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Making Simple Decisions



Decision Theory

ä Decision-theoretic agent:
• combines utility theory with probability theory

• makes rational decisions based on beliefs and desires in
contexts of uncertainty and conflicting goals

• has a continuous measure of outcome quality
å in contrast to goal-based agents that have only a binary

distinction between good (goal) and bad (non-goal) states.

ä Decision theory:

• In its simplest form, deals with choosing among actions based
on the desirability of their immediate outcomes.

• Thereby, the environment is assumed to be episodic, i.e.,
– an agent’s experience can be divided into atomic episodes

such that succeeding episodes do not depend on actions
taken in previous episodes.

å This is in contrast to sequential environments, where
current decisions influence future decisions. 1/40



Outcomes and Utilities

ä We furthermore deal with nondeterministic, partially observable
environments.

• Possible outcome states are represented in terms of random
variables:

– Result(a) denotes a random variable whose values are
the possible outcome states for taking action a.

• The probability of outcome s ′, given evidence observations e, is
written as

P(Result(a) = s ′|a, e),

where a stands for the event that action a is executed.

ä The agent’s preferences are expressed by a utility function U(s)

• assigns a single number to a state to express its desirability
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Expected Utility

ä The expected utility of an action a given evidence e, denoted
EU(a|e), is the average utility value of the outcomes, weighted by
the probability that the outcome occurs:

EU(a|e) =
∑
s′

P(Result(a) = s ′|a, e)U(s ′)

ä Principle of maximum expected utility (MEU):

• a rational agent should choose the action that maximises the
agent’s expected utility:

action = argmax
a

EU(a|e).
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Preferences

ä The MEU principle can be derived from general conditions that a
rational agent should have.

ä We use the following notation to describe an agent’s preferences:

A � B: the agent prefers A over B;
A ∼ B: the agent is indifferent between A and B;
A % B: the agent prefers A over B or is indifferent between

them.

ä What sort of things are A and B?

• States of the world, but: uncertainty about what is really being
offered.

– E.g., if you are an airline passenger and are offered pasta
or chicken, you do not really know what lurks beneath the
tinfoil cover.

å The set of outcomes for each action can be seen as a lottery,
where each action is a ticket.
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Lottery

ä A lottery, L, with possible outcomes S1, . . . ,Sn that occur with
probabilities p1, . . . , pn is written as

L = [p1,S1; p2, S2; . . . ; pn,Sn].

• Each Si is either an atomic state or another lottery.

ä Primary issue of utility theory:

• How do preferences between complex lotteries relate to
preferences between the underlying states in those lotteries?

å To address this issue, we list some conditions that we require that
any reasonable preference relation should obey.
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Axioms of Utility Theory

ä Orderability: Given any two lotteries, a rational agent cannot avoid
deciding which one it prefers, or whether it is indifferent between
them.

Exactly one of (A � B), (B � A), or (A ∼ B) holds.

ä Transitivity:

(A � B) ∧ (B � C )⇒ (A � C ).

ä Continuity: If some lottery B is between A and C in preference,
then:

• there is some probability p for which the agent will be
indifferent between getting B for sure and the lottery that
yields A with probability p and C with probability 1− p.

A � B � C ⇒ ∃p [p,A; 1− p,C ] ∼ B.
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Axioms of Utility Theory (ctd.)

ä Substitutability: If an agent is indifferent between A and B, then it
is indifferent between two more complex lotteries that are the same
except that B is substituted for A.

A ∼ B ⇒ [p,A; 1− p,C ] ∼ [p,B; 1− p,C ].

This holds for � instead of ∼ as well.

ä Monotonicity: Suppose two lotteries have the same possible
outcomes A and B.

• If an agent prefers A to B, then the agent must prefer precisely
the lottery that has a higher probability for outcome A.

A � B ⇒ (p > q ⇔ [p,A; 1− p,B] � [q,A; 1− q,B]).
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Axioms of Utility Theory (ctd.)

ä Decomposability: Compound lotteries can be reduced to simpler
ones using the laws of probability.

[p,A; 1− p, [q,B; 1− q,C ]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C ].

This is known as the “no fun in gambling” rule:
• two consecutive lotteries can be compressed into a single

equivalent lottery.
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Axioms of Utility Theory (ctd.)

ä These conditions are known as the axioms of utility theory.

