TUN

WIEN D
Hannes

3D Graphics Hardware

Hannes Kaufmann

Interactive Media Systems Group (IMS)

Institute of Visual Computing &
Human-Centered Technology

Thanks to Dieter Schmalstieg and Michael Wimmer for providing slides/images/diagrams

Motivation

 VR/AR environment = Hardware setup + VR
Software Framework + Application

e Detailled knowledge is needed about

— Hardware: Input Devices & Tracking, Output
Devices, 3D Graphics

— Software: Standards, Toolkits, VR frameworks

— Human Factors: Usability, Evaluations,
Psychological Factors (Perception,...)

“* 3D Graphics Hardware -Development

ooo

* Incredible development boost of consumer
cards in previous ~20 years

e Development driven by game industry
e PC graphics surpassed workstations (~2001)

nNO

Consumer Graphics — History

Up to 1995
— 2D only (S3, Cirrus Logic, Tseng Labs, Trident)

1996 3DFX Vodoo (first real 3D card); Introduction of DX3
1997 Triangle rendering (... DX5)

1999 Multi-Pipe, Multitexture (...DX7)

2000 Transform and lighting (...DX8)

2001 Programmable shaders

— PCs surpass workstations

2002 Full floating point

2004 Full looping and conditionals

2006/07 Geometry/Primitive shaders (DX10, OpenGL 2.1)
2007/08 CUDA (Nvidia) - GPU General Purpose Computing
2009 DX11: Multithreaded rend., Compute shaders, Tessel.
2018 Ray-Tracing Cores (RTX) & DirectX Raytracing (in DX12)

ooo

aufmann

Moore‘s Law

Gordon Moore, Intel co-founder, 1965
Exponential growth in number of transistors

Doubles every 18 months
— yearly growth: factor 1.6

— Slow development since 2002 (2.8GHz available
since December 2002);

— But increase in number of cores - currently 18-core
CPUs

Moore‘s Law is coming to an end

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000

100,000,000 -

10,000,000 H

1,000,000 -

100,000

10,000 —

2,300 -

16-Core SPARC T3
Six-Core Core i7,

Six-Cora Xaon 7400\ 8 @10-Core Xeon Westmere-EX
[]

Dual-Core Itanium 2@ 8-core POWER7

AMD :j:QuadfCore Itanium Tukwila
POW, 8-Core Xeon Nehalem-EX
Itanium 2 with 9MB cache @ Six-Core Opteron 2400
AMO ore i7 (Quad)

@ Barton

Pentium 4 ® Atom

AMD K7
® AMD K6-11l

curve shows transistor AMD K6

count doubling every orr, pentium 11
two years
®AMD K5

Pentium

ascent of RISC (no examples shown)

—=32-bit-addressed PCs

-—Apple Macintosh
IBM PC

home computers viable

I I T T 1
1971 1980 1990 2000 2011

Date of introduction

o Multi-Core Graphics |

NVIDIA Quadro RTX 8000
4608 cores, 576 Tensor cores, 10 GigaRays/sec,
1730 Mhz, 48 GB GDDR6
~15944 GFLOPs (single prec.)

" ooo

e Faster than the fastest Supercomputer in 2001
e Almost Moore’s law squared (*1.5-2.0)

* |n the past performance doubled every 9-12 months —
not anymore but still fast development

e Used in HPC parallel computers (CUDA, Tesla)
— Molecular dynamics, climate simulations, fluid dynamics
— ...everything highly parallel computable

e Speedup 10-100x compared to standard processors

And it goes on and on....

 Performance increase expected to continue
within the next few years

— Smaller chip production processes possible (currently
12nm for graphics cards, 7-10nm CPUs)

— Multiple graphics cards or GPUs in a PC

— Multi-core GPUs
 General purpose

computing on GPUs

— OpenCL

— CUDA

5
= IMobile ARM Graphics Chips
for Smartphones/Tablets

Example: Qualcomm Adreno 640

Integrated in Snapdragon 855, CPU: Qualcomm
Kryo 485 CPU, 8-core, 7nm (up to 2.96 GHz)

e API Support for GPU computing:
OpenCL 2.0 FP, OpenGL ES 3.2, Vulkan 1.1, DX12

e Volumetric VR video playback, 8K 360 VR video
playback

e Video output 4K@60 Hz, 1080p @120 Hz
e 4k H.265 video decode

10

S aoe

What are the benefits in VR/AR?

