VU Einführung in Artificial Intelligence

SS 2024

Hans Tompits

Institut für Logic and Computation Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Making Simple Decisions

Decision Theory

- ▶ Decision-theoretic agent:
	- combines *utility theory* with *probability theory*
	- makes rational decisions based on *beliefs* and *desires* in contexts of uncertainty and conflicting goals
	- has a continuous measure of outcome quality
		- \rightarrow in contrast to goal-based agents that have only a binary distinction between good (goal) and bad (non-goal) states.

▶ Decision theory:

- In its simplest form, deals with choosing among actions based on the desirability of their immediate outcomes.
- Thereby, the environment is assumed to be *episodic*, i.e.,
	- an agent's experience can be divided into atomic episodes such that succeeding episodes do not depend on actions taken in previous episodes.
	- \rightarrow This is in contrast to *sequential* environments, where current decisions influence future decisions. $1/40$

Outcomes and Utilities

➤ We furthermore deal with nondeterministic, partially observable environments.

- Possible outcome states are represented in terms of random variables:
	- $-$ RESULT(a) denotes a random variable whose values are the possible outcome states for taking action a.
- The probability of outcome s' , given evidence observations e , is written as

 $P(\text{RESULT}(a) = s'|a, e),$

where a stands for the event that action a is executed.

- \blacktriangleright The agent's preferences are expressed by a *utility function* $U(s)$
	- assigns a single number to a state to express its desirability

Expected Utility

➤ The expected utility of an action a given evidence e, denoted $EU(a|e)$, is the average utility value of the outcomes, weighted by the probability that the outcome occurs:

$$
EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a, \mathbf{e}) U(s')
$$

➤ Principle of maximum expected utility (MEU):

• a rational agent should choose the action that maximises the agent's expected utility:

$$
action = \underset{a}{argmax} \ EU(a|\mathbf{e}).
$$

Preferences

- ➤ The MEU principle can be derived from general conditions that a rational agent should have.
- ➤ We use the following notation to describe an agent's preferences: $A \succ B$: the agent prefers A over B; $A \sim B$: the agent is indifferent between A and B; $A \succeq B$: the agent prefers A over B or is indifferent between them.
- \blacktriangleright What sort of things are A and B?
	- States of the world, $but:$ uncertainty about what is really being offered.
		- E.g., if you are an airline passenger and are offered pasta or chicken, you do not really know what lurks beneath the tinfoil cover.
	- \blacktriangleright The set of outcomes for each action can be seen as a *lottery*, where each action is a ticket.

Lottery

A lottery, L, with possible outcomes S_1, \ldots, S_n that occur with probabilities p_1, \ldots, p_n is written as

$$
L=[p_1, S_1; p_2, S_2; \ldots; p_n, S_n].
$$

 \bullet Each S_i is either an atomic state or another lottery.

▶ Primary issue of utility theory:

- How do preferences between complex lotteries relate to preferences between the underlying states in those lotteries?
- \rightarrow To address this issue, we list some conditions that we require that any reasonable preference relation should obey.

Axioms of Utility Theory

➤ Orderability: Given any two lotteries, a rational agent cannot avoid deciding which one it prefers, or whether it is indifferent between them.

Exactly one of $(A \succ B)$, $(B \succ A)$, or $(A \sim B)$ holds.

➤ Transitivity:

$$
(A \succ B) \wedge (B \succ C) \Rightarrow (A \succ C).
$$

- \triangleright Continuity: If some lottery B is between A and C in preference, then:
	- there is some probability p for which the agent will be indifferent between getting B for sure and the lottery that yields A with probability p and C with probability $1 - p$.

 $A \succ B \succ C \Rightarrow \exists p [p, A; 1-p, C] \sim B.$

Axioms of Utility Theory (ctd.)

 \triangleright Substitutability: If an agent is indifferent between A and B, then it is indifferent between two more complex lotteries that are the same except that B is substituted for A .

 $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C].$

This holds for \succ instead of \sim as well.