ä Each axiom can be motivated by showing that an agent violating it
will exhibit irrational behaviour.

ä Consider, e.g., an agent with intransitive preferences
A � B � C � A can be induced to give away all its money:

1. If the agent has A, we could offer to
trade C for A plus one cent. The agent
prefers C , so is willing to make the trade.

2. We then offer B for C , extracting another
cent, as the agent prefers B over C .

3. Finally, we trade A for B. We are back to
1 except that the agent gave us 3 cents.

4. We continue until the agent has no
money.

=⇒ Clearly, the agent behaves irrationally.
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Existence of Utility Function

As shown by von Neumann and Morgenstern (1944), the axioms of utility
theory imply the following:

ä Existence of Utility Function: Given an agents preferences that
satisfy the axioms of utility theory, there exists a real-valued
function U such that

U(A) > U(B) ⇔ A � B

U(A) = U(B) ⇔ A ∼ B

ä Expected Utility of a Lottery: The utility of a lottery is the sum of
the probability of each outcome times the utility of that outcome.

U([p1,S1; . . . ; pn, Sn]) =
∑
i

piU(Si ).
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Utility Scales and Assessment

The preceding results show that a utility function exists, but they do not
imply that it is unique.

ä It can be shown that an agent’s behaviour does not change if its
utility function U(S) is replaced by

U ′(S) = aU(S) + b,

where a and b are constants and a > 0.

å U is determined up to linear (affine) transformations.
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Utility Scales and Assessment (ctd.)

ä In deterministic environments, where there are states and no
lotteries, the behaviour of an agent is unchanged by an application
of any monotonic transformation.

• For instance, we could apply the square root to all utilities
without changing the priority order of states.

• One says:

– An agent in a deterministic environment has a value
function or ordinal utility function,

– i.e., such functions just provide a preference ranking on
states—the numbers do not matter.

ä How to work out an agents utility function?

• Present choices to an agent and use observed preferences to pin
down the underlying utility function.

• This process is called preference elicitation.
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Utility Scales

ä As we have seen, there is no absolute scale for utilities but it is
useful to establish some scale for any particular problem.

ä How to establish a scale?

• Fix the utilities of any two particular outcomes.

• Typically, we fix the utility of a “best possible prize” Sb at
U(Sb) = u> and a “worst possible catastrophe” Sw at
U(Sw ) = u⊥.

• Normalized utilities use a scale with u⊥ = 0 and u> = 1.
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Utility Scales: Examples

ä Some attempts have been made to find out the value that people
place on their own lives.

ä One common “currency” in medical and safety analysis is the
micromort:
• the event of a one-in-a-million chance of death.

ä If people are asked how much they would pay to avoid a risk of a
one-in-a-million chance of death they will respond with very large
numbers, but their actual behaviour reflects a much lower monetary
value for a micromort.
• E.g., driving in a car for 370 km incurs a risk of one micromort;

for a car with, say 150.000 km, that’s about 400 micromorts.

• People appear to be willing to pay about 10.000 Dollars more
for a safer car that halves the risk of death (i.e., to incur 200
micromorts instead of 400), or about 50 Dollar per micromort.

ä In general, studies on a large number of people showed that one
micromort amounts to ca. 20 Dollars (in 1980s money).
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Utility Scales: Examples (ctd.)

ä Another measure is the QALY (“quality-adjusted life year”), useful
for medical decisions involving substantial risks:

• one QALY equates to one year in perfect health.

ä The QALY is an indicator for the time-trade-off (TTO) to choose
between remaining in a state of ill health for a period of time vs.
being restored to perfect health but having a shorter life expectancy.

• E.g., on average, kidney patients are indifferent between living
two years on a dialysis machine and one year at full health.
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The Utility of Money

ä Money plays a significant role in human utility functions.

ä Usually, an agent exhibits a monotonic preference for more money,
all other things being equal (“ceteris paribus”), i.e., the agent
prefers more money to less.

ä But: this does not mean that money behaves as a utility function,
because it says nothing about preferences between lotteries involving
money.

ä Example:

• Suppose you have won in a game show and are offered a choice:

– either take the $1,000,000 prize or

– gamble it on the flip of a coin: the coin coming up heads
means you end up with nothing, the coin coming up tails
means you get $2,500,000.

• How would you decide?
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The Utility of Money (ctd.)

