Problem Set 6

Problem 6.1 Consider a discrete random variable $x \in \{-1, 1\}$ with $P\{X = 1\} = 1/2$ and a Gaussian distributed random variable $v \sim \mathcal{N}(0, \sigma^2)$. x and v are statistically independent.

- a) Calculate the joint probability density function $f_{x,z}(x,z)$ for z = xv.
- b) Calculate the marginal pdf $f_z(z)$.
- c) Find out whether x and z are statistically independent and/or uncorrelated and/or orthogonal. Justify your answers.

Problem 6.2 Three iid random variables x_1 , x_2 and x_3 are uniformly distributed on the interval [0, a], where a > 0. Find and sketch the probability density function of the random variable $y = x_1 + x_2 + x_3$.

Problem 6.3 Let $m \in \mathcal{M} \subset \mathbb{N}$ be a positive, integer-valued random variable, and let x_1, x_2, \ldots be iid random variables. Furthermore, assume that m is independent of x_i for every *i*. A new random variable y is given by the *random* sum

$$\mathsf{y} = \sum_{i=1}^{\mathsf{m}} \mathsf{x}_i.$$

a) Find the mean μ_{y} .

b) Find the variance σ_v^2 .

Problem 6.4 Let x_1, x_2 and x_3 be three iid random variables, each with probability density function $f_{x_i}(x_i) = e^{-x_i}u(x_i)$, where $u(\cdot)$ is the unit-step function (i = 1, 2, 3). Let y_1, y_2 and y_3 be random variables given by

$$y_1 = \frac{x_1}{x_1 + x_2}$$
$$y_2 = \frac{x_1 + x_2}{x_1 + x_2 + x_3}$$
$$y_3 = x_1 + x_2 + x_3$$

- a) Find the joint density $f_{y_1,y_2,y_3}(y_1,y_2,y_3)$.
- b) Are y_1 , y_2 and y_3 statistically independent? Justify your answer.