- ▶ *Monotonicity:* Suppose two lotteries have the same possible outcomes A and B.
	- If an agent prefers A to B , then the agent must prefer precisely the lottery that has a higher probability for outcome A.

 $A \rightarrow B \Rightarrow (p > q \Leftrightarrow [p, A; 1-p, B] \succ [q, A; 1-q, B]).$

Axioms of Utility Theory (ctd.)

▶ Decomposability: Compound lotteries can be reduced to simpler ones using the laws of probability.

 $[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C].$

This is known as the "no fun in gambling" rule:

• two consecutive lotteries can be compressed into a single equivalent lottery.

Axioms of Utility Theory (ctd.)

- ► These conditions are known as the *axioms of utility theory*.
- ► Each axiom can be motivated by showing that an agent violating it will exhibit irrational behaviour.
- ➤ Consider, e.g., an agent with intransitive preferences $A \succ B \succ C \succ A$ can be induced to give away all its money:
	- 1. If the agent has A , we could offer to trade C for A plus one cent. The agent prefers C , so is willing to make the trade.
	- 2. We then offer B for C , extracting another cent, as the agent prefers B over C .
	- 3. Finally, we trade A for B. We are back to 1 except that the agent gave us 3 cents.
	- 4. We continue until the agent has no money.
	- \implies Clearly, the agent behaves irrationally.

Existence of Utility Function

As shown by von Neumann and Morgenstern (1944), the axioms of utility theory imply the following:

► Existence of Utility Function: Given an agents preferences that satisfy the axioms of utility theory, there exists a real-valued function *U* such that

> $U(A) > U(B) \Leftrightarrow A \succ B$ $U(A) = U(B) \Leftrightarrow A \sim B$

➤ Expected Utility of a Lottery: The utility of a lottery is the sum of the probability of each outcome times the utility of that outcome.

$$
U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i).
$$

Utility Scales and Assessment

The preceding results show that a utility function exists, but they do not imply that it is *unique*.

► It can be shown that an agent's behaviour does not change if its utility function $U(S)$ is replaced by

 $U'(S) = aU(S) + b$,

where a and b are constants and $a > 0$.

 \rightarrow U is determined up to *linear* (*affine*) transformations.

Utility Scales and Assessment (ctd.)

- ▶ In deterministic environments, where there are states and no lotteries, the behaviour of an agent is unchanged by an application of any *monotonic* transformation.
	- For instance, we could apply the square root to all utilities without changing the priority order of states.
	- One says:
		- $-$ An agent in a deterministic environment has a *value* function or ordinal utility function,
		- i.e., such functions just provide a preference ranking on states—the numbers do not matter.
- ► How to work out an agents utility function?
	- Present choices to an agent and use observed preferences to pin down the underlying utility function.
	- This process is called *preference elicitation*.

Utility Scales

- As we have seen, there is no *absolute* scale for utilities but it is useful to establish *some* scale for any particular problem.
- ➤ How to establish a scale?
	- Fix the utilities of any two particular outcomes.
	- Typically, we fix the utility of a "best possible prize" S_b at $U(S_h) = u_\top$ and a "worst possible catastrophe" S_w at $U(S_w) = u_{\perp}$.
	- Normalized utilities use a scale with $u_{\perp} = 0$ and $u_{\perp} = 1$.

Utility Scales: Examples

- ➤ Some attempts have been made to find out the value that people place on their own lives.
- ➤ One common "currency" in medical and safety analysis is the micromort:
	- the event of a one-in-a-million chance of death.
- ► If people are asked how much they would pay to avoid a risk of a one-in-a-million chance of death they will respond with very large numbers, but their actual behaviour reflects a much lower monetary value for a micromort.
	- E.g., driving in a car for 370 km incurs a risk of one micromort; for a car with, say 150.000 km, that's about 400 micromorts.
	- People appear to be willing to pay about 10.000 Dollars more for a safer car that halves the risk of death (i.e., to incur 200 micromorts instead of 400), or about 50 Dollar per micromort.
- ➤ In general, studies on a large number of people showed that one micromort amounts to ca. 20 Dollars (in 1980s money).