ä Assuming the coin is fair, i.e., there is a 50:50 chance for coming up
heads or tails, the expected monetary value (EMV) of the gamble is

1

2
· $0 +

1

2
· $2, 500, 000 = $1, 250, 000

=⇒ The EMV is more than the original $1,000,000, but is accepting
the gamble the better decision?

ä Let Sn denote a state of possessing n Dollars, and say your current
wealth is k Dollars.

å The expected utilities of accepting and declining the gamble are

EU(Accept) =
1

2
· U(Sk) +

1

2
· U(Sk+2,500,000)

EU(Decline) = U(Sk+1,000,000).
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The Utility of Money (ctd.)

ä How to define the utility?

• The utility is not directly proportional to monetary value,
because the utility for the first million is very high, but what
about the utility for the next million?

ä Assume you assign a utility of 5 to your current financial status Sk ,
9 to the state Sk+2,500,000, and 8 to the state Sk+1,000,000.

ä Then:

EU(Accept) =
1

2
· U(Sk) +

1

2
· U(Sk+2,500,000) =

5

2
+

9

2
= 7

EU(Decline) = U(Sk+1,000,000) = 8.

=⇒ the rational action would be to decline, because the expected
utility of accepting is 7 and for declining 8.

ä On the other hand, a billionaire would most likely have a utility
function that is locally linear over the range of a few million more,
and thus would accept.
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The Utility of Money (ctd.)

ä In a pioneering study of actual utility functions, Grayson (1960)
found that the utility of money was almost exactly proportional to
the logarithm of the amount.

ä Preferences between different levels of debt can display a reversal of
the concavity associated with positive wealth.
• E.g., someone already $10,000,000 in debt might well accept a

gamble on a fair coin with a gain of $10,000,000 for heads and
a loss of $20,000,000 for tails.
=⇒ This leads to the S-shaped form of the curve.
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Risks

ä For a positive wealth, given a lottery L with expected monetary value
EMV (L), usually U(L) < U(SEMV (L)), where SEMV (L) is the state of
being handed the expected money of the lottery as the sure thing.

å I.e., people are risk-averse—they prefer a sure thing with a
payoff that is less than the expected monetary value of a
gamble.

ä On the other hand, when in large debt, the behaviour is risk-seeking.

ä The value an agent will accept in lieu of a lottery is the certainty
equivalent of the lottery.

• Studies have shown that most people will accept about 400
Dollars in lieu of a gamble that gives 1000 dollars half the time
and 0 Dollar the other half.

• That is, the certainty equivalent of the lottery is 400 Dollars vs.
the EMV of 500 Dollars.
=⇒ The difference is called the insurance premium.
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Risks (ctd.)

ä Risk aversion is the basis for the insurance industry, because it
means that insurance premiums are positive.

ä People would rather pay a small insurance premium than gamble the
price of their house against the chance of a fire.

å The price of a house is small compared with the insurance
company’s total reserves.

å The insurance company’s utility curve is approximately linear
over such a small region, and the gamble costs the company
almost nothing.

ä Note:

• for small changes in wealth compared to the current wealth,
almost any curve will be approximately linear.

å An agent that has a linear curve is said to be risk-neutral.
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Human Judgment and Irrationality

ä Decision theory is a normative theory, i.e., it describes how a
rational agent should act.

ä A descriptive theory, on the other hand, describes how actual agents
(e.g., humans) really do act.

ä Evidence suggests that these two kinds of theories do not coincide

=⇒ humans appear to be “predictably irrational”.
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Allais Paradox

ä Assume that there is a choice between lotteries A and B and then
between C and D, which have the following prizes:
• A: 80% chance of winning $4000
• B: 100% chance of winning $3000

• C: 20% chance of winning $4000
• D: 25% chance of winning $3000

ä Most people prefer B over A (taking the sure thing), and C over D
(taking the higher EMV).

ä However, the normative analysis yields a different result:
• Assume, without loss of generality, a utility function with

U($0) = 0.

• Then, B � A implies U($3000) > 0.8 · U($4000), and C � D
implies 0.2 · U($4000) > 0.25 · U($3000).

• From the latter we obtain
U($3000) < 0.2

0.25U($4000) = 0.8 · U($4000).

å There is no utility function consistent with theses choices!
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Allais Paradox (ctd.)

