
Hannes
Kaufmann

High Level Graphics
Programming &

VR System Architecture

Hannes Kaufmann

Interactive Media Systems Group (IMS)
Institute of Software Technology and

Interactive Systems

Based on material by Dieter Schmalstieg

Hannes
Kaufmann VR & AR Course Overview

• Introduction
Hardware
• Input Devices
• Output Devices
• 3D Graphics Hardware
Software
• 3D Interaction
• High Level Graphics Programming
• Usability, Evaluations & Psychological Effects

2

Hannes
Kaufmann

Application Programmer’s View

3

Rendering
Engine or

Scene Graph

OpenGL
or D3D

Hannes
Kaufmann Low-Level Graphics API

• OpenGL (v 1.0 1992), Direct3D (DirectX 2, 1996)
• Procedural
• Primitives

– Line, Triangle, …
– Color, ...

• Dual Database Problem
– 1. Representation: Data Objects
– 2. Representation: Graphical
– Redundancy, Problem of Inconsistency

4

Hannes
Kaufmann High-Level Graphics API

• Rendering Engine (e.g. Unity,
Unreal Engine,…) or Scene Graph
e.g. OpenSceneGraph, OpenSG, X3D (VRML), Java3D,..

• Object oriented
• Scene Objects – “Objects, not Drawings”

– Not limited to graphical display
• Interactivity: Event-model for 3D scenes
• Software architecture

– Toolkit-approach, extendible

5

Hannes
Kaufmann

Why High-Level API?

• Rapid prototyping
• Rapid application development (RAD)

6

interpreted script

geometry file

Low-Level API

Hi-Level API

Application or
Shell (Browser, Editor)

Hannes
Kaufmann Scene Graph Example:

Open Inventor
• Scene graph library
• Based on C++
• Used in research &

commercial projects
• Platform & windowing system independent

• 1. Version: SGI Inventor, 1992. Open Source (ver 2.1)
• 2. Version: VGS Open Inventor: Continued development of SGI Inventor.
• 3. Version: Coin by Systems in Motion (SIM), Re-Engineered API, Open

Source; ver. 3.0
http://www.coin3d.org/

7

Hannes
Kaufmann Scenegraph – Structure

• Graphical data structure = Scenegraph
• Scenegraph consists of Nodes
• Directed graph! (Head/Tail)

Directed edges -> Hierarchy
• Use of the hierarchy

– Semantic Hierarchy: e.g. car (parts)
– Geometric Hierarchy: e.g. puppet / jointed doll

• Usually one tree is sufficient

• General: Directed Acyclic Graph (DAG)
– [Multiple parent nodes allowed]
– No directed circles8

Hannes
Kaufmann Scene Graph - Nodes

• Nodes consist of data and methods
• Nodes are of a specific type

– Type determines behavior
– Behavior = Reaction to certain events
– Events are generated by the application –

by the user -> Interactivity
• Nodes are instances of a class

– Scene hierarchy vs. class hierarchy!
• Flexibility: Choose node(type), compose scene graph

with nodes
• Extendible: New nodes can be implemented

9

Hannes
Kaufmann

• Attributes (member variables)
in nodes are called fields

• Fields: set/get, detect changes,
connect fields across nodes

• Fields are objects by themselves
– Float-Object, String-Object etc.

10

Scene Graph - Fields
SoMaterial

ambientColor
diffuseColor
specularColor
emissiveColor
shininess
transparency

Hannes
Kaufmann Example

11

Hannes
Kaufmann Graph Traversal: Basic Idea

• Data structure (scene graph) is processed
(=“traversed”)

• For each node a number of methods is
implemented:
– Rendering
– BoundingBox calculation
– Transformation matrix calculation
– Handle Events (e.g. picking)
– Search nodes
– Write to file
– Execute user callback…12

Hannes
Kaufmann Graph Traversal Order

• All nodes must be processed
• In general: Depth-First
• Traversal uses a State-Engine
• Difference in Group Nodes

– Ordered Group
• State Propagation top->down and left->right
• e.g. Inventor, VRML / X3D
• Very flexible scene graph generation

– Unordered Group
• State Propagation only top->down
• e.g. Java3D
• Parallel Render Traversal possible (Threads, SMP)!

13

Hannes
Kaufmann

State, Stack & Separator

14

Red

Separator

Sphere

Green

Separator

Separator

Blue

Cube

Cone

Color state stack

Red

Green

Traversal saves state
in Stack

Hannes
Kaufmann Graph Traversal

Modeling Attributes

• In-between, leaves or fields?