Utility Scales: Examples (ctd.)

- Another measure is the $QALY$ ("quality-adjusted life year"), useful for medical decisions involving substantial risks:
	- one QALY equates to one year in perfect health.
- ➤ The QALY is an indicator for the time-trade-off (TTO) to choose between remaining in a state of ill health for a period of time vs. being restored to perfect health but having a shorter life expectancy.
	- E.g., on average, kidney patients are indifferent between living two years on a dialysis machine and one year at full health.

The Utility of Money

- ➤ Money plays a significant role in human utility functions.
- ► Usually, an agent exhibits a *monotonic preference* for more money, all other things being equal ("ceteris paribus"), i.e., the agent prefers more money to less.
- ➤ But: this does not mean that money behaves as a utility function, because it says nothing about preferences between *lotteries* involving money.
- ➤ Example:
	- Suppose you have won in a game show and are offered a choice:
		- either take the \$1,000,000 prize or
		- gamble it on the flip of a coin: the coin coming up heads means you end up with nothing, the coin coming up tails means you get \$2,500,000.
	- How would you decide?

The Utility of Money (ctd.)

 \blacktriangleright Assuming the coin is fair, i.e., there is a 50:50 chance for coming up heads or tails, the *expected monetary value* (EMV) of the gamble is

$$
\frac{1}{2} \cdot \$0 + \frac{1}{2} \cdot \$2,500,000 = \$1,250,000
$$

- \implies The EMV is more than the original \$1,000,000, but is accepting the gamble the better decision?
- \blacktriangleright Let S_n denote a state of possessing *n* Dollars, and say your current wealth is k Dollars.
	- \rightarrow The expected utilities of accepting and declining the gamble are

$$
EU(Accept) = \frac{1}{2} \cdot U(S_k) + \frac{1}{2} \cdot U(S_{k+2,500,000})
$$

$$
EU(Decline) = U(S_{k+1,000,000}).
$$

The Utility of Money (ctd.)

- ➤ How to define the utility?
	- The utility is not directly proportional to monetary value, because the utility for the first million is very high, but what about the utility for the next million?
- ► Assume you assign a utility of 5 to your current financial status S_k , 9 to the state $S_{k+2,500,000}$, and 8 to the state $S_{k+1,000,000}$.

\blacktriangleright Then:

$$
EU(Accept) = \frac{1}{2} \cdot U(S_k) + \frac{1}{2} \cdot U(S_{k+2,500,000}) = \frac{5}{2} + \frac{9}{2} = 7
$$

$$
EU(Decline) = U(S_{k+1,000,000}) = 8.
$$

- \implies the rational action would be to decline, because the expected utility of accepting is 7 and for declining 8.
- ▶ On the other hand, a billionaire would most likely have a utility function that is locally linear over the range of a few million more, and thus would accept.

The Utility of Money (ctd.)

▶ In a pioneering study of actual utility functions, Grayson (1960) found that the utility of money was almost exactly proportional to the *logarithm* of the amount.

- ▶ Preferences between different levels of debt can display a reversal of the concavity associated with positive wealth.
	- E.g., someone already \$10,000,000 in debt might well accept a gamble on a fair coin with a gain of \$10,000,000 for heads and a loss of \$20,000,000 for tails.
		- \implies This leads to the S-shaped form of the curve.

Risks

- ➤ For a positive wealth, given a lottery L with expected monetary value $\mathit{EMV}(L)$, usually $\mathit{U}(L) < \mathit{U}(S_{\mathit{EMV}(L)})$, where $S_{\mathit{EMV}(L)}$ is the state of being handed the expected money of the lottery as the sure thing.
	- \rightarrow I.e., people are *risk-averse*—they prefer a sure thing with a payoff that is less than the expected monetary value of a gamble.

 \triangleright On the other hand, when in large debt, the behaviour is *risk-seeking*.