Which features are needed?

11

3D Card High End Model

nVidia Quadro RTX 8000 (~ € 10.000.-)

48 GB GDDR6 RAM

Based on Turing Architecture (Geforce RTX 2080)
4608 CUDA cores, 576 Tensor cores

672 GB/s Bandwidth

optimized OpenGL drivers
(comp. to consumer card)

16K x 16K texture resolution

DX12, Shader Model 6.1,
OpenGL 4.6, Vulkan 1.1.78

“* Some Relevant Features (for VR)

ooo

* Memory size: 48 GB

e 4 DisplayPorts 1.4 (8K@60Hz or 4AK@120Hz), 1
VirtualLink (1 connector for VR)

* OpenGL quad-buffered stereo (optional 3-pin sync
connector); 3D Vision Pro

e NVLink Technology

* Nvidia Mosaic: 2-8 displays

e Fast 3D Texture transfer; HW 3D Window clipping

e Quadro-Sync (optional) with Framelock and Genlock
 HDR technology, 30-bit color, SDI output option

e Quality: 64 x Full-Scene Antialiasing (FSAA), ...

12

13

S aoe

Explanations
&
Back to the Basics

14

3D Graphics
Basics

The Graphics Pipeline(s)

Application Rasierizer

15

What for ?

Understanding the rendering pipeline is the key
to real-time rendering!

e |nsights into how things work

— Understanding algorithms

e |nsights into how fast things work

— Performance

,Historical” Fixed Graphics Pipeline

Purpose: Convert Scene to Pixel Data

Application

Fixed processing of scene
Driver = Geometry Stage:

* Input: Primitives
eI e Qutput: 2D window coordinates
Geometry D Rasterization Stage:

| * |nput: 2D window coordinates
Rasterization + Output: Pixels

Texture * Fragment: “pixel”, but with additional
17 info (alpha, depth, stencil, ...)

Fragment = Nowadays every part of the pipeline is
hardware accelerated !

Display

TUN

WIEN [m]

Hannes
Kaufmann

3D Graphics
Basics

The Stages

=

Rasierizer

e it

17

Hannes
Kaufmann

mlm)e

(1) Application Stage:
3D Graphics Programming

3D Application Programmer’s Interfaces (APIs)
e Access to Hardware

e Standards:
— OpenGL, Direct3D Application

|

e Language: C, C++ (mostly) 1
] Application Graphics Package
 Higher Level APIs based on
OpenGL, Direct3D
— Game Engines
— Scene Graph APIs:

* Openlnventor, Java3D

Output | | Input Input
. e OpenSceneGraph, Performer,... Device | |Device | |Device

Application Programmer’s Interface (API)
Hardware and Software

OpenGL — Hello World

#include <GL/glut.h> void init (void) {
glClearColor (0.0, 0.0, 0.0, 0.0);
void display(void) { glMﬁtleMOd@(GL_PROJECT'ON),
glClear (GL_COLOR_BUFFER_BIT); glLoadldentity();

/* draw white polygon (rectangle) with glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);}
corners at (0.25, 0.25, 0.0) _ o

and (0.75, 0.75, 0.0) */ Int main(int argc, char** argv)

glColor3f (1.0, 1.0, 1.0); {

glBegin(GL_POLYGON); glutinit(&argc, argv);

glutinitDisplayMode (GLUT_SINGLE

glVertex3f (0.25, 0.25, 0.0); GLUT RGB):
glVertex3f (0.75, 0.25, 0.0); glutinitWindowsSize (250, 250);
glVertex3f (0.75, 0.75, 0.0); glutinitWindowPosition (100, 100);
gIVertex3f (025, 075, OO), g|utCrea’[eWindOW ("he”O");
gIEnd(); init ()’
glFlush (); glutDisplayFunc(display);

} glutMainLoop();

return O;

19 }

OpenGL Geometric Primitives ;

All geometric primitives are specified by

verlices
S 5%
- GL LINES

GL POLYGON
GL LINE STRIP GL LINE LOOP =

GL POINTS

GL TRIANGLES

é;;;;%iﬁ? GL QUADS

GL_TRIANGLE STRIP L e ia [UhE Yl GL QUAD STRIP

21

(1) Application Stage

Generate database (Scene description)
— Usually only once

— Load from disk

— Build acceleration / optimization structures

* Lots of optimizations possible: Build hierarchy, Level of Details, Culling
Techniques, Impostors,...

