potential for litigation.
e There are also the Deaths, Noise, and Cost variables,
depending on the site chosen.

e Chance nodes are associated with a conditional probability
distribution that is indexed by the state of the parent nodes.

» Decision nodes (rectangles): represent points where a decision
maker has a choice of actions; e.g., the choice of an airport site
influences the cost, noise, etc.

» Utility nodes (diamonds): represent the agent’s utility function.

e |t has as parents all variables describing the outcome that
directly affect utility.
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Evaluating Decision Networks

» Algorithm for evaluating decision networks:
1. Set the evidence variables for the current state.
2. For each possible value of the decision node:
a) Set the decision node to that value.

b) Calculate the posterior probabilities for the parent nodes of
the utility node, using a standard probabilistic inference
algorithm.

c) Calculate the resulting utility for the action.
3. Return the action with the highest utility.

1= Decision networks are an extension of Bayesian networks, in which
only chance nodes occur.
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The Value of Information

In the decision network analysis it is assumed that all relevant
information is available before making a decision.
In practice this is hardly ever the case:
1 One of the most important parts of decision making is knowing
what questions to ask.
Information value theory enables an agent to choose what
information to acquire.
Basic assumption:
e the agent can acquire the value of any observable chance
variables.
These observation actions affect only the belief state, not the
external physical state.
The value of an observation derives from the potential to affect the
agent’s eventual physical action = this potential can be estimated
directly from the decision model itself.
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The Value of Information: Example

A simple example:

>

vy

An oil company plans to buy one of n indistinguishable blocks of
ocean-drilling rights.

One of the blocks contains oil worth C dollars, while all other are
worthless.

The price for each block is C/n Dollars.

If the company is risk neutral, then it is indifferent between buying a
block and not buying one.

Now assume that the company can buy information (results of a
survey) that says definitively whether block 3 contains oil or not.

How much should the company be willing to pay for this
information?
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Example (ctd.)

To answer this question, we examine what the company would do if it
had the information:

» With probability 1/n, the survey will indicate oil in block 3.
e In this case, the company will buy block 3 for C/n dollars and
make a profit of C — C/n = (n—1)C/n dollars.
» With probability (7 — 1)/n, the survey will show that block 3
contains no oil, hence the company will buy a different one.

e Now, the probability of finding oil in one of the other blocks

changes from 1/n to 1/(n— 1), so the expected profit is
c

(n " h = n(n ) Dollars.
» Then, the resulting expected profit, given the survey information is
1 (h—1)C n-1 C C
. + . = .
n n n nln—1) n

= The company should be willing to pay up to C/n Dollars
— the information is worth as much as the block itself!
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Remarks

» The value of information derives from the fact that with the
information, one’s course of action can be changed to suit the actual
situation.

» One can discriminate according to the situation:

e without the information, one has to do what is best on average
over the possible situations.

» In general, the value of a given piece of information is defined to be

the difference in expected value between the best actions before and
after an information is obtained.
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The Value of Perfect Information

Assumption:
e Exact evidence about the value of a random variable £; can be
obtained (i.e., we learn E; = ¢)).

= \We use the phrase value of perfect information (VPI).

Given initial evidence e, the value of the current best action « is
defined by
EU(«|e) = maxEU(ale) = max > P(REsuLT(a) = s'|a,e)U(s').
a a s/

The value of the new best action ., after evidence £; = ¢; is
obtained is
EU(agle, &) = maxz P(REsuLT(a) = s'|a, e, &) U(s').
5/

But the value of £; is currently unknown, so to determine the value
of discovering £;, given current information e, we average over all
possible values ¢, that might be discovered for £;:

VPIe(Ej) = (Z P(Ej = ejle)EU(ae, |e, Ej = ¢;,)) — EU(ale).
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Some Properties of the VPI

» The expected value of information is nonnegative:
VPI.(E;) > 0, for all e and all E;.
» VPl is nonadditive:

in general, VPI(E;, Ex) # VPI(E;) + VPI(Ex).
» VPl is order independent:

VPL(Ej, Ex) = VPl(Ey, Ej).
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Decision-theoretic Expert Systems

Decision analysis (evolved in the 1950s and 1960s) studies the
application of decision theory to actual decision problems.

Traditionally, there are two roles in decision analysis:
e the decision maker, stating preferences between outcomes; and
e the decision analyst, who enumerates possible actions and
outcomes, and elicits preferences to determine the best course
of action.

Early expert system research concentrated on answering questions
rather than on making decisions.

The addition of decision networks allows expert systems to
recommend optimal decisions, reflecting preferences as well as
available evidence.
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Decision-theoretic Expert Systems (ctd.)

The process of creating a decision-theoretic expert system, e.g., for
selecting a medical treatment for congenital heart disease (aortic
coarctation) in children:

1.

create a causal model (e.g., determine symptoms, treatments,
disorders, outcomes, etc.);

. simplify to a qualitative decision model;

3. assign probabilities (e.g., from patient databases, literature studies,

experts subjective assessments, etc.);

assign utilities (e.g., create a scale from best to worst outcome and
give each a numeric value);

. verify and refine the model, evaluate the system against correct

input-output-pairs, a so called gold standard,

. perform sensitivity analysis, i.e., check whether the best decision is

sensitive to small changes in the assigned probabilities and utilities.
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Influence Diagram Example

Influence diagram for aortic coarctation:

Sex

Postcoarctectomy
Syndrome

Paradexical
Hypertension

Aortic
Aneurysm

Intercostal
Recession

Paraplegia

T Intermediate Late
reatment Result Result

VA

Aortic
Dissection

Myocardial
Infarction
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Summary

Decision theory puts probability theory and utility theory together to
describe what an agent should do.

A rational agent makes decisions by considering all possible actions
and choosing the one that leads to the best expected outcome.

An agent whose preferences are consistent with a set of simple
axioms possesses a utility function; furthermore, it selects actions as
if maximising expected utility.

The value of information is defined as expected improvement in
utility compared with making a decision without the information.

Expert systems that incorporate utility information are more
powerful than pure inference systems:
e they are able to make decisions and use the value of
information to decide whether to acquire it, and

e they can calculate their sensitivity to small changes in

probability and utility assessments.
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