- ► The value an agent will accept in lieu of a lottery is the *certainty* equivalent of the lottery.
	- Studies have shown that most people will accept about 400 Dollars in lieu of a gamble that gives 1000 dollars half the time and 0 Dollar the other half.
	- That is, the certainty equivalent of the lottery is 400 Dollars vs. the EMV of 500 Dollars.
		- \implies The difference is called the *insurance premium*.

Risks (ctd.)

- ▶ Risk aversion is the basis for the insurance industry, because it means that insurance premiums are positive.
- ➤ People would rather pay a small insurance premium than gamble the price of their house against the chance of a fire.
	- \rightarrow The price of a house is small compared with the insurance company's total reserves.
	- \rightarrow The insurance company's utility curve is approximately linear over such a small region, and the gamble costs the company almost nothing.
- ➤ Note:
	- for small changes in wealth compared to the current wealth, almost any curve will be approximately linear.
	- \rightarrow An agent that has a linear curve is said to be *risk-neutral*.

Human Judgment and Irrationality

- ▶ Decision theory is a *normative theory*, i.e., it describes how a rational agent should act.
- ➤ A descriptive theory, on the other hand, describes how actual agents (e.g., humans) really do act.
- ➤ Evidence suggests that these two kinds of theories do not coincide \implies humans appear to be "predictably irrational".

Allais Paradox

 \blacktriangleright Assume that there is a choice between lotteries A and B and then between C and D , which have the following prizes:

- A: 80% chance of winning \$4000
- B: 100% chance of winning \$3000
- C: 20% chance of winning \$4000
- D: 25% chance of winning \$3000
- \blacktriangleright Most people prefer B over A (taking the sure thing), and C over D (taking the higher EMV).
- ➤ However, the normative analysis yields a different result:
	- Assume, without loss of generality, a utility function with $U({$0}) = 0.$
	- Then, $B \succ A$ implies $U(\$3000) > 0.8 \cdot U(\$4000)$, and $C \succ D$ implies $0.2 \cdot U(\$4000) > 0.25 \cdot U(\$3000)$.
	- From the latter we obtain

 $U(\$3000) < \frac{0.2}{0.25}U(\$4000) = 0.8 \cdot U(\$4000).$

 \blacktriangleright There is no utility function consistent with theses choices! $\frac{23/40}{23}$

Allais Paradox (ctd.)

- ➤ One possible explanation for the apparent irrational preferences is the *certainty effect*, i.e., people are strongly attracted to gains that are certain.
- ▶ Why is that?

Allais Paradox (ctd.)

- ➤ Possible answers:
	- 1. People may choose to reduce their computational burden: by choosing the certain outcomes, there is no need to estimate probabilities.
	- 2. People may mistrust the legitimacy of the stated probabilities (in particular, if stated by people with a vested interest in the outcomes).
	- 3. People may account their emotional state as well as their financial state.
		- People know they would experience regret if they gave up a certain reward (B) for an 80% chance of a higher reward and then lost.
		- $-$ I.e., in choosing A, there is a 20% chance of getting no money and *feeling like a complete idiot*, which is worse than just getting no money.
- \rightarrow Choosing B over A and C over D may not be irrational: just willing to give up \$200 EMV to avoid a 20% chance of feeling like an idiot.

Ellsberg Paradox

- ▶ Prizes have an equal value, but probabilities are underconstrained.
- ➤ Payoff depends on the color of a ball chosen from an urn.
- \blacktriangleright You are told that the urn contains 1/3 red balls, and 2/3 either black or yellow balls, but you do not know how many black and how many yellow.
- \blacktriangleright Then, you are asked to choose between A and B, and then between C and D:
	- A: \$100 for a red ball
	- B: \$100 for a black ball
	- C: \$100 for a red or a yellow ball
	- D: \$100 for a black or yellow ball
- \blacktriangleright If you think there are more red than black balls, you should prefer A over B and C over D , and the opposite otherwise.
- \triangleright But most people prefer A over B and D over C!
- **► People have ambiguity aversion.**

Ellsberg Paradox (ctd.)