Simulation (Animation, Al, Physics)
Input event handlers

Modify data structures

Database traversal

Primitive generation

Shaders (vertex, geometry, fragment)

22

Graphics Driver

Command interpretation/translation

— Host commands = GPU commands

Handle data transfer
Memory management

Emulation of missing features (e.g. full
OpenGL 4.5 support)

(2) Geometry Stage

Vertex Processing

Tesselation
Primitive Assembly

Clipping
Perspective Division

Geometry Shading

- Culling i

24

Command

e Command buffering
e Command interpretation

 Unpack and perform format conversion
,Input Assembler”

25

Vertex Processing: Old Geometry Stage

Application =» Geometry =» Rasterizer

Object Eye
Yo | Coordinates | npdelView | Coordinates | prgjection
z - Matrix -~ Matrix o]
0 Lighting
W Eye — Origin and — unit cube
0 .
| Shading
Clip Coordinates
Normalized
Device Window X,
Perspective | “oordinates . C'oordinates
. Spe - Viewport -7,
Division Transform.
Z
w

Hannes

Viewing Frustum

mlm)e

Horizontal FOW \\

Yerical FOW
Right

Eyepaoint

Bottom

faniverical FOWE)
tanfhorizontal FOW/Z)

Aspect Fatio = i -

26

27

Vertex Processing

e Fixed function pipeline:

— User has to provide matrices, the rest happens
automatically

 Programmable pipeline:
— User has to provide matrices/other data to shader
— Shader Code transforms vertex explicitly

 \We can do whatever we want with the vertex!

(3) Rasterization Stage

xaSlerization

* |nput: 2D Geometric
Primitives (Points, Lines, Fff{agmejm Hrf e

. DCESSING OCESSING
Polys, Bitmaps)

* Primitives needed! AOREIAtons

e 1st step output: Fragments
(Pixel-Coord. + Color +
Depth + Texture-Coord.)

e Polygons are decomposed
(various methods)

Span iteration (interpolating depth and color)

Polygon decomposition to spans

29

S aoe

(3) Rasterization Stage

Per-Fragment Operations
Pixel Ownership Test (Window visible?)

Buffers:

Frame Buffer (Color + Alpha channel)

Depth Buffer Test (z-Buffer)

Stencil Buffer

Accumulation Buffer

P-Buffer (aux. color buffer -> direct rendering)

annes
Kaufmann

ooo

Rasterizer/Display Stage

 Framebuffer pixel format: RGBA vs. indexed
(colormap)

e Bits: 32, 24 (true color) 16, 15 (high color), 8
 Double buffering, Triple Buffering
e For Stereo: Quad buffer

 Per-window video mode (e.g. stereo, mono)

e Display: frame buffer -> screen

30

Hannes
Kaufmann

mlm)e

,Modern“ Programmable
Graphics Pipeline

o 2D screen
User primitives Geometry coordinates Pixel
Program > Processing > Processing
I vertex program T
pixel shader
Figure 17.5. The programmable graphics hardware pipeline. The user program supplies

primitives, vertex programs, and fragment programs to the hardware.

e Vertex Shader integrated in ,,old” Geometry Stage

— Allows per vertex transformations e.g. warping

* Fragment/Pixel Shader integrated in , old“ Rasterization Stage

— Fragment: , pixe

|II

— Allows e.g. per pixel lighting,....

31

with additional information (alpha, depth, stencil,...)