ä One possible explanation for the apparent irrational preferences is
the certainty effect, i.e., people are strongly attracted to gains that
are certain.

ä Why is that?
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Allais Paradox (ctd.)
ä Possible answers:

1. People may choose to reduce their computational burden: by
choosing the certain outcomes, there is no need to estimate
probabilities.

2. People may mistrust the legitimacy of the stated probabilities
(in particular, if stated by people with a vested interest in the
outcomes).

3. People may account their emotional state as well as their
financial state.
– People know they would experience regret if they gave up

a certain reward (B) for an 80% chance of a higher reward
and then lost.

– I.e., in choosing A, there is a 20% chance of getting no
money and feeling like a complete idiot, which is worse
than just getting no money.

å Choosing B over A and C over D may not be irrational: just willing
to give up $200 EMV to avoid a 20% chance of feeling like an idiot.
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Ellsberg Paradox

ä Prizes have an equal value, but probabilities are underconstrained.

ä Payoff depends on the color of a ball chosen from an urn.

ä You are told that the urn contains 1/3 red balls, and 2/3 either
black or yellow balls, but you do not know how many black and how
many yellow.

ä Then, you are asked to choose between A and B, and then between
C and D:
• A: $100 for a red ball

• B: $100 for a black ball

• C: $100 for a red or a yellow ball

• D: $100 for a black or yellow ball

ä If you think there are more red than black balls, you should prefer A
over B and C over D, and the opposite otherwise.

ä But most people prefer A over B and D over C !

å People have ambiguity aversion.
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Ellsberg Paradox (ctd.)

Ambiguity aversion (ctd.):

• A: $100 for a red ball

• B: $100 for a black ball

• C: $100 for a red or a yellow ball

• D: $100 for a black or yellow ball

ä A gives you a 1/3 chance of winning, while B could be anywhere
between 0 and 2/3.

ä Likewise, D gives you a 2/3 chance, while C could be anywhere
between 1/3 and 3/3.

å Most people elect the known probability rather than the unknown
one.
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Decision Networks

ä Decision networks (or influence diagrams) are a general framework
for supporting rational decisions.

ä They contain information about an agent’s current state, its possible
actions, the state that will result from the agent’s action, and the
utility of that state.

ä Example of a decision network for the airport siting problem:
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Decision Networks (ctd.)

Decision network uses three types of nodes:

ä Chance nodes (ovals): represent random variables.

• E.g., the agent is uncertain about construction costs, the level
of air traffic, the potential for litigation.

• There are also the Deaths, Noise, and Cost variables,
depending on the site chosen.

• Chance nodes are associated with a conditional probability
distribution that is indexed by the state of the parent nodes.

ä Decision nodes (rectangles): represent points where a decision
maker has a choice of actions; e.g., the choice of an airport site
influences the cost, noise, etc.

ä Utility nodes (diamonds): represent the agent’s utility function.

• It has as parents all variables describing the outcome that
directly affect utility.
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Evaluating Decision Networks

ä Algorithm for evaluating decision networks:

1. Set the evidence variables for the current state.

2. For each possible value of the decision node:

a) Set the decision node to that value.

b) Calculate the posterior probabilities for the parent nodes of
the utility node, using a standard probabilistic inference
algorithm.

c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.

+ Decision networks are an extension of Bayesian networks, in which
only chance nodes occur.

30/40



The Value of Information

ä In the decision network analysis it is assumed that all relevant
information is available before making a decision.

ä In practice this is hardly ever the case:

+ One of the most important parts of decision making is knowing
what questions to ask.

ä Information value theory enables an agent to choose what
information to acquire.

ä Basic assumption:

• the agent can acquire the value of any observable chance
variables.

ä These observation actions affect only the belief state, not the
external physical state.

ä The value of an observation derives from the potential to affect the
agent’s eventual physical action =⇒ this potential can be estimated
directly from the decision model itself.
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The Value of Information: Example

A simple example:

ä An oil company plans to buy one of n indistinguishable blocks of
ocean-drilling rights.

ä One of the blocks contains oil worth C dollars, while all other are
worthless.

ä The price for each block is C/n Dollars.

ä If the company is risk neutral, then it is indifferent between buying a
block and not buying one.

ä Now assume that the company can buy information (results of a
survey) that says definitively whether block 3 contains oil or not.

ä How much should the company be willing to pay for this
information?
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Example (ctd.)