Ambiguity aversion (ctd.):

- A: \$100 for a red ball
- B: \$100 for a black ball
- C: \$100 for a red or a yellow ball
- D: \$100 for a black or yellow ball
- A gives you a $1/3$ chance of winning, while B could be anywhere between 0 and 2/3.
- \blacktriangleright Likewise, D gives you a 2/3 chance, while C could be anywhere between $1/3$ and $3/3$.
- \rightarrow Most people *elect the known probability* rather than the unknown one.

Decision Networks

- ➤ Decision networks (or influence diagrams) are a general framework for supporting rational decisions.
- ➤ They contain information about an agent's current state, its possible actions, the state that will result from the agent's action, and the utility of that state.
- ► Example of a decision network for the *airport siting problem:*

Decision Networks (ctd.)

Decision network uses three types of nodes:

➤ Chance nodes (ovals): represent random variables.

- E.g., the agent is uncertain about construction costs, the level of air traffic, the potential for litigation.
- There are also the *Deaths, Noise*, and *Cost* variables, depending on the site chosen.
- Chance nodes are associated with a conditional probability distribution that is indexed by the state of the parent nodes.
- ➤ Decision nodes (rectangles): represent points where a decision maker has a choice of actions; e.g., the choice of an airport site influences the cost, noise, etc.

➤ Utility nodes (diamonds): represent the agent's utility function.

• It has as parents all variables describing the outcome that directly affect utility.

Evaluating Decision Networks

➤ Algorithm for evaluating decision networks:

- 1. Set the evidence variables for the current state.
- 2. For each possible value of the decision node:
	- a) Set the decision node to that value.
	- b) Calculate the posterior probabilities for the parent nodes of the utility node, using a standard probabilistic inference algorithm.
	- c) Calculate the resulting utility for the action.
- 3. Return the action with the highest utility.
- ☞ Decision networks are an extension of Bayesian networks, in which only chance nodes occur.

The Value of Information

- ► In the decision network analysis it is assumed that all relevant information is available before making a decision.
- ▶ In practice this is hardly ever the case:
	- ☞ One of the most important parts of decision making is knowing what questions to ask.
- ➤ Information value theory enables an agent to choose what information to acquire.
- ▶ Basic assumption:
	- the agent can acquire the value of any observable chance variables.
- ► These observation actions affect only the *belief state*, not the external physical state.
- ➤ The value of an observation derives from the potential to affect the agent's eventual physical action \implies this potential can be estimated directly from the decision model itself.

The Value of Information: Example

A simple example:

- \blacktriangleright An oil company plans to buy one of *n* indistinguishable blocks of ocean-drilling rights.
- ▶ One of the blocks contains oil worth C dollars, while all other are worthless.
- \blacktriangleright The price for each block is C/n Dollars.
- \blacktriangleright If the company is *risk neutral*, then it is indifferent between buying a block and not buying one.
- ➤ Now assume that the company can buy information (results of a survey) that says definitively whether block 3 contains oil or not.
- ► How much should the company be willing to pay for this information?

Example (ctd.)

To answer this question, we examine what the company would do if it had the information:

- \blacktriangleright With probability $1/n$, the survey will indicate oil in block 3.
	- In this case, the company will buy block 3 for C/n dollars and make a profit of $C - C/n = (n - 1)C/n$ dollars.
- ► With probability $(n-1)/n$, the survey will show that block 3 contains no oil, hence the company will buy a different one.
	- Now, the probability of finding oil in one of the other blocks changes from $1/n$ to $1/(n-1)$, so the expected profit is $\frac{C}{(n-1)} - \frac{C}{n} = \frac{C}{n(n-1)}$ Dollars.

➤ Then, the resulting expected profit, given the survey information is

$$
\frac{1}{n}\cdot\frac{(n-1)C}{n}+\frac{n-1}{n}\cdot\frac{C}{n(n-1)}=\frac{C}{n}.
$$

 \blacktriangleright The company should be willing to pay up to C/n Dollars \implies the information is worth as much as the block itself!