B Vertex and Fragment Shaders

Hannes
Ki—

verlex shader fra gment shader
per-vertex attributes varying perpicel data varying per-pixel data special: fragment color
> - > or other attributes
uniform graphics state special: vertex lp-os tion, unifom graphics state
> vertex vertex color > fragment texture data
texture data processor textune data processor

" vertex transfomation, - per-pixel lighting,

per-vertex lighting, texture map generation,

computation computation

Figure 17.6. The execution model for shader programs. Input, such as per-vertex attributes,
graphics state-related uniform variables, varying data, and texture maps are provided to
vertex and fragment programs within the shader processor. Shaders output special variables

used in later parts of the graphics pipeline.
e Various Shading Languages
— ARB - GPU assembly language (optimized)
— GLSL (Open GL Shading Language — in OpenGL 2.0)
— HLSL (High Level Shading Language — Microsoft), similar is:
2. — CG (Nvidia) — used in Unity

g
m“ Current OpenGL 4.x / DirectX 11
Architecture

" fixed

B programmable

B memory
Constant Constant | Constant Constant

Control .

: Vertex Geometry Setup Pixel
Point es
Shnalcr]‘er I sellator Shader Shader Rasterizer @ Shader

'y

Sampler Sampler Sampler [Stream Sampler
out

' L L R N] RN [EE TR L RN CEE R RN EE RS EE

Vertex | Index Depth Render
Target

Texture Buffer J| Buffer - e Buffer Stencil

Memory

OpenGL 3.x OpenGL 4.x
Vertex

mlm)e

Hannes Vertex

«~m Tasselation [

Geometry

l Tessellation Eval.

Fragment Geometry

4

Fragment

e |f just triangles, nothing needs to be done,
otherwise:
— Evaluation of polynomials for curved surfaces

— Create vertices (tesselation)
e OpenGL 4/ DirectX11 specifies this in hardware

— 3 new shader stages!

— Still not trivial (special algorithms required)

e https://www.nvidia.com/content/siggraph/Rollin Oster Open
GL CUDA.pdf

34

https://www.nvidia.com/content/siggraph/Rollin_Oster_OpenGL_CUDA.pdf

TUN

WIEN [m]

Hannes

DirectX 11 Tesselation

vertex shader hull shader tessellator domain shader

Evaluate
surface

Factors including
i displacement

Transfnrm basis, Tess
Determine how
much to tessellate

control points
in Bezier patch domain points

displacement
map

A

Sub-D Patchk'*g' Bezier Patch \/‘

e Tesselation Example &
Displacement Map

Sub-D Modeling Animation Displacement Map

Optimally tesslated!

36

CORE PROFILE

TUR
Hannes
Kaufmann

WIEN [m]

Geometry

Vertex Specification
Shading

Vertex Shading

Tessellation

OmQmuQOm)

N &
& S £
© & 2
e E
.vAr@ & o
'd ¢%o m ooav
<® i Mg

Rasterization
FRAMEBUFFER

O
I Fragment Shading
O

COMPUTE @

Counters, etc.
SHADERS

Uniforms, Shader
Storage, Atomic

37

mlm)e

M Mobile Graphics: OpenGL ES

Kaufmann

OpenGL ES Momentum

* The leading 3D rendering API for mobile and embedded devices
- Based on desktop OpenGL - but optimized for mobile / handheld devices
- Removes redundancy & rarely used features - adds mobile-friendly data types
- The power of OpenGL distilled into a much smaller package

* OpenGL ES adopted by every major handset OS

- Pervasive mobile 3D is evolving fast

* OpenGL ES has become the most widely deployed 3D API

- Used in diverse applications, devices and markets
- Mobile phones, games consoles, personal navigation devices, personal media players
automotive systems, settop boxes

1} -'wlndﬂws b
;f orew W& Mobile \
-' nGL|ES & |
@ | N {J_I.-"I

™ o
HHH_E?fmhlan .# P

38

Hannes
Kaufmann

Application

Vertex Puller

Transform Feedback

Rasterization

39

Per-Fragment Operations

Tk OpenGL ES 3.1 Pipeline (2014)

Application

Dispatch

Application

Framebuffer

v

Pixel Assembly

v

Pixel Operations

y

Pixel Pack

40

Current State

High bandwidth interconnect of CPU and GPU

— CPU and streaming units working together
— Nvidia NVLink

Heterogeneous architectures
— CPU and GPU on one chip (especially mobile chips)
— GPU is treated as a parallel streaming PU

Whole pipeline is fully programmable
(GPU computing)

Good-bye to the one way graphics pipeline!

