VU Programm- und Systemverifikation
Assignment 1: Assertions, Testing, and Coverage

Name: Matr. number:

Due: April 30, 1pm

1 Coverage Metrics

Consider the following program fragment and test suite:

unsigned gcd (unsigned m, unsigned n) {
unsigned 1i;

if (m > n) {
i = n;
} else {
TTm Inputs Outputs
} m| n | return value
bool done = false; 0 1 0
while ((i > 0) && !done) { 1T 0 o
if (m%1i==0) & (@ % 1i==0) { T
done = true;
} else { 2] 3 |1
i=1i-1;
}
}
return ij;
}

1.1 Control-Flow-Based Coverage Criteria (3 points)

Indicate (v') which of the following coverage criteria are satisfied by the test-suite above.

satisfied
Criterion yes | no

statement coverage

decision coverage

condition coverage

modified condition/decision coverage

For each coverage criterion that is not satisfied, explain why this is the case:

1.2 Data-Flow-Based Coverage Criteria (4 points)

Indicate (v') which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions, the return statement is
a c-use):

satisfied
Criterion yes | no
all-defs
all-c-uses
all-p-uses

all-c-uses/some-p-uses
all-p-uses/some-c-uses

For each coverage criterion that is not satisfied, explain why this is the case:

1.3 Achieving Full Coverage (1 point)

Consider the two coverage criteria below.

e If the test-suite from above does not satisfy the coverage criterion, augment it with
the minimal number of test-cases such that this criterion is satisfied. If full coverage
cannot be achieved, explain why.

e If the coverage criterion is already achieved, explain why.

MC/DC all-p-uses
Inputs \ Outputs Inputs ‘ Outputs
m| n | result m| n | result

1.4 Modified Condition/Decision Coverage (1 point)

Consider the expression ((a V b) A ¢), where a, b, and ¢ are Boolean variables. Provide a
minimal number of test cases such that modified condition/decision coverage is achieved
for the expression. Clarify for each test case which condition(s)/value(s) independently
affect(s) the outcome.

MC/DC

Inputs Outcome
alblc| (all b & c

2 Equivalence Partitioning and Boundary Testing

The resources for performing RT-PCR tests to determine whether a patient has contracted
the COVID-19 virus are extremely limited; consequently, critical patients will have to be
prioritized. The function

priority triage (enum countries travel,
enum symptoms sympt,
int age);

is used to determine the priority with which a person should be tested or not. It uses the
following data-types:

e priority is an enum type defined as enum priority {high, medium, low};

e countries is an enum type listing 196 countries used to represent the country the
patient most recently traveled to (if any). It is defined as follows:

enum countries { None = 0, China = 1, Iran = 2, Italy = 3, ...};

The first entry (0) indicates that the patient has not traveled outside Austria recently;
the following k entries are countries that are classified as critical, and the remaining
196 — k entries are countries that are (still) considered safe.

e symptoms is an enum type listing 100 symptoms defined as follows:

enum countries {
None = O, Tiredness, Aches, Cough, Fever, ..., };

The first entry (0) indicates that the patient has no symptoms, the following m symp-
toms are common symptoms of COVID-19, and the remaining symptoms (m + 1 to
100) are not known to be related to the new virus.

e The parameter age represents the age of the patient.
The function triage is supposed to implement the following rules:

e Patients who have no recent travel history to critical countries or show none of the
typical symptoms are considered low priority.

e Patients who have traveled to a country classified as critical and report a relevant
symptom are medium priority if they are younger than 65, and high priority if they
are 65 and above.

2.1 Equivalence Partitioning (3.5 points)

From the specification above, derive equivalence classes for the function triage. Use the
table below to partition them into valid equivalence classes (valid inputs) and invalid equiv-
alence classes (invalid inputs). Label each of the equivalence classes clearly with a number
(in the according column). For each correct equivalence class you can score % a point (up
to 3.5 points).

(Do not provide test-cases here — that’s task 2.2)

2.1.1 Valid Equivalence Classes

Condition ID

2.1.2 Invalid Equivalence Classes

Condition ID

2.2 Boundary Value Testing (3.5 points)

Use Boundary Value Testing to derive a test-suite for the function triage. Specify the
inputs points for triage. Indicate clearly which equivalence classes each test-case covers
by referring to the numbers from task (a). You can receive up to 3.5 points (% a point per
test-case), where redundant test-cases and test-cases that do not represent boundary values
do not count.

Input Output Classes Covered

3 Invariants (4 points)

Consider the following program, where x and y are non-negative natural numbers (possibly
0):

x =y + 1;

while (x '= y) {
x =x + (y % 2);
y =3y + (x % 2);

}

Consider the formulas below; tick the correct box () to indicate whether they are loop
invariants for the program above.

e If the formula is an inductive invariant for the loop, provide an informal argument
that the invariant is inductive.

e [f the formula P is an invariant that is not inductive, give values of x and y before and
after the loop body such that PA B (where B is (x !'= y)) holds before the execution
of

x=x+ (y%2); y =y + (x%2);

and P does not hold anymore afterwards.

e Otherwise, provide values of x and y that correspond to a reachable state showing
that the formula is not an invariant.

(x—-y) <1

O Inductive Invariant O Non-inductive Inv. O Neither
Justification:
(r—y) <2 O Inductive Invariant O Non-inductive Inv. O Neither
Justification:
(x—y)%n2=1 O Inductive Invariant O Non-inductive Inv. O Neither
Justification:
(x> vy) O Inductive Invariant O Non-inductive Inv. O Neither

Justification:

