

Clock Synchronization

slide credits: H. Kopetz, P. Puschner

Overview

- The Problem with Clocks
- Internal Clock Synchronization
 - Synchronization Condition
 - Central and Distributed Clock Synchronization
- External Clock Synchronization
 - Algorithms
 - Time Standards

Clock Drift

Real clocks deviate from the reference clock

Clock drift

$$drift_{i}^{k} = \frac{z(microtick_{i+1}^{k}) - z(microtick_{i}^{k})}{g^{k}}$$

Drift rate

$$\rho^{k_{i}} = \left| \frac{z(microtick^{k_{i+1}}) - z(microtick^{k_{i}})}{g^{k_{i}}} - 1 \right|$$

Drift rate of perfect clock: 0 Drift rate of real clocks: $10^{-8}...10^{-2}$

Failure Modes of Clocks

Internal and External Clock Synchronization

Internal clock synchronization: mutual resynchronization of an ensemble of clocks in order to maintain a bounded precision.

External clock synchronization: resynchronization of a clock with the reference clock.

Synchronization Condition

To keep the clocks internally synchronized with precision Π , the synchronization condition must hold:

$\Phi + \Gamma \leq \Pi$

 Φ ... convergence function: max. offset after synchronization; depends on synchronization algorithm and message latency jitter ε (= transmission-time difference between fastest and slowest message, $\varepsilon = d_{max} - d_{min}$)

 Γ ... drift offset: divergence of free-running clocks; $\Gamma = 2 \rho R_{int}$

R_{int} ... resynchronization interval

Central Master Algorithm

- Master node sends periodic synchronization messages, containing its local time
- Slaves adjust local clocks
 - Record local arrival time of sync. message
 - Compute difference *master clock local clock*
 - Adjust this difference by latency (known, local parameter)
 - Adjust local clock
- Precision of Central Master Algorithm

 $\prod_{central} = \varepsilon + \Gamma$

Distributed Clock Synchronization

Use of distributed algorithms to provide fault tolerance; Typically three phases:

- Nodes exchange messages and acquire information about global-time counters at other nodes.
- Every node analyzes collected information (error detection) and executes the convergence function to compute a correction term for its local global-time counter
- Every node adjusts its local time counter by its correction term

Clock Synchronization – Example

Averaging Algorithm

Malicious (Byzantine) Clocks

Clock synchronization: in the presence of *k* Byzantine clocks the number of clocks, *N*, must be: $N \ge 3k + 1$

Fault-Tolerant Average (FTA) Algorithm

Computation of correction term:

- Calculate differences between local clock and all other clocks
- Sort clock-difference values
- Eliminate k smallest and k largest values
 (k ... max number of erroneous clocks)
- Correction term = average of remaining N 2k time differences (state correction vs. rate correction)

FTA Algorithm – Effect of Byzantine Clock on Φ

Worst-case effect of a Byzantine node:

- Byzantine time values at different ends of precision window
- Error term of a Byzantine error: $E_{byz} = \Pi / (N 2k)$

Precision of the FTA Algorithm

Convergence Function

$$\Phi\left(N,\,k,\,\varepsilon\right)=k\,\Pi\,/\,(N-2k)+\varepsilon$$

Precision

$$\Pi(N, k, \varepsilon, \Gamma) = (\varepsilon + \Gamma) \frac{N - 2k}{N - 3k} = (\varepsilon + \Gamma) \mu(N, k)$$

number of nodes M

 $\mu(N, k)$ is called the Byzantine error term

	$\mu(N, k)$	4	5	6	7	10	15	20	
	1	2	1.5	1.33	1.25	1.14	1.08	1.06	
k	2				3	1.5	1.22	1.14	
	3					4	1.5	1.27	

14

Interactive Consistency Algorithm

Eliminates Byzantine error term

- After collecting the time values of all other clocks, every node sends its view of the clock ensemble to all other clocks
 \$\vee\$ extra communication round!
- Nodes have global view; can identify Byzantine nodes
- Correction based on matrix of time vectors of all views
- $\mu(N, k) = 1$