Ma
- Architectural Addition:

Kaufmann

Real Time Ray Tracing

’\I.\; : |
1\"\ L¥ *5
LML AB "o

IMMERSIVE ENTERTAlF MENT li

Star Wars — 1 Quadro RTX 8000

41

Project Sol — 1 Quadro RTX 6000

42

S aoe

Nvidia Geforce RTX 2080Ti

12nm chip (TU102)

14.2 TFLOPS single precision math
4352 CUDA cores

544 Tensor cores

68 RT (RayTracing) cores

Tk
||
O

Kaufmann

Camera / 8 Light Source

View Ray / o, . o

Scene Object

1. Construction of the camera/eye rays
2. Intersection with the scene objects
3. Shading

4. Reflection/refraction directions

5. Recursion

Ray Tracing Principle

[Ray Generation }

TraceRay()
-
Any Hit

Acceleration -
Structure f
Traversal e

Intersection

L\
3"15
[Miss J [ClosastHit J

Figure 1. The ray tracing pipeline

TUR
WIEN |m]

Hannes
Kaufmann

45

\

=]

@ Sphere equation: (i~)-(j— ¢ = Intersection:
Ray equation: #(t) — & | td’ (‘; +td - "') ' ("' +td - ':) r*

c‘*‘(d”-d‘)+2(5-afi+(a-a-(a-a-r2 =0

0.8

t
1
Illuminiation Equation (Blinn—Phong) with recursive Transmitted and Reflected Intensity:

I=hod,+1, (kd (E N) 4k, (V : R’)n) 4 hd, + ko,

recursion

sin "L-‘ n . . i i :
@ Snell’s law: - 1_1_22 Hair SINH; = 1 gigy, sin b refraction coefficients

sinfl, 19 my Ny = 1, Miass = 1.5

Asible shadow rays
@ Area Light Simulation: I;.m,:,,t# (visible shadow rays)
' # (all shadow ravs)

- BVHALGORITHM

. Nvidia
[] v RT cores

are Emulation

Shaders RT Core Box

Intersection

Launch Ray Probe - Evaluators
Fetch box
Decode box
Intersection test
Sub-box or tris?
Triangle
Intersection
. E Evaluators
Ray/triangle 1
intersection test j
Shading
Return hit
RT CORE

46

g
O

Ray Tracing De-Noising

with Deep Learnmg Networks

Kaufmann

Ground Truth

Ray Traced Shadows - Ray Traced Shadows - Ray Traced Shadows -
1spp Denoised] Ground Truth

Nvidia: 1 ray per pixel Nvidia: 1 ray per pixel — denoised. Real-time ! Ground Truth
47

Hannes
Kaufmann

ooo

Hybrid

Deferred shading
(raster)

gl

Global lllumination

48

Ambient occlusion

“vifracre or

.

Lighting

bk

TUN

WIEN[ml

Hannes

“= Real-time Ray Tracing in AR

Virtual glass

Work by Peter Kan
2012-2014

49

50

Long term future

e We have...
— Very high fill rates polygon rates
— Lots of textures
— Almost full programmability
— Few limits (program lengths, memory bandwidth)
— Real-time ray tracing

e We want (and will get)...
— Flexible geometry specification
— Full, easy programmability
— Higher performance

 Convergence of film rendering and real-time
rendering imminent

VR/AR and the
Need for Extreme Graphics Power:
Examples

Princeton Display Walll
3x8 projectors, 24 PC cluster

Mechanical visualization
CAVE, SGI Onyx
(8 CPUs, 6 outputs)

HMD setups for
larger groups

Hannes

Parallel Graphics Hardware

ooo

Overcome bottleneck by parallel computation

Types of parallel graphics:
1. On-chip / on a graphics board (standard)

2. Multiple boards (former: graphics supercomputer)
Multiple boards with multi GPUs (1+2)

3. PCcluster:

— Offline Rendering: Standard network — Distributed
Environment

— Realtime Rendering: PC cluster with special hardware

52

Application

Multiple Graphic Pipelines

e Pipelines fully in HW

 Multiple independent
pipelines can be parallelized

 NVIDIA/ AMD
— CUDA cores / streaming processors

e Modern GPUs process more than 4000 Pipelines in
parallel (Unified architecture)

