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• Introduction
Hardware
• Input Devices
• Output Devices
• 3D Graphics Hardware
Software
• 3D Interaction
• High Level Graphics Programming
• Usability, Evaluations & Psychological Effects
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Application Programmer’s View
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• OpenGL (v 1.0 1992), Direct3D (DirectX 2, 1996)
• Procedural 
• Primitives

– Line, Triangle, …
– Color, ...

• Dual Database Problem
– 1. Representation: Data Objects 
– 2. Representation: Graphical 
– Redundancy, Problem of Inconsistency
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• Rendering Engine (e.g. Unity, 
Unreal Engine,…) or Scene Graph 
e.g. OpenSceneGraph, OpenSG, X3D (VRML), Java3D,.. 

• Object oriented
• Scene Objects – “Objects, not Drawings”

– Not limited to graphical display
• Interactivity: Event-model for 3D scenes
• Software architecture

– Toolkit-approach, extendible
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Why High-Level API?

• Rapid prototyping
• Rapid application development (RAD)
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interpreted script

geometry file

Low-Level API

Hi-Level API

Application or
Shell (Browser, Editor)
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Open Inventor
• Scene graph library
• Based on C++
• Used in research & 

commercial projects
• Platform & windowing system independent

• 1. Version: SGI Inventor, 1992. Open Source (ver 2.1)
• 2. Version: VGS Open Inventor: Continued development of SGI Inventor. 
• 3. Version: Coin by Systems in Motion (SIM), Re-Engineered API, Open 

Source; ver. 3.0
http://www.coin3d.org/
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• Graphical data structure = Scenegraph
• Scenegraph consists of Nodes
• Directed graph! (Head/Tail)

Directed edges -> Hierarchy
• Use of the hierarchy

– Semantic Hierarchy: e.g. car (parts)
– Geometric Hierarchy: e.g. puppet / jointed doll

• Usually one tree is sufficient

• General: Directed Acyclic Graph (DAG)
– [ Multiple parent nodes allowed ]
– No directed circles8
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• Nodes consist of data and methods
• Nodes are of a specific type

– Type determines behavior
– Behavior = Reaction to certain events
– Events are generated by the application –

by the user -> Interactivity
• Nodes are instances of a class

– Scene hierarchy vs. class hierarchy!
• Flexibility: Choose node(type), compose scene graph 

with nodes
• Extendible: New nodes can be implemented

9



Hannes 
Kaufmann

• Attributes (member variables) 
in nodes are called fields

• Fields: set/get, detect changes, 
connect fields across nodes 

• Fields are objects by themselves
– Float-Object, String-Object etc.
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Scene Graph - Fields
SoMaterial

ambientColor
diffuseColor
specularColor
emissiveColor
shininess
transparency
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• Data structure (scene graph) is processed 
(=“traversed”)

• For each node a number of methods is 
implemented:
– Rendering
– BoundingBox calculation
– Transformation matrix calculation
– Handle Events (e.g. picking)
– Search nodes
– Write to file
– Execute user callback…12
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• All nodes must be processed
• In general: Depth-First
• Traversal uses a State-Engine
• Difference in Group Nodes

– Ordered Group
• State Propagation top->down and left->right
• e.g. Inventor, VRML / X3D
• Very flexible scene graph generation

– Unordered Group
• State Propagation only top->down
• e.g. Java3D
• Parallel Render Traversal possible (Threads, SMP)!
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State, Stack & Separator
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Red

Separator

Sphere

Green

Separator

Separator

Blue

Cube

Cone

Color state stack

Red

Green

Traversal saves state
in Stack
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Modeling Attributes

• In-between, leaves or fields?
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Red

Group

Sphere Cube
Red

Group

Sphere Cube

Some toolkits only allow specific structures
e.g. X3D Shape & Appearance combined

Sphere
Red

Group

Cube
Red
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HL HR
R

R

SRSL

EL ER

HL HR

OpenGL Matrix Stack <--> Transformation hierarchy
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Example: Car

In case of textures:
• Saves texture
memory
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Indexed vs. non-indexed polygon lists (e.g. FaceSet):
Non-Indexed: 
V={P1=(x1,y1,z1), P2, P3,   P2, P3, P4,   P3, P4, P5, P6}
F={3, 3, 4}
Indexed:
V={P1,P2,P3,P4,P5,P6}
F={1,2,3,-1,   2,3,4,-1,   3,4,5,6,-1}

1               3             5             

2               4             6             
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Bindings of attributes
• for material, normals, texture coordinates
• specifies mapping of attributes to polygons
• Overall object, per face, per vertex

1               3             5             7

2               4             6             8

overall

Per vertex

Per
face
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• “Field connections”: Field types must be 
compatible!

• Two different (overlapping) structures
– Scene graph
– Dependency graph (dependent fields)
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• To model complex 
dependencies in graph

• TargetField := 
Engine(SourceField)

• E.g. Calculator, Counter, Type 
converter, Interpolator, Trigger

21

Engine

Engine
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• Prefabricated sub-scene graphs
– e.g. transformation, material + shape
– Simplify the construction of semantically correct 

scenes
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Level Programming

• Game-Engine
– E.g. Unity3D
– Extended functionality:

• Tracking input
• Distribution

– Object oriented programming in C# / Javascript
– Based on an Entity component system (ECS)
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• Entity: a general purpose object. Usually, only 
consists of a unique id.

