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Exercise 1

By providing a reduction from the HALTING problem, prove that the
following problem is undecidable:

MODIFY-INPUT

INSTANCE: A pair (Π, I ), where (a) Π is a program that takes one
string as input and returns a string, and (b) I is a string.

QUESTION: Does the program Π on input I return a string I ′ such
that I ′ 6= I , i.e. Π(I ) 6= I?
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Solution to Exercise 1

The reduction is defined as follows. Let (Π, I ) be an arbitrary instance of
HALTING. We build an instance (Π′, I ′) of MODIFY-INPUT by
setting I ′ = I and constructing Π′ as follows:

String Π′ (String S)
eval(Π(S)); // Π is hardcoded in Π′

return S + “a”;

In other words, for an instance x = (Π, I ), the instance R(x) resulting
from the reduction is (Π′, I ′). To prove the correctness of the reduction
we have to show:

(Π, I ) is a positive instance of HALTING ⇔ (Π′, I ′) is a positive
instance of MODIFY-INPUT.
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Solution to Exercise 1 (continued)

“⇒” Assume (Π, I ) is a positive instance of HALTING, i.e. Π terminates
on I . Then the call Π(I ′) in program Π′ terminates since I ′ = I by the
problem reduction. Hence, the “return” statement in Π′ is executed on
input I ′ and, therefore, Π′ returns I ′ + “a” on input I ′. Since
I ′ + ”a” 6= I ′, it follows that (Π′, I ′) is a positive instance of
MODIFY-INPUT.

“⇐” Assume (Π′, I ′) is a positive instance of MODIFY-INPUT, i.e. Π′

terminates on I ′ with output Π′(I ′) 6= I ′. Since Π′ involves the call Π(I ′)
and since I ′ = I , also Π terminates on I , i.e. (Π, I ) is a positive instance
of HALTING.
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Solution to Exercise 1: Why does it work?

Why does the reduction R prove the undecidability of
MODIFY-INPUT?

Towards a contradiction, suppose MODIFY-INPUT is decidable. Then
there is an algorithm Πmi (·) such that Πmi (x) returns true if x is a
positive instance of MODIFY-INPUT, and returns false otherwise.

Build a procedure Πh, which takes instances of HALTING, as follows:

Bool Πh(String Π,String I )
return Πmi (R((Π, I )));

It is easy to see that Πh is a decision procedure for HALTING:

Πh(Π, I ) returns true if Π terminates on I

Πh(Π, I ) returns false if Π does not terminate on I

We arrive at a contradiction: we know from the lecture that HALTING
is undecidable.
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Sanity test

Check that the problem instances that you are using in your solutions are
compatible with the definition of a given problem:

INSTANCE: A pair (Π, I ), where Π is a program that takes one
string as input and returns a string, and I is a string.

In a proof:

• (Π, I ), (Π′, I ′), (Π, ”hello”) are O.K.
• (Π, I , I ′), (Π, I , k), Π are not O.K.

INSTANCE: A program Π that takes one string as input and returns
a string.

In a proof:
• Π, Π′, Π1, Π2, are O.K.
• (Π, I ), (Π′, I ′), (Π, I , I ′), (Π, I , k) are not O.K.
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Exercise 2

Prove that MODIFY-INPUT is semi-decidable. To this end, provide a
semi-decision procedure and justify your solution.

Solution to Exercise 2

Write an interpreter Πint that takes as input Π and I , i.e. an instance of
MODIFY-INPUT, and simulates the run of Π on I :

- If the simulation reaches the point where a string I ′ with I ′ 6= I is
output, then Πint returns true.

- If the simulation ends with an output I ′ such that I ′ = I , then Πint

returns false.
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Solution to Exercise 2 (continued)

It can be seen as follows that such an interpreter Πint is a semi-decision
procedure for MODIFY-INPUT. We distinguish the following cases:

Case 1. Suppose that (Π, I ) is a positive instance, i.e., Π outputs I ′

on input I with I 6= I ′. Then the simulation in Πint will encounter
the output I ′ 6= I and return true by the construction of Πint .