53

54

Parallel On-Board

Examples:

 Nvidia Geforce GTX TITAN Z (2014)
= 2 x 2880 cores

= [, . -

Hannes

Parallel Graphics Hardware

ooo

Types of parallel graphics:
1. On-chip / on a graphics board (standard)

2. Multiple boards (former: graphics supercomputer)
Multiple boards with multi GPUs (1+2)

3. PCcluster:

— Offline Rendering: Standard network — Distributed
Environment

— Realtime Rendering: PC cluster with special hardware

55

56

S aoe

Multiple Graphics Boards

Parallel graphics rendering:
 Graphics , Supercomputer”

e Multi-GPU support (NVLink)
DC \with SLLor C c

Different:
Multiple display support - (not) synchronized:
e PC with multiple unconnected cards

— Nvidia Mosaic

mlm)e

Hannes
Kaufmann

Graphics Supercomputer

210 24 R4400 or R10000 CPLUs
FOWERpath-2 Systermn Bus

Multi-Channel
Display Generator
(option) (DG4-8)

G4MB to 1658
Systern Meamory

Gearmetry 20r 3
— Engine Manager video Cutputs

(GE12) (AME)

FOWER: hannel-2

57

\I L

WA

SGI Onyx with
Infinite Reality 3

58

S Ooo

G-Brick:

SGI Onyx 3000 & Infinite Reality 4

4 RasterManager Boards
1.3 Gpixel/s/Pipeline

— (8 subsample/full scene/AA)
1 GB Texturspeicher

10 GB Framebuffer

192 GB/s Bandbreite
Kombination bis zu 16 IR4

2

59

Nvidia Multi-GPU
solutions

Connected via PCle to PC

2-8 GPUs

12 GB Frame Buffer per GPU

2 to 8 Dual-Link Digital Display Connectors
Genlock/Frame Lock

Tk 2

== Supercomputer — Application Areas

Kaufmann

e Theme Parks
(DisneyQuest —
CyperSpace Mountain)

e Flight Simulators
e Military Applications
e CAVEs / Large setups

Barco RP-360 | TRa e v
60 Flight Simulator (Video)

Hannes
Kaufmann

oog

61

Graphics Supercomputer

e Multiple CPUs

e Multiple Geometry Engines
 Multiple Rasterization Engines
 Genlocking

e Multiple Pipes (=graphics cards)
 Multiple Channels (=display outputs)
 Highly configurable

e Now used on PC: standard graphics cards

Sealable Link | face(Nvidia) or FireXAT!) for PC
Express—both-deprecated!
 NVLink - high-speed, direct GPU-to-GPU interconnect

— Developer must implement multi-GPU support himself!

Ha
Kal

=" ooo

Parallel Graphics Hardware

(A) Computing the same (high resolution) image

(B) Computing multiple images —
Multiple outputs

62

“* Basic Problems of Parallel Rendering

ooo

Dynamic load balancing on multi-GPU systems
a complex problem of current research

Vertex and Pixel Load Balancing:

 Problem with parallel rendering

— Load balancing of vertices
— 3D (object space) problem

— Load balancing of pixel (rasterizers)
— 2D (screen space) problem

63

Parallel Rendering as Sorting

e Parallel Geometry Stage T&L2

— Cut 3D model into pieces with equal Tal
number of vertices
— Assign one piece to one T&L unit
e Parallel Rasterization T&L3

T&LA4

— Cut destination image into tiles

— Assign (triangles contained in) one
tile to one rasterizer

— Need to SORT transformed 2D
triangles

e Shared common memory

64

Hannes
Kaufmann

B S0 / NVLink (Nvidia)

Not supported in latest
card generation!!!

3 Modes:

Scalable Link Interface

Split Frame Rendering (SFR) - ScisSors: Splits each fran.c aiiu
sends half the load to each ofthe graphics cards

Alternate Frame Renderirfg (AFR):
Frame 1 —Card 1, Fraihe 2 — Card 2,
alternating

VR SLI: RightAleft frame computed on
Card 1/Cafd2 in parallel

P€le cards are connected by a bridge —
very fast data transfer

TUR
== CrossFireX (AMD) / XDMA

Kaufmann

RADEON

3 Modes: “Edtion
e Supertiling
e Scissors

e Alternate Frame Renderifhg
Additional AA Mode
No external Bridgé needed!