To answer this question, we examine what the company would do if it
had the information:

ä With probability 1/n, the survey will indicate oil in block 3.

• In this case, the company will buy block 3 for C/n dollars and
make a profit of C − C/n = (n − 1)C/n dollars.

ä With probability (n − 1)/n, the survey will show that block 3
contains no oil, hence the company will buy a different one.

• Now, the probability of finding oil in one of the other blocks
changes from 1/n to 1/(n − 1), so the expected profit is

C
(n−1) −

C
n = C

n(n−1) Dollars.

ä Then, the resulting expected profit, given the survey information is

1

n
· (n − 1)C

n
+

n − 1

n
· C

n(n − 1)
=

C

n
.

å The company should be willing to pay up to C/n Dollars
=⇒ the information is worth as much as the block itself!
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Remarks

ä The value of information derives from the fact that with the
information, one’s course of action can be changed to suit the actual
situation.

ä One can discriminate according to the situation:

• without the information, one has to do what is best on average
over the possible situations.

ä In general, the value of a given piece of information is defined to be
the difference in expected value between the best actions before and
after an information is obtained.

34/40



The Value of Perfect Information

ä Assumption:
• Exact evidence about the value of a random variable Ej can be

obtained (i.e., we learn Ej = ej).

å We use the phrase value of perfect information (VPI).

ä Given initial evidence e, the value of the current best action α is
defined by

EU(α|e) = max
a

EU(a|e) = max
a

∑
s′

P(Result(a) = s ′|a, e)U(s ′).

ä The value of the new best action αej after evidence Ej = ej is
obtained is

EU(αej |e, ej) = max
a

∑
s′

P(Result(a) = s ′|a, e, ej)U(s ′).

ä But the value of Ej is currently unknown, so to determine the value
of discovering Ej , given current information e, we average over all
possible values ejk that might be discovered for Ej :

VPIe(Ej) = (
∑
k

P(Ej = ejk |e)EU(αejk
|e,Ej = ejk ))− EU(α|e).
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Some Properties of the VPI

ä The expected value of information is nonnegative:

VPIe(Ej) ≥ 0, for all e and all Ej .

ä VPI is nonadditive:

in general, VPIe(Ej ,Ek) 6= VPIe(Ej) + VPIe(Ek).
ä VPI is order independent:

VPIe(Ej ,Ek) = VPIe(Ek ,Ej).
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Decision-theoretic Expert Systems

ä Decision analysis (evolved in the 1950s and 1960s) studies the
application of decision theory to actual decision problems.

ä Traditionally, there are two roles in decision analysis:

• the decision maker, stating preferences between outcomes; and

• the decision analyst, who enumerates possible actions and
outcomes, and elicits preferences to determine the best course
of action.

ä Early expert system research concentrated on answering questions
rather than on making decisions.

ä The addition of decision networks allows expert systems to
recommend optimal decisions, reflecting preferences as well as
available evidence.
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Decision-theoretic Expert Systems (ctd.)

The process of creating a decision-theoretic expert system, e.g., for
selecting a medical treatment for congenital heart disease (aortic
coarctation) in children:

1. create a causal model (e.g., determine symptoms, treatments,
disorders, outcomes, etc.);

2. simplify to a qualitative decision model;

3. assign probabilities (e.g., from patient databases, literature studies,
experts subjective assessments, etc.);

4. assign utilities (e.g., create a scale from best to worst outcome and
give each a numeric value);

5. verify and refine the model, evaluate the system against correct
input-output-pairs, a so called gold standard;

6. perform sensitivity analysis, i.e., check whether the best decision is
sensitive to small changes in the assigned probabilities and utilities.
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Influence Diagram Example

Influence diagram for aortic coarctation:
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Summary

ä Decision theory puts probability theory and utility theory together to
describe what an agent should do.

ä A rational agent makes decisions by considering all possible actions
and choosing the one that leads to the best expected outcome.

ä An agent whose preferences are consistent with a set of simple
axioms possesses a utility function; furthermore, it selects actions as
if maximising expected utility.

ä The value of information is defined as expected improvement in
utility compared with making a decision without the information.

ä Expert systems that incorporate utility information are more
powerful than pure inference systems:
• they are able to make decisions and use the value of

information to decide whether to acquire it, and

• they can calculate their sensitivity to small changes in
probability and utility assessments.
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