Case 2.1. Suppose that (Π, I ) is a negative instance and that Π
halts on input I . Then Π halts with an output I ′ = I . Hence, the
simulation in Πint will detect that the output I ′ is equal to I . Thus,
Πint returns false by the construction of Πint .

Case 2.2. Suppose that (Π, I ) is a negative instance and that Π does
not halt on input I . Then the simulation of this computation of Π
on I by the interpreter Πint will not terminate either. Hence, Πint

will run forever on the negative instance (Π, I ), which is a correct
behaviour for a semi-decision procedure.
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Exercise 3

Prove that the following problem is semi-decidable:

KEEP-SOME

INSTANCE: A program Π that takes one string as input and returns
a string. It is guaranteed that Π terminates on any input.

QUESTION: Does there exist a string I such that Π(I ) = I? That
is, does there exist a string I such that Π does not modify I?

Provide a semi-decision procedure and justify your solution.
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Solution to Exercise 3

For our construction of a semi-decision procedure we use another
procedure Πint that does the following:

1 Πint takes as input a program Π and a string I .

2 Πint simulates the run of Π on I , and returns the output of Π.

Πint terminates on any instance of KEEP-SOME.

We define a semi-decision procedure Πks for KEEP-SOME as follows:
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Solution to Exercise 3 (continued)

Boolean Πks(String Π)

i := 0
while (true) do {

let L be the set of all strings with length i

if there is a string I ∈ L s.t. Πint(Π, I ) = I , then return true

i := i + 1
}
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Solution to Exercise 3 (continued)

The procedure is correct. Indeed, if Π is a positive instance of
KEEP-SOME, then there is a string I such that Π(I ) = I . In particular,
I has some length n. Since Πint is a decision procedure, we are
guaranteed that the procedure will reach the call Πint(Π, I ) with output I
and thus terminate with output true. If Π is a negative instance, then
Πks does not terminate because the call to Πint never returns I .
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Exercise 4

Prove that the following problem is undecidable:

SOME-TRUE

INSTANCE: A program Π that takes as input a natural number
and returns true or false. It is guaranteed that Π terminates on any
input.

QUESTION: Does there exist a natural number k such that Π on
k returns true?

Hint: For your proof you may assume the availability of an interpreter for
instances of HALTING. In particular, you have available a decision
procedure Πint that does the following:

1 Πint takes as input a program Π, a string I , and a natural number n.

2 Πint emulates the first n steps of the run of Π on I . If Π terminates
on I within n steps, then Πint returns true. Otherwise, Πint returns
false.
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Solution to Exercise 4

We provide a reduction from HALTING. Let (Π, I ) be an arbitrary
instance of HALTING. We build an instance Π′ of SOME-TRUE by
constructing Π′ as follows:

String Π′ (Int n)
return Πint(Π, I , n) // Π and I are ’hard-coded’ in Π′

In other words, for an instance x = (Π, I ), the instance R(x) resulting
from the reduction is Π′. To prove the correctness of the reduction we
have to show:

(Π, I ) is a positive instance of HALTING ⇔ Π′ is a positive instance of
SOME-TRUE.
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Solution to Exercise 4 (continued)

“⇒” Assume (Π, I ) is a positive instance of HALTING, i.e. Π terminates
on I . In particular, Π terminates on I within some n steps. Hence,
Πint(Π, I , n) = true by definition of Πint and Π′(n) = true definition of
Π′. That is, there is n such that Π′(n) = true. Thus Π′ is a positive
instance of SOME-TRUE.

“⇐” Assume Π′ is a positive instance of SOME-TRUE, i.e. there exists
a natural number n such that Π′(n) = true. By definition of Π′,
Πint(Π, I , n) = true. By definition of Πint , Π terminates on I within n
steps. Thus (Π, I ) is a positive instance of HALTING.
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Exercise 5

Give a formal proof that INDEPENDENT SET is in NP, i.e. define a
certificate relation and discuss that it is polynomially balanced and
polynomial-time decidable.
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Solution to Exercise 5

Define the relation

R = {〈(G , k), I 〉 | I is an independent set in G with |I | ≥ k}.

Clearly, R is a certificate relation for INDEPENDENT SET, since the
following equivalences hold: (G , k) is a positive instance of
INDEPENDENT SET ⇔ there exists an independent set I in G with
|I | ≥ k ⇔ 〈(G , k), I 〉 ∈ R.