E' 4

Nvidia Mosaic 2

multiple display configurations with Quadro cards

Left Eve

Right Ewe

Dual Host Interface Card required to run dual systems.

68

Hannes

Parallel Graphics Hardware

ooo

Types of parallel graphics:
1. On-chip / on a graphics board (standard)

2. Multiple boards (former: graphics supercomputer)
Multiple boards with multi GPUs (1+2)

3. PCcluster:

— Offline Rendering: Standard network — Distributed
Environment

— Realtime Rendering: PC cluster with special hardware

70

TUN 3

WIEN[m

Hannes
Kaufmann

Parallel Cluster Rendering (1)

e PC Cluster
— Off-the-shelf hardware
— Network (LAN)
— Cheap
— Scalable

e Distributed Software
System

71

Hannes

== Parallel Cluster Rendering (2)

ooo

e power of cluster > power of supercomputer
* Price of cluster << price of supercomputer

e BUT: problems of cluster

— How to make cluster PCs work together

— On a single image
(or consistent set of images)

—> Parallel Execution of Rendering !
— Cluster synchronisation (genlocking) !

72

Cluster Synchronisation 3

Q: How to
synchronize
multiple
displays?

(1) Simple: 1 PC +
Multiple
graphic
outputs

(2) Not so simple:
Multiple
workstations

73

Hannes

Parallel Graphics Hardware

ooo

Types of parallel graphics:
1. On-chip / on a graphics board (standard)

2. Multiple boards (former: graphics supercomputer)
Multiple boards with multi GPUs (1+2)

3. PCcluster:

— Offline Rendering: Standard network — Distributed
Environment

— Realtime Rendering: PC cluster with special hardware

74

Example:
CAVE

“Computer Assisted Virtual Environment” ™

e Has 3 to 6 large screens

e Puts userin a room for
visual immersion

e Usually driven by a
single or group of
powerful graphics
engines — nowadays
usually PC cluster

76

Example: CAVE & Shuttering

Shutter Glasses

Hardware Synchronisation

Synchronizing multiple displays/workstations

Cptional

_Eddamal syni Multiview M ltiview

Cut In

v \. e N

Pod i ey ol i e
Cut In

=
|

|:||:-|:r aca

I'u1u|t|1r|ew Cable
(contains
]"]":"] multiple wires) m"mml

B
| oca

hultiview Cable
[zontains
multiple wires)]m"m

il aster Slave

Framelock:

Synchronizing frame buffer
swap

e Begins redrawing at the
same time

e

Slave

Genlock:

Exact synchronization of
vertical synch (electron
beam of CRT)

e Refreshes each pixel
synchronously

TUN

WIEN[m

Hannes

Example: Blue-C

78

79

3D Card High End Model

nVidia Quadro RTX 8000 (~ € 10.000.-)

48 GB GDDR6 RAM

Based on Turing Architecture (Geforce RTX 2080)
4608 CUDA cores, 576 Tensor cores

672 GB/s Bandwidth

optimized OpenGL drivers
(comp. to consumer card)

16K x 16K texture resolution

DX12, Shader Model 6.1,
OpenGL 4.6, Vulkan 1.1.78

“* Some Relevant Features (for VR)

ooo

* Memory size: 48 GB

e 4 DisplayPorts 1.4 (8K@60Hz or 4AK@120Hz), 1
VirtualLink (1 connector for VR)

* OpenGL quad-buffered stereo (optional 3-pin sync
connector); 3D Vision Pro

e NVLink Technology

* Nvidia Mosaic: 2-8 displays

e Fast 3D Texture transfer; HW 3D Window clipping

e Quadro-Sync (optional) with Framelock and Genlock
 HDR technology, 30-bit color, SDI output option

e Quality: 64 x Full-Scene Antialiasing (FSAA), ...