15

Red

Group

Sphere Cube
Red

Group

Sphere Cube

Some toolkits only allow specific structures
e.g. X3D Shape & Appearance combined

Sphere
Red

Group

Cube
Red

Hannes
Kaufmann Transformation-Hierarchy

16

SL SR

EREL

HL HR
R

R

SRSL

EL ER

HL HR

OpenGL Matrix Stack <--> Transformation hierarchy

Hannes
Kaufmann Instancing (Re-use)

Example: Car

In case of textures:
• Saves texture
memory

Hannes
Kaufmann Polygonal Shapes: Coordinates

18

Indexed vs. non-indexed polygon lists (e.g. FaceSet):
Non-Indexed:
V={P1=(x1,y1,z1), P2, P3, P2, P3, P4, P3, P4, P5, P6}
F={3, 3, 4}
Indexed:
V={P1,P2,P3,P4,P5,P6}
F={1,2,3,-1, 2,3,4,-1, 3,4,5,6,-1}

1 3 5

2 4 6

Hannes
Kaufmann Polygonal Shapes: Attribute

19

Bindings of attributes
• for material, normals, texture coordinates
• specifies mapping of attributes to polygons
• Overall object, per face, per vertex

1 3 5 7

2 4 6 8

overall

Per vertex

Per
face

Hannes
Kaufmann Dependency Graph

• “Field connections”: Field types must be
compatible!

• Two different (overlapping) structures
– Scene graph
– Dependency graph (dependent fields)

20

Hannes
Kaufmann Engines

• To model complex
dependencies in graph

• TargetField :=
Engine(SourceField)

• E.g. Calculator, Counter, Type
converter, Interpolator, Trigger

21

Engine

Engine

Hannes
Kaufmann Node Kits / Prefabs

• Prefabricated sub-scene graphs
– e.g. transformation, material + shape
– Simplify the construction of semantically correct

scenes

23

Hannes
Kaufmann Lab Exercise: Higher

Level Programming

• Game-Engine
– E.g. Unity3D
– Extended functionality:

• Tracking input
• Distribution

– Object oriented programming in C# / Javascript
– Based on an Entity component system (ECS)

24

Hannes
Kaufmann Entity Component System (ECS)

• Entity: a general purpose object. Usually, only
consists of a unique id.

• Component: Container object. Raw data for one
aspect of the object, and how it interacts with the
world.
Data is stored in Components.

• System: Each System runs continuously (as though
each system had its own private thread) and
performs global actions on every Entity that
possesses a Component of the same aspect as that
System.

• Integrated in Unreal Engine, Unity.2019 and others25

Hannes
Kaufmann Entity Component System (ECS)

26

Hannes
Kaufmann ECS – Possible Architecture

27

Hannes
Kaufmann ECS

• Entities are simple compositions, not complex
inheritance trees

• Simple object lookups
• Systems could

– render components
– detect collisions, compute physics
– manage health of players
– Store data in components that they need

• Memory efficient, scalable, extendable
• High performance possible

28

Hannes
Kaufmann ECS Further Information

• https://en.wikipedia.org/wiki/Entity_component_system

• https://www.youtube.com/watch?v=ILfUuBLfzGI

• https://www.gamasutra.com/blogs/TobiasStein/20171122/310
172/The_EntityComponentSystem__An_awesome_gamedesign
_pattern_in_C_Part_1.php

29

Hannes
Kaufmann

Software Design and Components
of an VR/AR Framework

30

Hannes Kaufmann

Interactive Media Systems Group (IMS)
Institute of Software Technology and

Interactive Systems

Hannes
Kaufmann

AR/VR Framework:
Requirements & Wishes

• Support multiple input & output devices
– Input: Interface to tracking middleware (e.g. OpenTracker,

VRPN)
– Output: High level graphics programming, Stereo

rendering,…
• Handle user interaction
• Allow flexible 3D user interface

– widget libraries/middleware
• Support of collaboration

– multiple users, flexible user configuration, mobile work
• Support distributed work
• Easy application design / authoring

31

Hannes
Kaufmann VR/AR/MR System Architecture

32

Hannes
Kaufmann

Example: Distributed VR / AR
in Education

33

 Distributed collaboration over large distances
 Large number of users supported
 Flexible hardware setups
 Interaction depends on input device properties

Intra/
Internet

Hannes
Kaufmann Distributed Shared Scene Graph

• Shared Memory (SM): Multiple CPUs access
the same memory
– Very simple and popular
– May need mutual exclusion (locks etc.)