• Component: Container object. Raw data for one 
aspect of the object, and how it interacts with the 
world.
Data is stored in Components.

• System: Each System runs continuously (as though 
each system had its own private thread) and 
performs global actions on every Entity that 
possesses a Component of the same aspect as that 
System.

• Integrated in Unreal Engine, Unity.2019 and others25
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• Entities are simple compositions, not complex 
inheritance trees

• Simple object lookups
• Systems could

– render components
– detect collisions, compute physics
– manage health of players
– Store data in components that they need

• Memory efficient, scalable, extendable
• High performance possible

28
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• https://en.wikipedia.org/wiki/Entity_component_system

• https://www.youtube.com/watch?v=ILfUuBLfzGI

• https://www.gamasutra.com/blogs/TobiasStein/20171122/310
172/The_EntityComponentSystem__An_awesome_gamedesign
_pattern_in_C_Part_1.php
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Software Design and Components 
of an VR/AR Framework

30
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AR/VR Framework: 
Requirements & Wishes

• Support multiple input & output devices
– Input: Interface to tracking middleware (e.g. OpenTracker, 

VRPN)
– Output: High level graphics programming, Stereo 

rendering,…
• Handle user interaction
• Allow flexible 3D user interface

– widget libraries/middleware
• Support of collaboration

– multiple users, flexible user configuration, mobile work
• Support distributed work
• Easy application design / authoring
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Example: Distributed VR / AR 
in Education
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 Distributed collaboration over large distances 
 Large number of users supported
 Flexible hardware setups
 Interaction depends on input device properties

Intra/
Internet



Hannes 
Kaufmann Distributed Shared Scene Graph

• Shared Memory (SM): Multiple CPUs access
the same memory
– Very simple and popular
– May need mutual exclusion (locks etc.)

• Distributed Shared Memory (DSM): 
– SM on top of standard message passing

• Distributed Shared Scene Graph: DSM 
semantics added to a scene graph library
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Symmetric Approach:
Distributed Shared Scene Graph

• Dual database
(app, scene)

• Optimizations

• Distributed shared memory semantics
• Transparent distribution
• E.g.: Avango, Distributed Inventor (DIV)
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App.

App.
specific
data

App.

Scene Graph

Host 1 Host 2
explicit
Sync. App. App.

Host 1 Host 2

implicit
Sync.

Goal: Distribution without programming
Keep existing API intact



Updates in DIV
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myNode

myField=3
1. App 
makes
update to
myField

2. Observer 
detects change
due to
notification

myNode

myField=3

3. Network 
transmission of
update

4.Receiver 
applies
update

„Update: 
myNode->
myField = 3“

Hashtable 
lookup of 
myNode

Synchronisation protocol:
- update field
- create node
- delete node
+ some more for for convenience...



DIV - Pipeline
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Simulation code

Geometry Stage

Display

Scene Traversal

Rasterization

DIV  Updates

(sent by 
Rendering 
Engine!)

...
Simulation code

Geometry Stage

Display

Scene Traversal

Rasterization

Master Slave
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Long Distance Distribution 
Requirements for AR Applications
• Main Challenges:

– Robust application replication
– Reliable network communication 

over long distances:
• Networking Protocols (uni-/multicast) & Bandwidth 

considerations

• 3 Options:
– Input data: e.g. Tracking data of input devices
– Output data: e.g. Application content, Screen
– Intermediate data: High level metadata for 

regenerating correct application state38
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3 Types of Data:
– Input data: e.g. Tracking data of input devices

• Tracking Middleware (e.g. OpenTracker, VRPN)
– For long distance: Use Unicast (UDP) instead of Multicast

– Output data / Application content
• Distributed Open Inventor (reliable TCP)

– Intermediate data: High level metadata for 
regenerating correct application state

• Construct3D: enhanced replication behavior
– Geometric objects not transmitted! Only high level state data
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• Platform independent (Windows, Linux)
• Long distance (Vienna - Graz)
• 2-6 machines, 5 app. instances
• Dynamic joining & leaving
• Hybrid networks possible 

(multicast UDP + TCP)

• Educational evaluation
6 students (Sir Karl Popper 
school)
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• OpenXR 1.0 (2019) 
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• API aimed for developers and a device layer 
aimed for the VR/AR hardware - abstraction 
interface with the device

• High-performance cross-platform access to 
hardware

• https://www.khronos.org/openxr/
42
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• Allows to develop&host VR/AR experiences on the web
• WebXR provides the following key capabilities:

– Find compatible VR or AR output devices
– Render a 3D scene to the device at an appropriate frame 

rate
– (Optionally) mirror the output to a 2D display
– Create vectors representing the movements of input 

controls

• https://github.com/immersive-
web/webxr/blob/master/explainer.md

• https://immersive-web.github.io/webxr/
• https://www.w3.org/TR/webxr/
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