80

TUN

WIEN[m

Hannes

“ Physics Effects

81

Calculation on GPU
Rigid Bodies, Joints
Cloth, Particles, Fire, Fluids

Puts higher rendering load on
graphics card

82

GRIMAGE Project

Physics in VR

Incredible Machine

General Purpose Computing

e Nvidia TESLA V100

— ,High Performance Computing” / Deep Learning
— No graphics card! No graphics output!

— Programmed using CUDA
— Additional GPU

— 5120 CUDA cores

— 640 Tensor Cores

— 16 GB HBM2 RAM

— CUDA C/C++/Fortran, OpenCL,
DirectCompute Toolkits,

e Alternative: Intel Xeon Phi
— x86 cores (72 Atom cores)

83

84

Nvidia GRID

 GPU Virtualization — sharing the GPU

 Low latency remote display
— ,Real time“ H.264 encoding

e Grid K2:

— 2 Kepler GPUs, 3072 cores
— 8GB RAM

TUR
O
Literatur
* Real-time Renderin REAL-TIME
. . g . RENDERING
Tomas Akenine-Moller, Eric Haines, Naty FOURTH EDITION

Hoffman, Angelo Pesce, Michat lwanicki,
and Sébastien Hillaire, 1198 pages, from
A.K. Peters Ltd., 4th edition, 2018

e http://www.realtimerendering.com/

85

	3D Graphics Hardware
	Motivation
	3D Graphics Hardware -Development
	Consumer Graphics – History
	Moore‘s Law
	Slide Number 6
	Multi-Core Graphics
	And it goes on and on….
	Mobile ARM Graphics Chips�for Smartphones/Tablets
	What are the benefits in VR/AR?��Which features are needed?
	3D Card High End Model
	Some Relevant Features (for VR)
	Explanations �& �Back to the Basics
	3D Graphics �Basics
	What for ?
	„Historical“ Fixed Graphics Pipeline
	3D Graphics �Basics
	(1) Application Stage:�3D Graphics Programming
	OpenGL – Hello World
	OpenGL Primitives
	(1) Application Stage
	Graphics Driver
	(2) Geometry Stage
	Command
	Vertex Processing: Old Geometry Stage
	Viewing Frustum
	Vertex Processing
	(3) Rasterization Stage
	(3) Rasterization Stage
	Rasterizer/Display Stage
	„Modern“ Programmable �Graphics Pipeline
	Vertex and Fragment Shaders
	Current OpenGL 4.x / DirectX 11 Architecture
	Tesselation
	DirectX 11 Tesselation
	Tesselation Example & �Displacement Map
	Slide Number 37
	Mobile Graphics: OpenGL ES
	Slide Number 39
	Current State
	Architectural Addition: �Real Time Ray Tracing
	Nvidia Geforce RTX 2080Ti
	Ray Tracing Principle
	The illumination equation
	Slide Number 45
	Nvidia �RT cores
	Ray Tracing De-Noising �with Deep Learning Networks
	Slide Number 48
	Real-time Ray Tracing in AR
	Long term future�
	VR/AR and the �Need for Extreme Graphics Power:�Examples
	Parallel Graphics Hardware
	Multiple Graphic Pipelines
	Parallel On-Board
	Parallel Graphics Hardware
	Multiple Graphics Boards
	Graphics Supercomputer
	SGI Onyx 3000 & Infinite Reality 4
	Nvidia Multi-GPU �solutions
	Supercomputer – Application Areas
	Graphics Supercomputer
	Parallel Graphics Hardware
	Basic Problems of Parallel Rendering
	Parallel Rendering as Sorting
	SLI / NVLink (Nvidia)�Not supported in latest�card generation!!!
	CrossFireX (AMD) / XDMA
	Nvidia Mosaic�multiple display configurations with Quadro cards
	Parallel Graphics Hardware
	Parallel Cluster Rendering (1)
	Parallel Cluster Rendering (2)
	Cluster Synchronisation
	Parallel Graphics Hardware
	Example: �CAVE
	Example: CAVE & Shuttering
	Hardware Synchronisation
	Example: Blue-C
	3D Card High End Model
	Some Relevant Features (for VR)
	Physics Effects
	Physics in VR
	General Purpose Computing
	Nvidia GRID
	Literatur