• Distributed Shared Memory (DSM):
– SM on top of standard message passing

• Distributed Shared Scene Graph: DSM
semantics added to a scene graph library

34

Symmetric Approach:
Distributed Shared Scene Graph

• Dual database
(app, scene)

• Optimizations

• Distributed shared memory semantics
• Transparent distribution
• E.g.: Avango, Distributed Inventor (DIV)

35

App.

App.
specific
data

App.

Scene Graph

Host 1 Host 2
explicit
Sync. App. App.

Host 1 Host 2

implicit
Sync.

Goal: Distribution without programming
Keep existing API intact

Updates in DIV

36

myNode

myField=3
1. App
makes
update to
myField

2. Observer
detects change
due to
notification

myNode

myField=3

3. Network
transmission of
update

4.Receiver
applies
update

„Update:
myNode->
myField = 3“

Hashtable
lookup of
myNode

Synchronisation protocol:
- update field
- create node
- delete node
+ some more for for convenience...

DIV - Pipeline

37

Simulation code

Geometry Stage

Display

Scene Traversal

Rasterization

DIV Updates

(sent by
Rendering
Engine!)

...
Simulation code

Geometry Stage

Display

Scene Traversal

Rasterization

Master Slave

Hannes
Kaufmann

Long Distance Distribution
Requirements for AR Applications
• Main Challenges:

– Robust application replication
– Reliable network communication

over long distances:
• Networking Protocols (uni-/multicast) & Bandwidth

considerations

• 3 Options:
– Input data: e.g. Tracking data of input devices
– Output data: e.g. Application content, Screen
– Intermediate data: High level metadata for

regenerating correct application state38

Hannes
Kaufmann Long Distance Distribution - Example

3 Types of Data:
– Input data: e.g. Tracking data of input devices

• Tracking Middleware (e.g. OpenTracker, VRPN)
– For long distance: Use Unicast (UDP) instead of Multicast

– Output data / Application content
• Distributed Open Inventor (reliable TCP)

– Intermediate data: High level metadata for
regenerating correct application state

• Construct3D: enhanced replication behavior
– Geometric objects not transmitted! Only high level state data

39

Hannes
Kaufmann Example: Distribution - Results

• Platform independent (Windows, Linux)
• Long distance (Vienna - Graz)
• 2-6 machines, 5 app. instances
• Dynamic joining & leaving
• Hybrid networks possible

(multicast UDP + TCP)

• Educational evaluation
6 students (Sir Karl Popper
school)

40

Hannes
Kaufmann New VR Standards

• OpenXR 1.0 (2019)

41

Hannes
Kaufmann OpenXR

• API aimed for developers and a device layer
aimed for the VR/AR hardware - abstraction
interface with the device

• High-performance cross-platform access to
hardware

• https://www.khronos.org/openxr/
42

Hannes
Kaufmann WebXR API - for Web Browsers

• Allows to develop&host VR/AR experiences on the web
• WebXR provides the following key capabilities:

– Find compatible VR or AR output devices
– Render a 3D scene to the device at an appropriate frame

rate
– (Optionally) mirror the output to a 2D display
– Create vectors representing the movements of input

controls

• https://github.com/immersive-
web/webxr/blob/master/explainer.md

• https://immersive-web.github.io/webxr/
• https://www.w3.org/TR/webxr/

43

	High Level Graphics Programming & �VR System Architecture
	VR & AR Course Overview
	Application Programmer’s View
	Low-Level Graphics API
	High-Level Graphics API
	Why High-Level API?
	Scene Graph Example:�Open Inventor
	Scenegraph – Structure
	Scene Graph - Nodes
	Slide Number 10
	Slide Number 11
	Graph Traversal: Basic Idea
	Graph Traversal Order
	State, Stack & Separator
	Graph Traversal�Modeling Attributes
	Transformation-Hierarchy
	Instancing (Re-use)
	Polygonal Shapes: Coordinates
	Polygonal Shapes: Attribute
	Dependency Graph
	Engines
	Node Kits / Prefabs
	Lab Exercise: Higher �Level Programming
	Entity Component System (ECS)
	Entity Component System (ECS)
	ECS – Possible Architecture
	ECS
	ECS Further Information
	Software Design and Components of an VR/AR Framework
	AR/VR Framework: �Requirements & Wishes
	VR/AR/MR System Architecture
	Example: Distributed VR / AR �in Education
	Distributed Shared Scene Graph
	Symmetric Approach:�Distributed Shared Scene Graph
	Updates in DIV
	DIV - Pipeline
	Long Distance Distribution Requirements for AR Applications
	Long Distance Distribution - Example
	Example: Distribution - Results
	New VR Standards
	OpenXR
	WebXR API - for Web Browsers

