Problem Set 6

Problem 6.1 Consider a discrete random variable $\mathrm{x} \in\{-1,1\}$ with $\mathrm{P}\{X=1\}=$ $1 / 2$ and a Gaussian distributed random variable $v \sim \mathcal{N}\left(0, \sigma^{2}\right)$. x and v are statistically independent.
a) Calculate the joint probability density function $f_{x, z}(x, z)$ for $\mathbf{z}=x v$.
b) Calculate the marginal pdf $f_{\mathrm{z}}(z)$.
c) Find out whether x and z are statistically independent and/or uncorrelated and/or orthogonal. Justify your answers.

Problem 6.2 Three iid random variables x_{1}, x_{2} and x_{3} are uniformly distributed on the interval $[0, a]$, where $a>0$. Find and sketch the probability density function of the random variable $\mathrm{y}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}$.

Problem 6.3 Let $m \in \mathcal{M} \subset \mathbb{N}$ be a positive, integer-valued random variable, and let x_{1}, x_{2}, \ldots be iid random variables. Furthermore, assume that m is independent of x_{i} for every i. A new random variable y is given by the random sum

$$
\mathrm{y}=\sum_{i=1}^{\mathrm{m}} \mathrm{x}_{i}
$$

a) Find the mean μ_{y}.
b) Find the variance σ_{y}^{2}.

Problem 6.4 Let $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} be three iid random variables, each with probability density function $f_{\mathrm{x}_{i}}\left(x_{i}\right)=e^{-x_{i}} u\left(x_{i}\right)$, where $u(\cdot)$ is the unit-step function $(i=1,2,3)$. Let y_{1}, y_{2} and y_{3} be random variables given by

$$
\begin{aligned}
& \mathrm{y}_{1}=\frac{\mathrm{x}_{1}}{\mathrm{x}_{1}+\mathrm{x}_{2}} \\
& \mathrm{y}_{2}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}} \\
& \mathrm{y}_{3}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} .
\end{aligned}
$$

a) Find the joint density $f_{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}}\left(y_{1}, y_{2}, y_{3}\right)$.
b) Are y_{1}, y_{2} and y_{3} statistically independent? Justify your answer.