Remarks

- \blacktriangleright The value of information derives from the fact that with the information, one's course of action can be changed to suit the *actual* situation.
- ▶ One can discriminate according to the situation:
	- without the information, one has to do what is *best on average* over the possible situations.
- ➤ In general, the value of a given piece of information is defined to be the difference in expected value between the best actions before and after an information is obtained.

The Value of Perfect Information

- ▶ Assumption:
	- *Exact evidence* about the value of a random variable E_i can be obtained (i.e., we learn $E_i = e_i$).
	- \rightarrow We use the phrase value of perfect information (VPI).
- \blacktriangleright Given initial evidence e, the value of the current best action α is defined by

 $EU(\alpha|\mathbf{e}) = \max_{a} EU(a|\mathbf{e}) = \max_{a} \sum_{c'}$ $\sum_{s'} P(\text{RESULT}(a) = s'|a, e) U(s').$

 \blacktriangleright The value of the new best action α_{e_j} after evidence $E_j = e_j$ is obtained is

> $EU(\alpha_{e_j} | \mathbf{e}, e_j) = \max_{a} \sum_{s'}$ $\sum_{s'} P(\text{RESULT}(a) = s'|a, e, e_j) U(s').$

▶ But the value of E_j is currently unknown, so to determine the value of discovering E_j , given current information ${\bf e}$, we average over all possible values e_{j_k} that might be discovered for E_j :

 $VPI_e(E_j) = (\sum$ $\sum_{k} P(E_j = e_{j_k} | \mathbf{e}) EU(\alpha_{e_{j_k}} | \mathbf{e}, E_j = e_{j_k})) - EU(\alpha | \mathbf{e}).$

Some Properties of the VPI

➤ The expected value of information is nonnegative:

 $VPI_e(E_j) \geq 0$, for all **e** and all E_j .

 \blacktriangleright VPI is nonadditive:

in general, $\mathit{VPI}_\mathsf{e}(E_j,E_k) \neq \mathit{VPI}_\mathsf{e}(E_j) + \mathit{VPI}_\mathsf{e}(E_k).$ ➤ VPI is order independent:

 $VPI_e(E_j, E_k) = VPI_e(E_k, E_j).$

Decision-theoretic Expert Systems

- ➤ Decision analysis (evolved in the 1950s and 1960s) studies the application of decision theory to actual decision problems.
- ➤ Traditionally, there are two roles in decision analysis:
	- the *decision maker*, stating preferences between outcomes; and
	- the *decision analyst*, who enumerates possible actions and outcomes, and elicits preferences to determine the best course of action.
- ► Early expert system research concentrated on answering questions rather than on making decisions.
- ► The addition of *decision networks* allows expert systems to recommend optimal decisions, reflecting preferences as well as available evidence.

Decision-theoretic Expert Systems (ctd.)

The process of creating a decision-theoretic expert system, e.g., for selecting a medical treatment for congenital heart disease (aortic coarctation) in children:

- 1. create a causal model (e.g., determine symptoms, treatments, disorders, outcomes, etc.);
- 2. simplify to a qualitative decision model;
- 3. assign probabilities (e.g., from patient databases, literature studies, experts subjective assessments, etc.);
- 4. assign utilities (e.g., create a scale from best to worst outcome and give each a numeric value);
- 5. verify and refine the model, evaluate the system against correct input-output-pairs, a so called gold standard;
- 6. perform sensitivity analysis, i.e., check whether the best decision is sensitive to small changes in the assigned probabilities and utilities.

Influence Diagram Example

Influence diagram for aortic coarctation:

Summary

- ➤ Decision theory puts probability theory and utility theory together to describe what an agent should do.
- ➤ A rational agent makes decisions by considering all possible actions and choosing the one that leads to the best expected outcome.
- ▶ An agent whose preferences are consistent with a set of simple axioms possesses a *utility function*; furthermore, it selects actions as if maximising expected utility.
- ➤ The value of information is defined as expected improvement in utility compared with making a decision without the information.
- ► Expert systems that incorporate utility information are more powerful than pure inference systems:
	- they are able to make decisions and use the value of information to decide whether to acquire it, and
	- they can calculate their sensitivity to small changes in probability and utility assessments.