Limit to Internal Clock Synchronization

Lundelius and Lynch show limits of clock synchronization: The best achievable precision even with perfect clocks is

$$\Pi_{opt} = \varepsilon \left(1 - 1 / N \right)$$

Clock-Synchronization Quality Parameters

- Drift offset $\Gamma = 2 \rho R_{int}$
- Delay jitter $\varepsilon = d_{max} d_{min}$
- Byzantine failures: rare events
- Clock synchronization algorithms: effect on sync. quality is small compared to delay jitter

Keeping the Drift Offset Small

Minimize relative drift rates of clocks

- Use rate master with precise clock in each cluster
- Adjust rates of local clocks to rate of the master
- Use state correction in FTA
 mask errors in rate correction of local clocks

Jitter of Synchronization Messages

Message jitter ϵ depends on where message timestamps are inserted and interpreted

Message assembly/interpretation	appr. range of jitter			
Application software level	500 µs 5 ms			
Operating system kernel	10 μs 100 μs			
Hardware: communication controller	< 10 <i>µ</i> s			

Quality Attributes of a Global Time Base

- Precision
- Accuracy
- Fault tolerance: number and types of faults the system of clocks can tolerate
- Blackout survivability: blackout duration that can be tolerated without losing synchronism

External Clock Synchronization

Synchronize clock ensemble to an external time reference Example: GPS, achievable accuracy below $1\mu s$

Complementary properties of internal/external synchronization:

- Internal clock synchronization: high availability, good short-time stability
- External clock synchronization: long-term stability, possibly lower availability

Promising combination:

gateway to external time reference = rate master for internal synchronization

Cristian's Algorithm

Request time and evaluate reply

Time-request from p_2 to p_1 at t_0

Reply from p_1 arrives at t_3 : contains T, round-trip time $d = t_3 - t_0$ Clock sync: p_2 sets local time to T + d / 2Clock sync. error $\leq d / 2$

Network Time Protocol (NTP)

- Built on idea of Christian's algorithm
- Hierarchy of time servers
 - Class 1: connected to atomic clocks, GPS clocks
 - Class 2: receive time from Class 1 servers, synchronize with other Class 2 devices
 - Class 3: receive time from Class 2 servers, ...
- Clock correction based on statistical analysis of t₀ ... t₃ of multiple clock readings

Precision Time Protocol (PTP) builds on NTP, uses hardware support for message timestamping to keep ϵ small

Time Standards

International Atomic Time (TAI)

- physical time standard
- defines the second as the duration of 9 192 631 770 periods of the radiation of a specified transition of the Cesium 133 atom.
- chronoscopic timescale, i.e., a timescale without discontinuities.
- defines the epoch, the origin of time measurement, as Jan. 1, 1958 at 00:00:00 hours

Time Standards (2)

Universal Time Coordinated (UTC)

- astronomical time standard, basis for the time on the "wall clock".
- duration of the second conforms to the TAI standard
- number of seconds in an hour occasionally modified by inserting a leap second into UTC to maintain synchrony between the wall-clock time and the astronomical phenomena, like day and night.

Adjusting Time can be Tricky ...

Insertion of a leap second at midnight, New Year's Eve 1995, caused a glitch that affected the time signal for the AP radio broadcast network for hours.

Sequence of events:

- 1. The day increments to January 1, 1996, 00:00:00.
- 2. The clock is set back one second, to 23:59:59.
- **3**. The clock continues running.
- 4. The day changes again. Suddenly it is January 2, 00:00:00.

Lessons Learned

- Internal clock synchronization
 - Synchronization Condition
 - Central Master
 - Fault-Tolerant Clock Synchronization
 - Quality Criteria
- External clock synchronization
 - NTP, PTP
 - Standards