R is polynomially balanced because any set I of nodes from G = (V ,E )
can be represented in space that is linear in the size of G . E.g. by a list
whose length is ≤ |V |.

Finally R is decidable in polynomial time because, given a graph G , an
integer k , and a set of nodes I , one can check in polynomial time w.r.t.
the size of (G , k) and I if I is an independent set in G . Likewise, one can
check the condition |I | ≥ k in polynomial time.

Note that a “guess and check” procedure is obvious: guess a set of nodes
and check in polynomial time whether it is an independent set of size
≥ k .
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Exercise 6

Formally prove that CLIQUE is NP-complete. For this you may use the
well-known fact that INDEPENDENT SET is NP-complete.
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Solution to Exercise 6

The proof consists of two parts:

(A) showing that CLIQUE is in NP, and

(B) showing NP-hardness of CLIQUE, i.e. that for all problems P ′
in NP, P ′ is reducible to CLIQUE.

For the part (A), we define the relation

R = {〈(G , k),C 〉 | C is a clique in G with |C | ≥ k}.

We argue that R is a certificate relation for CLIQUE. Indeed, the
following equivalences hold: (G , k) is a positive instance of CLIQUE ⇔
there exists a clique C in G with |C | ≥ k ⇔ 〈(G , k),C 〉 ∈ R.

R is polynomially balanced because any set C of nodes from G can be
represented in space that is linear in the size of G .

Finally R is decidable in polynomial time because, given a graph G , an
integer k, and a set of nodes C , one can check in polynomial time w.r.t.
the size of (G , k) and C if C is a clique in G . One can check the
condition |C | ≥ k in polynomial time as well.
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Solution to Exercise 6 (continued)

For the part (B), we reduce INDEPENDENT SET to CLIQUE. Such a
reduction suffices, because any problem P ′ in NP can be reduced to
CLIQUE by composing (i) a reduction from P ′ to INDEPENDENT
SET (which exists because of NP-completeness of INDEPENDENT
SET), and (ii) the reduction from INDEPENDENT SET to CLIQUE.

Thus let (G , k) be an arbitrary instance of INDEPENDENT SET, i.e.,
G is an undirected graph and k is an integer. We construct the instance
(Ḡ , k) of CLIQUE, where Ḡ is the complement of G . This reduction is
feasible in polynomial time. It remains to prove the correctness.

Assume G has an independent set I with |I | ≥ k. We show that Ḡ
has a clique C with |C | ≥ k. Simply let C = I and assume a pair
v1, v2 ∈ C . Since C is an i.s. in G , by the definition of the
complement graph, [v1, v2] ∈ Ḡ . Thus, C is a clique in Ḡ .

Assume Ḡ has a clique C with |C | ≥ k. We show that G has an
i.s. I with |I | ≥ k. Simply let I = C and assume a pair v1, v2 ∈ I .
Since I is a clique in Ḡ , by the definition of the complement graph,
[v1, v2] 6∈ G . Thus, I is an i.s. in G .
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Exercise 7

We provide next a reduction from 2-COLORABILITY to 2-SAT. Let
G = (V ,E ) be an arbitrary undirected graph (i.e. an arbitrary instance
of 2-COLORABILITY), where V = {v1, . . . , vn}. For the reduction we
use propositional variables x1, . . . , xn. Then the instance ϕG of
2-SATresulting from G is defined as follows:

ϕG =
∧

[vi ,vj ]∈E

(xi ∨ xj) ∧ (¬xi ∨ ¬xj).

Your task is to prove the “⇒” direction in the proof of correctness of the
reduction, i.e. prove the following statement: if G is a positive instance
of 2-COLORABILITY, then ϕG is a positive instance of 2-SAT.
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Solution to Exercise 7

Suppose G is a positive instance of 2-COLORABILITY. We have to
show that ϕG is satisfiable. By assumption, there is a color assignment
f : {0, 1} → V such that f (vi ) 6= f (vj) for all [vi , vj ] ∈ E . To show that
ϕG is satisfiable, we define a truth assignment T such that, for all
i ∈ {1, . . . , n}, T (xi ) = true if f (vi ) = 1, and T (xi ) = false otherwise.
We have to show that ϕG evaluates to true under T . Take an arbitrary
edge [vi , vj ] ∈ E . It remains to show that (xi ∨ xj) and (¬xi ∨ ¬xj) both
evaluate to true under T . Due to the assumption that f is a proper
2-coloring of G , we have f (vi ) 6= f (vj). Then due to the definition of T
we have T (xi ) 6= T (xj). We are left with two possible cases:

T (xi ) = true and T (xj) = false. Then trivially both clauses (xi ∨ xj)
and (¬xi ∨ ¬xj) evaluate to true under T .

T (xi ) = false and T (xj) = true. Again, both clauses (xi ∨ xj) and
(¬xi ∨ ¬xj) evaluate to true under T .
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Exercise 8

Provide a polynomial time algorithm for 2-COLORABILITY. Argue
why it only requires polynomial time.

Hint: We can assume that any instance G of the problem is a connected
graph, i.e. there exists a path between any pair of nodes. In other words,
G has no disconnected components.
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Solution to Exercise 8

We provide the following procedure, which builds µ is stages. We assume
in the procedure that V is a list of vertices and E is a list of edges in G .

Boolean FindColoring(Graph G )

0: if V is empty, then return true

1: Let e be the first element in V and let µ(e) := 0

2: Choose the first edge [e, e′] in E such that e is colored and
e′ is not. If such an edge does not exist, return true

3: Color e′ with the ¬µ(e), i.e. µ(e′) = ¬µ(e)

4: If there exists an edge [e1, e2] in E with µ(e1) = µ(e2) then return
false;

5: Go to 2.
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Solution to Exercise 8 (continued)

We observe that with each iteration the number of edges where one
endpoint is not colored decreases. That is, the number of iterations is
bounded by the number of edges in E .

Furthermore, each single step requires linear time in the size of G .

Thus overall, the algorithm runs in time O(n2), where n is the size of G .
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Exercise 9

Argue that 1-COLORABILITY can be solved in logarithmic space.

Solution to Exercise 9

We observe that a graph G is 1-colorable iff G has no edge. Thus
checking 1-colorability reduces to checking whether a graph has no
edges. The latter can be check in logarithmic space: one needs to
traverse pairs of vertices and check whether they are related by an edge.
Storing a vertex requires only logarithmic space, and we need to store
only a constant number of vertices (that is, 2).

Šimkus WS 2012 Page 26



Formale Methoden der Informatik 1. Sample Solutions 1.10. Exercise 10

Exercise 10

Let L = {w ∈ {0, 1, 2}∗ | w has an even number of occurrences of 0},
i.e. L is the set of all strings w such that (a) w is built using symbols 0,
1 and 2, and (b) the number of occurrences of 0 in w is even. Define a
Turing machine M that decides L, i.e. define a tuple M = (K ,Σ, δ, s)
such that, for all w ∈ {0, 1}∗, we have:

if w ∈ L, then M(w) = ”yes”;

if w 6∈ L, then M(w) = ”no”.

Additionally, provide a high-level description of M.
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Solution to Exercise 10

M = (K ,Σ, δ, s) with K = {s, q}, Σ = {0, 1,t, .} and a transition
function δ defined as follows:

p ∈ K σ ∈ Σ δ(p, σ)

s . (s, .,→)
s 0 (q, 0,→)
s 1 (s, 1,→)
s 2 (s, 2,→)
s t (“yes”,t,−)
q 0 (s, 0,→)
q 1 (q, 1,→)
q 2 (q, 2,→)
q t (“no”,t,−)

(note: δ(q, .) can be arbitrary)
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Solution to Exercise 10 (continued)

High-level description of M:

In state s: If the symbol is ., 1 or 2, then move the head to the
right without changing the state. If the symbol is 0, then move the
head to the right and change the state to q. If the symbol is t, then
stop in the state “yes”.

In state q: If the symbol is 0, then move the head to the right and
change the state to s. If the symbol is 1 or 2, then move the head
to the right without changing the state. If the symbol is t, then
stop in the state “no”.
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